Thermodynamics of DNA Binding by DNA Polymerase I and Reca

Total Page:16

File Type:pdf, Size:1020Kb

Thermodynamics of DNA Binding by DNA Polymerase I and Reca Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2014 Thermodynamics of DNA Binding by DNA Polymerase I and RecA Recombinase from Deinococcus radiodurans Jaycob Dalton Warfel Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Warfel, Jaycob Dalton, "Thermodynamics of DNA Binding by DNA Polymerase I and RecA Recombinase from Deinococcus radiodurans" (2014). LSU Doctoral Dissertations. 2382. https://digitalcommons.lsu.edu/gradschool_dissertations/2382 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. THERMODYNAMICS OF DNA BINDING BY DNA POLYMERASE I AND RECA RECOMBINASE FROM DEINOCOCCUS RADIODURANS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Jaycob Dalton Warfel B.S. Louisiana State University, 2006 May 2015 ACKNOWLEDGEMENTS I would like to express my utmost gratitude to the myriad of individuals who have lent their support during the time it has taken to complete this dissertation. First and foremost is due glory to God, The Father, The Son and The Holy Spirit, through whom all is accomplished. It is with extreme thankfulness for the blessings bestowed upon me, and with vast appreciation for the beauty of God’s creation that I have pursued a scientific education. God has blessed me with a tremendously supportive network of family and friends that have helped to guide me through graduate school. Without the love of my wife, Cari, and my daughter, Sophia, accomplishing this goal would not have been possible. In addition, I acknowledge the many coworkers that I have had the pleasure to learn beside. It has been a profound honor to work under Dr. Vince LiCata, whose passion for science was the primary motivator for my choosing a scientific career. I thank the members of the LiCata Lab: Dr. Chin- Chi Liu, Dr. Hiromi Brown, Dr. Yanling Yang, Dr. Daniel Deredge, Dr. Andy Wowor, Dr. Allison Richard, Dr. Kausiki Datta, Carmen Ruiz, Todd Baker, and Xinji Zhu for their technical and emotional support, and Katelyn Jackson for data collection within this dissertation. I would like to thank the Louisiana State University Department of Biological Sciences for its financial and educational support, especially for the guidance given by my graduate committee, Dr. Anne Grove, Dr. Marcia Newcomer, Dr. John Battista, and Dr. Kevin Macaluso; and by my teaching mentors, Dr. Erin Hawkins and Dr. Bill Wischusen. Their wisdom and insight has been indispensable in my development as a scientist. Finally I would like to thank my mother and father. Their hard work has constantly been a motivation to me, and they have instilled within me a desire to achieve, in order that God might be glorified in all that I do. Thanks again to all who have made this dissertation possible. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................................ ii LIST OF TABLES .......................................................................................................................... v LIST OF FIGURES ....................................................................................................................... vi LIST OF ABBREVIATIONS ...................................................................................................... viii ABSTRACT ................................................................................................................................... ix CHAPTER 1. GENERAL INTRODUCTION ............................................................................... 1 1.1 Discovery and Classification of Deinococcus radiodurans .................................................. 1 1.2 Oxidative Stress Resistance Strategies .................................................................................. 4 1.2.1 Reduction in Reactive Oxygen Species .......................................................................... 7 1.2.2 Repair of Damaged DNA after Oxidative Stress .......................................................... 10 1.3 RecA .................................................................................................................................... 15 1.3.1 Homologous Recombination within Escherichia coli .................................................. 17 1.3.2 RecA in Deinococcus radiodurans Homologous Recombination ............................... 20 1.3.3 Characteristics of Escherichia coli and Deinococcus radiodurans RecA .................... 22 1.4 DNA Polymerase I .............................................................................................................. 26 1.4.1 Structure of DNA Polymerase I .................................................................................... 27 1.4.2 Polymerase Activity of DNA Polymerase I ................................................................. 28 1.4.3 Exonuclease Activity of DNA Polymerase I ................................................................ 30 1.4.4 DNA Polymerase I within Deinococcus radiodurans .................................................. 32 CHAPTER 2. ENHANCED DNA BINDING AFFINITY OF RECA PROTEIN FROM DEINOCOCCUS RADIODURANS ...................................................................... 35 2.1 Introduction ......................................................................................................................... 35 2.2 Materials and Methods ........................................................................................................ 36 2.2.1 Escherichia coli and Deinococcus radiodurans RecA Purification ............................. 36 2.2.2 DNA Oligomers ............................................................................................................ 36 2.2.3 Fluorescence Anisotropy Titrations.............................................................................. 37 2.2.4 Glutamate Dependence of Binding ............................................................................... 38 2.2.5 Filament Formation Kinetics ........................................................................................ 38 2.2.6 Data Analysis ................................................................................................................ 38 2.3 Results ................................................................................................................................. 40 2.3.1 Comparative Binding Affinities ................................................................................... 40 2.3.2 Length Dependence of ssDNA Binding ....................................................................... 44 2.3.3 Salt Dependence of Binding ......................................................................................... 44 2.3.4 Cooperativity of Binding .............................................................................................. 47 2.3.5 Filament Formation Kinetics ........................................................................................ 48 2.4 Discussion ........................................................................................................................... 49 iii CHAPTER 3. STABILITY OF KLENDRA WITH VARYING SOLUTION CONDITIONS ... 55 3.1 Introduction ......................................................................................................................... 55 3.2 Materials and Methods ........................................................................................................ 57 3.2.1 Expression Plasmid and Cloning of Deinococcus radiodurans DNA Polymerase I ... 57 3.2.2 Klendra Purification Protocol ....................................................................................... 57 3.2.3 Circular Dichroism Spectroscopy ................................................................................. 59 3.2.4 Chemical Denaturations ............................................................................................... 59 3.2.5 Thermal Denaturations ................................................................................................. 60 3.2.6 Data Analysis ................................................................................................................ 60 3.3 Results ................................................................................................................................. 62 3.3.1 Structure of Klendra Polymerase .................................................................................. 62 3.3.2 Structural Stability ........................................................................................................ 63 3.3.3 Thermal Denaturations ................................................................................................. 65 3.3.4 Dependence of Melting Temperature on Solution pH.................................................. 67 3.4 Discussion ........................................................................................................................... 70 CHAPTER
Recommended publications
  • The Link Between Independent Acquisition of Intracellular Gamma-Endosymbionts and Concerted Evolution in Tremblaya Princeps
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 25 June 2015 doi: 10.3389/fmicb.2015.00642 The link between independent acquisition of intracellular gamma-endosymbionts and concerted evolution in Tremblaya princeps Sergio López-Madrigal 1, Amparo Latorre 1, 2, Andrés Moya 1, 2 and Rosario Gil 1* 1 Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain, 2 Área de Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO) – Salud Pública, València, Spain Many insect species establish mutualistic symbiosis with intracellular bacteria that complement their unbalanced diets. The betaproteobacterium “Candidatus Tremblaya” maintains an ancient symbiosis with mealybugs (Hemiptera: Pseudococcidae), which are classified in subfamilies Phenacoccinae and Pseudococcinae. Most Phenacoccinae Edited by: mealybugs have “Candidatus Tremblaya phenacola” as their unique endosymbiont, while Joerg Graf, University of Connecticut, USA most Pseudococcinae mealybugs show a nested symbiosis (a bacterial symbiont placed Reviewed by: inside another one) where every “Candidatus Tremblaya princeps” cell harbors several John M. Chaston, cells of a gammaproteobacterium. Genomic characterization of the endosymbiotic Brigham Young University, USA consortium from Planococcus citri, composed by “Ca. Tremblaya princeps” and Huan Qiu, Rutgers University, USA “Candidatus Moranella endobia,” unveiled several atypical features of the former’s *Correspondence: genome, including the concerted evolution of paralogous loci. Its comparison with the Rosario Gil, genome of “Ca. Tremblaya phenacola” PAVE, single endosymbiont of Phenacoccus Institut Cavanilles de Biodiversitat i avenae, suggests that the atypical reductive evolution of “Ca.
    [Show full text]
  • Characterization of the Multidrug Resistance Protein Expressed in Cell Clones Stably Transfected with the Mouse Mdrl Cdna1
    [CANCER RESEARCH 49, 2729-2734, May 15, 1989] Characterization of the Multidrug Resistance Protein Expressed in Cell Clones Stably Transfected with the Mouse mdrl cDNA1 Erwin Schurr,2 Martine Raymond,3 John C. Bell,4 and Philippe Gros5 Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, Canada, H3GIY6 ABSTRACT of the nucleotide and predicted amino acid sequences of this clone indicated that the encoded polypeptide was most likely a Structural features of the multidrug resistance protein encoded by the membrane glycoprotein, highly similar or identical to P-glyco mouse mdrl gene were studied in multidrug-resistant cell clones stably protein, which contained 12 putative transmembrane domains transfected with a biologically active cDNA clone. Independently derived and a cluster of /V-linked glycosylation sites near the amino transfectant cell clones, initially selected in Adriamycin, were shown to be cross-resistant to several drugs, including actinomycin D, amsacrine, terminus. It is formed by the internal duplication of a structural mitoxantrone, VP-16, and vinblastine but remained sensitive to cis- unit which encodes three transmembrane loops and a putative platinum, 5-fluorouracil, ¡trabinocytosine, and bleomycin. In drug-resist nucleotide binding fold (7). The duplicated segment is highly ant transfectants the mdrl gene product was greatly overexpressed as a homologous to the energy coupling subunit of bacterial trans polypeptide of apparent molecular weight 160,000-170,000. This protein port proteins particularly HlyB, a protein that participates in was present in membrane enriched fractions and could be metabolically the extracellular transport of haemolysin in Escherichia coli labeled with |3H]glucosamine, confirming that the transfected mdrl gene (14).
    [Show full text]
  • DNA Unwinding Step-Size of E. Coli Recbcd Helicase Determined from Single Turnover Chemical Quenched-flow Kinetic Studies
    B doi:10.1016/S0022-2836(02)01067-7 available online at http://www.idealibrary.com on w J. Mol. Biol. (2002) 324, 409–428 DNA Unwinding Step-size of E. coli RecBCD Helicase Determined from Single Turnover Chemical Quenched-flow Kinetic Studies Aaron L. Lucius1, Alessandro Vindigni1, Razmic Gregorian1 Janid A. Ali1, Andrew F. Taylor2, Gerald R. Smith2 and Timothy M. Lohman1* 1Department of Biochemistry The mechanism by which Escherichia coli RecBCD DNA helicase unwinds and Molecular Biophysics duplex DNA was examined in vitro using pre-steady-state chemical Washington University School quenched-flow kinetic methods. Single turnover DNA unwinding experi- of Medicine, 660 S. Euclid Ave. ments were performed by addition of ATP to RecBCD that was pre- Box 8231, St. Louis, MO 63110 bound to a series of DNA substrates containing duplex DNA regions USA ranging from 24 bp to 60 bp. In each case, the time-course for formation of completely unwound DNA displayed a distinct lag phase that 2Fred Hutchinson Cancer increased with duplex length, reflecting the transient formation of Research Center, 1100 Fairview partially unwound DNA intermediates during unwinding catalyzed by Ave. North, Seattle, WA 98109 RecBCD. Quantitative analysis of five independent sets of DNA unwind- USA ing time courses indicates that RecBCD unwinds duplex DNA in discrete steps, with an average unwinding “step-size”, m ¼ 3.9(^1.3) bp step21, ^ 21 with an average unwinding rate of kU ¼ 196( 77) steps s ^ 21 (mkU ¼ 790( 23) bp s ) at 25.0 8C (10 mM MgCl2, 30 mM NaCl (pH 7.0), 5% (v/v) glycerol).
    [Show full text]
  • Capture of a Recombination Activating Sequence from Mammalian Cells
    Gene Therapy (1999) 6, 1819–1825 1999 Stockton Press All rights reserved 0969-7128/99 $15.00 http://www.stockton-press.co.uk/gt Capture of a recombination activating sequence from mammalian cells P Olson and R Dornburg The Dorrance H Hamilton Laboratories, Center for Human Virology, Division of Infectious Diseases, Jefferson Medical College, Thomas Jefferson University, Jefferson Alumni Hall, 1020 Locust Street, Rm 329, Philadelphia, PA 19107, USA We have developed a genetic trap for identifying revealed a putative recombination signal (CCCACCC). sequences that promote homologous DNA recombination. When this heptamer or an abbreviated form (CCCACC) The trap employs a retroviral vector that normally disables were reinserted into the vector, they stimulated vector itself after one round of replication. Insertion of defined repair and other DNA rearrangements. Mutant forms of DNA sequences into the vector induced the repair of a 300 these oligomers (eg CCCAACC or CCWACWS) did not. base pair deletion, which restored its ability to replicate. Our data suggest that the recombination events occurred Tests of random sequence libraries made in the vector within 48 h after transfection. Keywords: recombination; retroviral vector; vector stability; gene conversion; gene therapy Introduction scripts are still made from the intact left LTR, but reverse transcription copies the deletion to both LTRs, disabling Recognition of cis-acting DNA signals occupies a central the daughter provirus.15–17 We found that the SIN vectors role in both site-specific and general recombination path- that could escape this programmed disablement did so 1–6 ways. Signals in site-specific pathways define the by recombinationally repairing the U3-deleted LTR.
    [Show full text]
  • Insights from the Reanalysis of High-Throughput Chemical Genomics Data For
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206243; this version posted July 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 1 Title: Insights from the reanalysis of high-throughput chemical genomics data for 2 Escherichia coli K-12 3 Authors: Peter I-Fan Wu1, Curtis Ross1, Deborah A. Siegele2 and James C. Hu1,3 4 5 Affiliations: 6 1. Department of Biochemistry and Biophysics, Texas A&M University and Texas 7 Agrilife Research, College Station, TX 77843-2128 8 2. Department of Biology, Texas A&M University, College Station, TX 77843-3258 9 3. Deceased 10 11 Correspondence: [email protected] 12 13 14 Key words: phenotypic profiling, functional genomics, microbial genomics, biostatistics, 15 Escherichia coli, bacterial genetics 16 17 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206243; this version posted July 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 2 18 ABSTRACT 19 Despite the demonstrated success of genome-wide genetic screens and chemical 20 genomics studies at predicting functions for genes of unknown function or predicting 21 new functions for well-characterized genes, their potential to provide insights into gene 22 function hasn't been fully explored.
    [Show full text]
  • Archaeal Viruses and Bacteriophages: Comparisons and Contrasts
    Review Archaeal viruses and bacteriophages: comparisons and contrasts Maija K. Pietila¨ , Tatiana A. Demina, Nina S. Atanasova, Hanna M. Oksanen, and Dennis H. Bamford Institute of Biotechnology and Department of Biosciences, P.O. Box 56, Viikinkaari 5, 00014 University of Helsinki, Helsinki, Finland Isolated archaeal viruses comprise only a few percent of Euryarchaeaota [9,10]. Archaea have also been cultivated all known prokaryotic viruses. Thus, the study of viruses from moderate environments such as seawater and soil. infecting archaea is still in its early stages. Here we Consequently, an additional phylum, Thaumarchaeota, summarize the most recent discoveries of archaeal vi- has been formed to contain mesophilic and thermophilic ruses utilizing a virion-centered view. We describe the ammonia-oxidizing archaea [11]. However, all known ar- known archaeal virion morphotypes and compare them chaeal viruses infect extremophiles – mainly hyperther- to the bacterial counterparts, if such exist. Viruses infect- mophiles belonging to the crenarchaeal genera Sulfolobus ing archaea are morphologically diverse and present and Acidianus or halophiles of the euryarchaeal genera some unique morphotypes. Although limited in isolate Haloarcula, Halorubrum, and Halobacterium [6,7]. Even number, archaeal viruses reveal new insights into the though bacteria are also found in diverse extreme habitats viral world, such as deep evolutionary relationships such as hypersaline lakes, archaea typically dominate at between viruses that infect hosts from all three domains extreme salinities, based on both cultivation-dependent of life. and -independent studies [6,12–15]. Consequently, archae- al viruses do the same in hypersaline environments. About Discovery of archaeal viruses 50 prokaryotic haloviruses were recently isolated from All cellular organisms are susceptible to viral infections, nine globally distant locations, and only four of them which makes viruses a major evolutionary force shaping infected bacteria [6,16].
    [Show full text]
  • Access to Electronic Thesis
    Access to Electronic Thesis Author: Khalid Salim Al-Abri Thesis title: USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS Qualification: PhD This electronic thesis is protected by the Copyright, Designs and Patents Act 1988. No reproduction is permitted without consent of the author. It is also protected by the Creative Commons Licence allowing Attributions-Non-commercial-No derivatives. If this electronic thesis has been edited by the author it will be indicated as such on the title page and in the text. USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS By Khalid Salim Al-Abri Msc., University of Sultan Qaboos, Muscat, Oman Mphil, University of Sheffield, England Thesis submitted in partial fulfillment for the requirements of the Degree of Doctor of Philosophy in the Department of Molecular Biology and Biotechnology, University of Sheffield, England 2011 Introductory Pages I DEDICATION To the memory of my father, loving mother, wife “Muneera” and son “Anas”, brothers and sisters. Introductory Pages II ACKNOWLEDGEMENTS Above all, I thank Allah for helping me in completing this project. I wish to express my thanks to my supervisor Professor Milton Wainwright, for his guidance, supervision, support, understanding and help in this project. In addition, he also stood beside me in all difficulties that faced me during study. My thanks are due to Dr. D. J. Gilmour for his co-supervision, technical assistance, his time and understanding that made some of my laboratory work easier. In the Ministry of Regional Municipalities and Water Resources, I am particularly grateful to Engineer Said Al Alawi, Director General of Health Control, for allowing me to carry out my PhD study at the University of Sheffield.
    [Show full text]
  • Representatives of a Novel Archaeal Phylum Or a Fast-Evolving
    Open Access Research2005BrochieretVolume al. 6, Issue 5, Article R42 Nanoarchaea: representatives of a novel archaeal phylum or a comment fast-evolving euryarchaeal lineage related to Thermococcales? Celine Brochier*, Simonetta Gribaldo†, Yvan Zivanovic‡, Fabrice Confalonieri‡ and Patrick Forterre†‡ Addresses: *EA EGEE (Evolution, Génomique, Environnement) Université Aix-Marseille I, Centre Saint-Charles, 3 Place Victor Hugo, 13331 Marseille, Cedex 3, France. †Unite Biologie Moléculaire du Gène chez les Extremophiles, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex ‡ 15, France. Institut de Génétique et Microbiologie, UMR CNRS 8621, Université Paris-Sud, 91405 Orsay, France. reviews Correspondence: Celine Brochier. E-mail: [email protected]. Simonetta Gribaldo. E-mail: [email protected] Published: 14 April 2005 Received: 3 December 2004 Revised: 10 February 2005 Genome Biology 2005, 6:R42 (doi:10.1186/gb-2005-6-5-r42) Accepted: 9 March 2005 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2005/6/5/R42 reports © 2005 Brochier et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Placement<p>Anteins from analysis 25of Nanoarcheumarchaeal of the positiongenomes equitans of suggests Nanoarcheum in the that archaeal N. equitans phylogeny inis likethe lyarchaeal to be the phylogeny representative using aof large a fast-evolving dataset of concatenatedeuryarchaeal ribosomalineage.</p>l pro- deposited research Abstract Background: Cultivable archaeal species are assigned to two phyla - the Crenarchaeota and the Euryarchaeota - by a number of important genetic differences, and this ancient split is strongly supported by phylogenetic analysis.
    [Show full text]
  • (Antarctica) Glacial, Basal, and Accretion Ice
    CHARACTERIZATION OF ORGANISMS IN VOSTOK (ANTARCTICA) GLACIAL, BASAL, AND ACCRETION ICE Colby J. Gura A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2019 Committee: Scott O. Rogers, Advisor Helen Michaels Paul Morris © 2019 Colby Gura All Rights Reserved iii ABSTRACT Scott O. Rogers, Advisor Chapter 1: Lake Vostok is named for the nearby Vostok Station located at 78°28’S, 106°48’E and at an elevation of 3,488 m. The lake is covered by a glacier that is approximately 4 km thick and comprised of 4 different types of ice: meteoric, basal, type 1 accretion ice, and type 2 accretion ice. Six samples were derived from the glacial, basal, and accretion ice of the 5G ice core (depths of 2,149 m; 3,501 m; 3,520 m; 3,540 m; 3,569 m; and 3,585 m) and prepared through several processes. The RNA and DNA were extracted from ultracentrifugally concentrated meltwater samples. From the extracted RNA, cDNA was synthesized so the samples could be further manipulated. Both the cDNA and the DNA were amplified through polymerase chain reaction. Ion Torrent primers were attached to the DNA and cDNA and then prepared to be sequenced. Following sequencing the sequences were analyzed using BLAST. Python and Biopython were then used to collect more data and organize the data for manual curation and analysis. Chapter 2: As a result of the glacier and its geographic location, Lake Vostok is an extreme and unique environment that is often compared to Jupiter’s ice-covered moon, Europa.
    [Show full text]
  • In Vivo Interactions of Archaeal Cdc6 Orc1 and Minichromosome
    In vivo interactions of archaeal Cdc6͞Orc1 and minichromosome maintenance proteins with the replication origin Fujihiko Matsunaga*, Patrick Forterre*, Yoshizumi Ishino†, and Hannu Myllykallio*§ *Institut de Ge´ne´ tique et Microbiologie, Universite´de Paris-Sud, 91405 Orsay, France; and †Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan Communicated by Bruce W. Stillman, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, July 25, 2001 (received for review May 25, 2001) Although genome analyses have suggested parallels between basis of asymmetry in base composition between leading and archaeal and eukaryotic replication systems, little is known about lagging strands (10, 11). In Pyrococcus abyssi, the location of the the DNA replication mechanism in Archaea. By two-dimensional predicted origin coincides with an early replicating chromosomal gel electrophoreses we positioned a replication origin (oriC) within segment of 80 kb identified by radioactive labeling of chromo- 1 kb in the chromosomal DNA of Pyrococcus abyssi, an anaerobic somal DNA in cultures released from a replication block (12). hyperthermophile, and demonstrated that the oriC is physically Our in silico and labeling data also allowed us to conclude that linked to the cdc6 gene. Our chromatin immunoprecipitation as- the hyperthermophilic archaeon P. abyssi uses a single bidirec- says indicated that P. abyssi Cdc6 and minichromosome mainte- tional origin to replicate its genome. We proposed that this origin nance (MCM) proteins bind preferentially to the oriC region in the would correspond to the long intergenic region conserved in all exponentially growing cells. Whereas the oriC association of MCM three known Pyrococcus sp.
    [Show full text]
  • The Genome of Hyperthermus Butylicus: a Sulfur-Reducing, Peptide Fermenting, Neutrophilic Crenarchaeote Growing up to 108 °C
    Archaea 2, 127–135 © 2007 Heron Publishing—Victoria, Canada The genome of Hyperthermus butylicus: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 °C KIM BRÜGGER,1,2 LANMING CHEN,1,2 MARKUS STARK,3,4 ARNE ZIBAT,4 PETER REDDER,1 ANDREAS RUEPP,4,5 MARIANA AWAYEZ,1 QUNXIN SHE,1 ROGER A. GARRETT1,6 and HANS-PETER KLENK3,4,7 1 Danish Archaea Centre, Institute of Molecular Biology, Copenhagen University, Sølvgade 83H, 1307 Copenhagen K, Denmark 2 These authors contributed equally to the project 3 e.gene Biotechnologie GmbH, Poeckinger Fussweg 7a, 82340 Feldafing, Germany 4 Formerly EPIDAUROS Biotechnologie AG, Genes and Genome Analysis Team 5 Present address: Institut für Bioinformatik, GSF-Forschungszentrum für Umwelt und Gesundheit, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany 6 Editing author 7 Corresponding author ([email protected]) Received October 26, 2006; accepted January 2, 2007; published online January 19, 2007 Summary Hyperthermus butylicus, a hyperthermophilic 1990). It grows between 80 and 108 oC with a broad tempera- neutrophile and anaerobe, is a member of the archaeal kingdom ture optimum. The organism utilizes peptide mixtures as car- Crenarchaeota. Its genome consists of a single circular chro- bon and energy sources but not amino acid mixtures, various mosome of 1,667,163 bp with a 53.7% G+C content. A total of synthetic peptides or undigested protein. It can also generate 1672 genes were annotated, of which 1602 are protein-coding, energy by reduction of elemental sulfur to yield H2S. Fermen- and up to a third are specific to H.
    [Show full text]
  • ( 12 ) United States Patent
    US010428349B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 428 ,349 B2 DeRosa et al . (45 ) Date of Patent: Oct . 1 , 2019 ( 54 ) MULTIMERIC CODING NUCLEIC ACID C12N 2830 / 50 ; C12N 9 / 1018 ; A61K AND USES THEREOF 38 / 1816 ; A61K 38 /45 ; A61K 38/ 44 ; ( 71 ) Applicant: Translate Bio , Inc ., Lexington , MA A61K 38 / 177 ; A61K 48 /005 (US ) See application file for complete search history . (72 ) Inventors : Frank DeRosa , Lexington , MA (US ) ; Michael Heartlein , Lexington , MA (56 ) References Cited (US ) ; Daniel Crawford , Lexington , U . S . PATENT DOCUMENTS MA (US ) ; Shrirang Karve , Lexington , 5 , 705 , 385 A 1 / 1998 Bally et al. MA (US ) 5 ,976 , 567 A 11/ 1999 Wheeler ( 73 ) Assignee : Translate Bio , Inc ., Lexington , MA 5 , 981, 501 A 11/ 1999 Wheeler et al. 6 ,489 ,464 B1 12 /2002 Agrawal et al. (US ) 6 ,534 ,484 B13 / 2003 Wheeler et al. ( * ) Notice : Subject to any disclaimer , the term of this 6 , 815 ,432 B2 11/ 2004 Wheeler et al. patent is extended or adjusted under 35 7 , 422 , 902 B1 9 /2008 Wheeler et al . 7 , 745 ,651 B2 6 / 2010 Heyes et al . U . S . C . 154 ( b ) by 0 days. 7 , 799 , 565 B2 9 / 2010 MacLachlan et al. (21 ) Appl. No. : 16 / 280, 772 7 , 803 , 397 B2 9 / 2010 Heyes et al . 7 , 901, 708 B2 3 / 2011 MacLachlan et al. ( 22 ) Filed : Feb . 20 , 2019 8 , 101 ,741 B2 1 / 2012 MacLachlan et al . 8 , 188 , 263 B2 5 /2012 MacLachlan et al . (65 ) Prior Publication Data 8 , 236 , 943 B2 8 /2012 Lee et al .
    [Show full text]