Thioredoxm, Glutaredoxin, and Thioredoxm Reductase from Cultured Hela Cells (Thiol-Disulfide Exchange) MONICA LIK-SHING TSANG* and JAMES A

Total Page:16

File Type:pdf, Size:1020Kb

Thioredoxm, Glutaredoxin, and Thioredoxm Reductase from Cultured Hela Cells (Thiol-Disulfide Exchange) MONICA LIK-SHING TSANG* and JAMES A Proc. Nati Acad. Sci. USA Vol. 78, No. 12, pp. 7478-7482, December-1981 Biochemistry Thioredoxm, glutaredoxin, and thioredoxm reductase from cultured HeLa cells (thiol-disulfide exchange) MONICA LIK-SHING TSANG* AND JAMES A. WEATHERBEEti *Biolog Department, Clark University, Worcester, Massachusetts 01610; and tThe Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545 Communicated by Martin Gibbs, September 8, 1981 ABSTRACT Thioredoxin and glutaredoxin may be important ATPase activity in intact chloroplasts (11); the reduction of di- in regulating cell metabolism by mediating interchanges between sulfides in proteins such as insulin, choriogonadotropin, and sulfhydryl and disulfide groups. Components of the thioredoxin/ fibrinogen (12-14); the functioning as an essential subunit for glutaredoxin system from cultured HeLa cells have been partially phage T7 DNA polymerase (15); and perhaps phosphate transfer purified and characterized by using Escherichia coli adenosine 3'- reactions (16). In many of the thioredoxin- and glutaredoxin- phosphate 5'-phosphosulfate reductase, a thioredoxin/glutare- dependent reactions studied, at least one function of thiore- doxin-dependent enzyme on the pathway of sulfate, reduction, as an assay system. In HeLa cells, a NADPH-thioredoxin reductase doxin or glutaredoxin appears to' involve thiol-protein disulfide and three heat-labile proteins (designated PI, PH, and PHI) that interchange. have thioredoxin- or glutaredoxin-like properties are found. Both Even though E. coli thioredoxin and glutaredoxin are related PI and PIll have molecular masses of =w12,000 daltons and are functionally, there are differences in their physical as well as readily reduced by their homologous HeLa thioredoxin reductase. catalytic properties. Glutaredoxin has an amino acid composi- However, only PI can be reduced efficiently by the glutathione tion that is different from that of thioredoxin (3, 17). In agree- system and neither PI nor PHI has inherent glutathione-disulfide ment, the tryptic peptide maps ofthe two proteins are also dif- oxidoreductase activity. PH has a molecular mass of >30,000 dal- ferent, indicating that the two proteins are unrelated in their tons and appears to be associated with a reductase activity. The primary structure. Thioredoxin, but not glutaredoxin, is a sub- HeLa NADPH-thioredoxin reductase has been purified to near strate for E. coli thioredoxin reductase. Both E. coli thioredoxin homogeneity and found to be a 116,000-dalton flavoprotein com- and glutaredoxin can be reduced by dithiothreitol as well as posed of two 58,000-dalton subunits. The HeLa enzyme has low glutathione (GSH). Nevertheless, glutaredoxin is reduced species and substrate specificity and can reduce HeLa PIand' PIN, equally efficiently by dithiothreitol and GSH, thioredoxin is a E. coli thioredoxin and glutaredoxin, and the disulfide bond in better substrate for reduction by dithiothreitol than by GSH. 5,5'-dithiobis(2-nitrobenzoic acid). The exact in vito roles of the Since HeLa thioredoxin and glutaredoxin do not possess any HeLa thioredoxin/glutaredoxin system remain to be determined. enzyme activity by themselves, our observation that E. coli/ PAdoPS-reductase shows a high degree of crossreactivity to- Thiol-protein disulfide interchange reactions are components ward the HeLa thioredoxin and glutaredoxin system provides ofmany diverse cellular processes, including tubulin assembly a convenient assay system for these proteins. into microtubules, development of mitotic spindle and astral rays, modulation ofthe specific activity ofcertain enzymes, etc. MATERIALS AND METHODS (for review, see refs. 1 and 2). Although a number of enzyme systems catalyzing thiol-protein disulfide interchange reactions Cell Growth and Preparation of Cell-Free Extract. HeLa have been studied in vitro, their relative physiological roles are cells (strain S-3) were grown in spinner bottles as described (18). still unclear. In this report, the partial purification and char- Cells (5-7 X 105/ml) were harvested by low-speed centrifu- acterization of the thioredoxin and glutaredoxin systems, en- gation. The cell pellet obtained was washed once with 2 vol of zyme systems that may be of importance in the reduction of phosphate-buffered saline (150 mM NaCV10 mM phosphate protein disulfides in vivo, from cultured HeLa cells are buffer, pH 7.0) and once with about the same volume of PM described. buffer [1 mM MgSOJ2 mM EDTA/2 mM dithioerythritol/ Thioredoxin and glutaredoxin are functionally related low 100 mM 1,4-piperazinediethanesulfonic acid, pH 6.9, contain- molecular weight acidic proteins containing an oxidation- ingTrasylol (aprotinin or kallikrein inactivator) at 100,000 units/ reduction-active disulfide bridge (3). In Escherichia coli, both ml]. The cell pellet obtained after the second wash was sus- proteins are cofactors that couple the reducing capacity from pended in an equal volume ofcold PM buffer and disrupted by various hydrogen donor systems to the in vitro reduction of sonication as described (19). After sonication, cells were also active sulfate (adenosine3'-phosphate 5'-phosphosulfate; PAdoPS) treated by five strokes in a glass Potter-Elvehjem homogenizer to sulfite (4-6) and of ribonucleotides to deoxyribonucleotides equipped with a'Teflon pestle. The pellet obtained after cen- (3, 7, 8). In recent years, aside from sulfate and ribonucleotide trifugation for 30 min at 35,000 x g (avg) was discarded. The reduction, thioredoxin or thioredoxin-like compounds have supernatant fraction, termed "crude extract," was used for all been implicated in numerous other cellular reactions-e.g., the subsequent protein purifications. For large-scale purification light activation of reductive pentose pathway enzymes in chlo- of thioredoxin, glutaredoxin, and thioredoxin reductase, the roplasts (9); the dark activation of oxidative pentose pathway combined supernatant fractions obtained from the first, second, enzyme in chloroplasts (10); the modulation of coupling factor Abbreviations: GSH, glutathione; DTNB, 5,5'-dithiobis(2-nitrobenzoic The publication costs ofthis article were defrayed in part by page charge acid); PAdoPS, adenosine 3'-phosphate 5'-phosphosulfate. payment. This article must therefore be hereby marked "advertise- t Present address: Dept. of Pharmacology, CMDNJ-Rutgers Medical ment" in accordance with 18 U. S. C. §1734 solely to indicate this fact. School, P.O. Box 101, Piscataway, NJ 08854. 7478 Downloaded by guest on September 30, 2021 Biochemistry: Tsang and Weatherbee Proc. NatL Acad. Sci. USA 78 (1981) 7479 third, and fourth microtubule polymerizations during micro- tubule preparations (19, 20) from crude extracts were also used. The combined supernatant fractions were essentially identical to the crude extracts except that tubulin and other microtubule- associated proteins had been removed. During purification, the 0 profiles ofthioredoxin, glutaredoxin, and thioredoxin reductase - 1.0 > obtained from the latter sources were similar to those obtained c- >20.2043 from crude cell extracts. ._ or re- 0 Enzyme Assays. Thioredoxin glutaredoxin activity, 0.5 1 -0.4 ferred to as thioredoxin/glutaredoxin activity, was assayed as 2 0.2 cn stimulation of the PAdoPS reductase-catalyzed reaction on the 1~0.1~ addition of thioredoxin or glutaredoxin using dithiothreitol as CIA the hydrogen donor (17). PAdoPS reductase activity was assayed by measuring the amount of acid-volatile radioactivity formed 10 20 30 40 50 60 70 80 after incubation with [3S]PAdoPS and thioredoxin/glutare- Fraction doxin in the presence ofan appropriate hydrogen donor system. Thioredoxin reductase activity was assayed by coupling with FIG. 1. Elution profile of thioredoxin/glutaredoxin activities from PAdoPS reductase, using NADPH (2.5 mmol) as the hydrogen a DEAE-cellulose column. donor for HeLa thioredoxin/glutaredoxin. Alternatively, thio- redoxin reductase activity can be assaved in the presence of three, >80% of the activity loaded on the column initially was 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) by following the in- recovered during this step. Whereas PI and PIII have similar crease in absorbance at 412 nm. The incubation mixture was elution volumes characteristic of proteins with molecular (total vol, 1.0 ml) 100 t&mol of Tris-HCl, pH 8.0, 10 Amol of masses of 12,000 daltons, PII eluted within the void volume of EDTA, 0.5 Amol of NADPH, 0.2 /Amol of DTNB. the column, indicating that this protein has a molecular mass GSH-disulfide oxidoreductase activity was assayed by using of >30,000 daltons. A typical purification of PI, PII, and PIII the method of Holmgren (3). The enzyme activity was coupled is summarized in Table 1. The final PI preparation appeared with glutathione reductase, which reduces oxidized glutathione as a single band with a molecular mass of 12,000 daltons in in the presence ofNADPH. The disappearance ofNADPH was NaDodSO4polyacrylamide gel electrophoresis. However, two followed at 340 nm using a Cary 210 spectrophotometer. One protein bands are apparent on the native polyacrylamide gel unit corresponds to 1 pmol of NADPH oxidized/min. electrophoretogram (Fig. 2). The PIII preparation showed mul- Protein Purifications. Unless otherwise noted, all steps were tiple bands on both native and NaDodSOJpolyacrylamide gel carried out at 40C and centrifugation was at 12,000 X g for 15 electrophoresis (data not shown). min. A typical purification ofa >90% pure thioredoxin reductase HeLa thioredoxin/glutaredoxin
Recommended publications
  • Glutathione Reductase (Ec 1.6.4.2)
    Enzymatic Assay of GLUTATHIONE REDUCTASE (EC 1.6.4.2) PRINCIPLE: ß-NADPH + GSSG Glutathione Reductase> ß-NADP + 2 GSH Abbreviations used: ß-NADPH = ß-Nicotinamide Adenine Dinucleotide Phosphate, Reduced Form ß-NADP = ß-Nicotinamide Adenine Dinucleotide Phosphate, Oxidized Form GSSG = Glutathione, Oxidized Form GSH = Glutathione, Reduced Form CONDITIONS: T = 25°C, pH = 7.6, A340nm, Light Path = 1 cm METHOD: Continuous Spectrophotometric Rate Determination REAGENTS: A. 100 mM Potassium Phosphate Buffer with 3.4 mM Ethylenediaminetetraacetic Acid (EDTA), pH 7.6 at 25°C (Prepare 200 ml in deionized water using Potassium Phosphate, Monobasic, Anhydrous, Sigma Prod. No. P-5379 and Ethylenediaminetetraacetic Acid, Dipotassium Salt, Sigma Stock No. ED2P. Adjust to pH 7.6 at 25°C with 1 M KOH.) B. 30 mM Glutathione Substrate Solution (GSSG) (Prepare 5 ml in deionized water using Glutathione, Oxidized Form, Disodium Salt, Sigma Prod. No. G-4626.) C. 0.8 mM ß-Nicotinamide Adenine Dinucleotide Phosphate, Reduced Form Solution (ß-NADPH) (Prepare 5 ml in cold Reagent A using ß-Nicotinamide Adenine Dinucleotide Phosphate, Tetrasodium Salt, Sigma Prod. No. N-1630.) D. 1.0% (w/v) Bovine Serum Albumin (BSA) (Prepare 100 ml in Reagent A using Albumin, Bovine, Sigma Prod. No. A-4503. This solution should be kept cold.) SPGLUT01 Page 1 of 3 Revised: 08/03/95 Enzymatic Assay of GLUTATHIONE REDUCTASE (EC 1.6.4.2) REAGENTS: (continued) E. Glutathione Reductase Enzyme Solution (Immediately before use, prepare a solution containing 0.30 - 0.60 unit/ml of Glutathione Reductase in cold Reagent D.) PROCEDURE: Pipette (in milliliters) the following reagents into suitable cuvettes: Test Blank Deionized Water 0.65 0.65 Reagent A (Buffer) 1.50 1.50 Reagent B (GSSG) 0.10 0.10 Reagent C (ß-NADPH) 0.35 0.35 Reagent D (BSA) 0.30 0.40 Mix by inversion and equilibrate to 25°C.
    [Show full text]
  • Glutathione Reductase Human, Recombinant Expressed in Escherichia Coli
    Glutathione Reductase human, recombinant expressed in Escherichia coli Catalog Number G9297 Storage Temperature –20 °C CAS RN 9001-48-3 Precautions and Disclaimer EC 1.8.1.7 (formerly 1.6.4.2) This product is for R&D use only, not for drug, Synonyms: GR, NADPH:oxidized glutathione household, or other uses. Please consult the Material oxidoreductase, glutathione-disulfide reductase Safety Data Sheet for information regarding hazards and safe handling practices. Product Description Glutathione reductase (GR) is an ubiquitous Storage/Stability flavoenzyme involved in protecting cells from stress. The product ships on wet ice and storage at –20 °C is GR catalyzes the reduction of oxidized glutathione recommended. The product is stable at –20 °C for at (GSSG) to glutathione (GSH). It is an essential least 2 years. component of the glutathione redox cycle, which maintains adequate levels of reduced cellular GSH. References GSH serves as an antioxidant, reacting with free 1. Lopez-Mirabal, H.R., and Winther, J.R., Redox radicals and organic peroxides. Glutathione is also an characteristics of the eukaryotic cytosol. Biochim. electron donor for glutathione peroxidases and a Biophys. Acta, 1783, 629-640 (2008). substrate for glutathione S-transferases contributing to 2. Qiao, M., et al., Increased expression of glutathione the detoxification and elimination of toxic electrophilic reductase in macrophages decreases 1,2 metabolites and xenobiotics. artherosclerotic lesion formation on low-density lipoproetin receptor-deficient mice. Arterioscler. Glutathione reductase is a homodimeric enzyme Thromb. Vasc. Biol., 27, 1375-1382 (2007). containing 1 FAD molecule and 1 NADPH binding 3. Worthington, D.J., and Rosemeyer, M.A., 3 domain per subunit.
    [Show full text]
  • Characterization of a Microsomal Retinol Dehydrogenase Gene from Amphioxus: Retinoid Metabolism Before Vertebrates
    Chemico-Biological Interactions 130–132 (2001) 359–370 www.elsevier.com/locate/chembiont Characterization of a microsomal retinol dehydrogenase gene from amphioxus: retinoid metabolism before vertebrates Diana Dalfo´, Cristian Can˜estro, Ricard Albalat, Roser Gonza`lez-Duarte * Departament de Gene`tica, Facultat de Biologia, Uni6ersitat de Barcelona, A6. Diagonal, 645, E-08028, Barcelona, Spain Abstract Amphioxus, a member of the subphylum Cephalochordata, is thought to be the closest living relative to vertebrates. Although these animals have a vertebrate-like response to retinoic acid, the pathway of retinoid metabolism remains unknown. Two different enzyme systems — the short chain dehydrogenase/reductases and the cytosolic medium-chain alcohol dehydrogenases (ADHs) — have been postulated in vertebrates. Nevertheless, recent data show that the vertebrate-ADH1 and ADH4 retinol-active forms originated after the divergence of cephalochordates and vertebrates. Moreover, no data has been gathered in support of medium-chain retinol active forms in amphioxus. Then, if the cytosolic ADH system is absent and these animals use retinol, the microsomal retinol dehydrogenases could be involved in retinol oxidation. We have identified the genomic region and cDNA of an amphioxus Rdh gene as a preliminary step for functional characterization. Besides, phyloge- netic analysis supports the ancestral position of amphioxus Rdh in relation to the vertebrate forms. © 2001 Elsevier Science Ireland Ltd. All rights reserved. Keywords: Retinol dehydrogenase; Retinoid metabolism; Amphioxus * Corresponding author. Fax: +34-93-4110969. E-mail address: [email protected] (R. Gonza`lez-Duarte). 0009-2797/01/$ - see front matter © 2001 Elsevier Science Ireland Ltd. All rights reserved. PII: S0009-2797(00)00261-1 360 D.
    [Show full text]
  • Table S4. List of Enzymes Directly Involved in the Anti-Oxidant Defense Response
    Table S4. List of Enzymes directly involved in the anti-oxidant defense response. Gene Name Gene Symbol Classification/Pathway 6-phosphogluconate dehydrogenase 6PGD NADPH regeneration/Pentose Phosphate Glucose-6-phosphate dehydrogenase G6PD NADPH regeneration/Pentose Phosphate Isocitrate Dehydrogenase 1 IDH1 NADPH regeneration/Krebs Isocitrate Dehydrogenase 2 IDH2 NADPH regeneration/Krebs Malic Enzyme 1 ME1 NADPH regeneration/Krebs Methylenetetrahydrofolate dehydrogenase 1 MTHFD1 NADPH regeneration/Folate Methylenetetrahydrofolate dehydrogenase 2 MTHFD2 NADPH regeneration/Folate Nicotinamide Nucleotide Transhydrogenase NNT NADPH regeneration/NAD Catalase CAT Antioxidants/Catalses/free radical detoxification Glutamate-cysteine ligase catalytic subunit GCLC Antioxidants/Glutathione synthesis Glutamate-cysteine ligase modifier subunit GCLM Antioxidants/Glutathione synthesis Glutathione peroxidase1 GPx1 Antioxidants/Glutathione Peroxidases/free radical detoxification Glutathione peroxidase2 GPx2 Antioxidants/Glutathione Peroxidases/free radical detoxification Glutathione peroxidase3 GPx3 Antioxidants/Glutathione Peroxidases/free radical detoxification Glutathione peroxidase4 GPx4 Antioxidants/Glutathione Peroxidases/free radical detoxification Glutathione peroxidase5 GPx5 Antioxidants/Glutathione Peroxidases/free radical detoxification Glutathione peroxidase6 GPx6 Antioxidants/Glutathione Peroxidases/free radical detoxification Glutathione peroxidase7 GPx7 Antioxidants/Glutathione Peroxidases/free radical detoxification Glutathione S-transferase
    [Show full text]
  • Methionine Sulfoxide Reductase a Is a Stereospecific Methionine Oxidase
    Methionine sulfoxide reductase A is a stereospecific methionine oxidase Jung Chae Lim, Zheng You, Geumsoo Kim, and Rodney L. Levine1 Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD 20892-8012 Edited by Irwin Fridovich, Duke University Medical Center, Durham, NC, and approved May 10, 2011 (received for review February 10, 2011) Methionine sulfoxide reductase A (MsrA) catalyzes the reduction Results of methionine sulfoxide to methionine and is specific for the S epi- Stoichiometry. Branlant and coworkers have studied in careful mer of methionine sulfoxide. The enzyme participates in defense detail the mechanism of the MsrA reaction in bacteria (17, 18). against oxidative stresses by reducing methionine sulfoxide resi- In the absence of reducing agents, each molecule of MsrA dues in proteins back to methionine. Because oxidation of methio- reduces two molecules of MetO. Reduction of the first MetO nine residues is reversible, this covalent modification could also generates a sulfenic acid at the active site cysteine, and it is function as a mechanism for cellular regulation, provided there reduced back to the thiol by a fast reaction, which generates a exists a stereospecific methionine oxidase. We show that MsrA disulfide bond in the resolving domain of the protein. The second itself is a stereospecific methionine oxidase, producing S-methio- MetO is then reduced and again generates a sulfenic acid at the nine sulfoxide as its product. MsrA catalyzes its own autooxidation active site. Because the resolving domain cysteines have already as well as oxidation of free methionine and methionine residues formed a disulfide, no further reaction forms.
    [Show full text]
  • Corynebacterium Glutamicum Mycoredoxin 3 Protects Against Multiple Oxidative Stresses
    Advance Publication J. Gen. Appl. Microbiol. doi 10.2323/jgam.2019.10.003 ©2020 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation Full Paper 1 Corynebacterium glutamicum Mycoredoxin 3 protects against multiple oxidative stresses 2 and displays thioredoxin-like activity 3 (Received September 24, 2019; Accepted October 28, 2019; J-STAGE Advance publication date: October 30, 2020) 4 Tao Su#, Chengchuan Che#, Ping Sun, Xiaona Li, Zhijin Gong, Jinfeng Liu, Ge Yang * 5 6 College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China; 7 8 Running title: Feature of C. glutamicum mycoredoxin 3 9 10 11 # These authors contributed equally to this work. 12 13 * Corresponding authors: 14 Ge Yang 15 16 E-mail [email protected] 17 Tel: 86-13953760056 18 19 20 21 22 23 24 25 26 27 Abstract 28 Glutaredoxins (Grxs) and thioredoxins (Trxs) play a critical role in resistance to oxidative 29 conditions. However, physiological and biochemical roles of Mycoredoxin 3 (Mrx3) that shared a 30 high amino acid sequence similarity to Grxs remain unknown in Corynebacterium glutamicum. 31 Here we showed that mrx3 deletion strains of C. glutamicum was involved in the protection 32 against oxidative stress. Recombinant Mrx3 not only catalytically reduced the disulfide bonds in 33 ribonucleotide reductase (RNR), insulin and 5, 5’-dithiobis-(2-nitro-benzoicacid) (DTNB), but 34 also reduced the mixed disulphides between mycothiol (MSH) and substrate, which was 35 exclusively linked to the thioredoxin reductase (TrxR) electron transfer pathway by a dithiol 36 mechanism. Site-directed mutagenesis confirmed that the conserved Cys17 and Cys20 in Mrx3 37 were necessary to maintain its activity.
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Peter D. Karp Suzanne Paley Julio Collado-Vides John L Ingraham Ingrid Keseler Markus Krummenacker Cesar Bonavides-Martinez Robert Gunsalus An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Carol Fulcher Ian Paulsen Socorro Gama-Castro Robert LaRossa Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. EcoCyc: Escherichia coli K-12 substr. MG1655 Cellular Overview Connections between pathways are omitted for legibility. Anamika Kothari Amanda Mackie Alberto Santos-Zavaleta succinate phosphate succinate N-acetyl-DL-methionine + L-ornithine glutathione + L-methionine S-oxide D-fructofuranose γ Ag+ molybdate ferroheme b L,L-homocystine asp lys cys L-alanyl- -D- D-mannopyranose 6-phosphate 2+ 2+ H D-methionine 2-deoxy-D-glucose succinate formate formate succinate D-tartrate putrescine agmatine cadaverine L-tartrate D-fructofuranose 6-phosphate + nitrate nitrate Cu thiosulfate deoxycholate L,L-homocystine D-cystine D-cycloserine methyl β-D-glucoside putrescine asp spermidine (S)-2-hydroxybutanoate (S)-2-hydroxybutanoate arg L-homoserine lactone magnesium hydrogenphosphate magnesium hydrogenphosphate antimonous acid glutamyl-meso- Co2+ Cd2+ lactulose poly-β-1,6- met cob(I)inamide 2,3-dioxo-
    [Show full text]
  • Inhibitory Effects of Some Flavonoids on Thioredoxin Reductase Purified from Chicken Liver ABSTRACT INTRODUCTION
    Brazilian Journal of Poultry Science Revista Brasileira de Ciência Avícola Inhibitory Effects of Some Flavonoids on ISSN 1516-635X 2019 / v.21 / n.2 / 001-008 Thioredoxin Reductase Purified from Chicken http://dx.doi.org/10.1590/1806-9061-2018-0982 Liver Original Article Author(s) ABSTRACT Türkoğlu E.AI https://orcid.org/0000-0001-7850-6456 Thioredoxin reductases (TrxRs) are selenocysteine-containing Kuzu MII https://orcid.org/0000-0002-1375-7673 flavoenzymes that reduce Trxin NADPH-dependent manner. In the Ayasan TIII https://orcid.org/0000-0001-7397-6483 view of the direct vital role of TrxR in a wide range of biochemical and IV Inci H https://orcid.org/0000-0002-9791-0435 physiological processes, methods to inhibit this enzyme are clinically Eratak SVV https://orcid.org/0000-0003-3788-8704 important. TrxR has recently emerged as a new candidate in anticancer I Department of Pharmaceutical Biotechnology, drug investigations because of overexpression in tumorous cells. In this Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Turkey. study, TrxR from chick liver was purified 94.6-fold with a yield of 4.86% II Deparment of Chemistry, Faculty of Science and a specific activity of 0.19 EU/mg. K and V values of TrxR for and Letters, Ağrı İbrahim Çeçen University, Ağrı M max 04100, Turkey. DTNB were calculated as 0.9 mM and 0,03 EU/mL, respectively. Then, III East Mediterranean Agricultural Research Institute, Karatas Road, Adana 01321, Turkey. the effects of the flavonoids hesperidin, naringenin, chlorogenic acid, IV Department of Animal Science, Faculty of ferulic acid, naringin, 3,4-dihydoxybenzoic acid, and ellagic acid on the Agriculture, Bingöl University, Bingöl 12000, Turkey.
    [Show full text]
  • Genomic Insights Into the Uncultured Genus &Lsquo
    The ISME Journal (2014) 8, 2463–2477 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE Genomic insights into the uncultured genus ‘Candidatus Magnetobacterium’ in the phylum Nitrospirae Wei Lin1,2,7, Aihua Deng3,7, Zhang Wang4, Ying Li2,5, Tingyi Wen3, Long-Fei Wu2,6, Martin Wu4 and Yongxin Pan1,2 1Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth’s Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China; 2France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, China; 3CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; 4Department of Biology, University of Virginia, Charlottesville, VA, USA; 5State Key Laboratory of Agro-Biotechnology and Laboratoire International Associe Franco-Chinois de Bio-Mineralisation et Nano-Structures, College of Biological Sciences, China Agricultural University, Beijing, China and 6Laboratoire de Chimie Bacte´rienne, Aix-Marseille Universite´, CNRS, Marseille Cedex 20, France Magnetotactic bacteria (MTB) of the genus ‘Candidatus Magnetobacterium’ in phylum Nitrospirae are of great interest because of the formation of hundreds of bullet-shaped magnetite magneto- somes in multiple bundles of chains per cell. These bacteria are worldwide distributed in aquatic environments and have important roles in the biogeochemical cycles of iron and sulfur. However, except for a few short genomic fragments, no genome data are available for this ecologically important genus, and little is known about their metabolic capacity owing to the lack of pure cultures. Here we report the first draft genome sequence of 3.42 Mb from an uncultivated strain tentatively named ‘Ca.
    [Show full text]
  • Glutathione Reductase Assay Kit
    Glutathione Reductase Assay Kit Item No. 703202 www.caymanchem.com Customer Service 800.364.9897 Technical Support 888.526.5351 1180 E. Ellsworth Rd · Ann Arbor, MI · USA TABLE OF CONTENTS GENERAL INFORMATION GENERAL INFORMATION 3 Materials Supplied Materials Supplied 4 Safety Data 4 Precautions 5 If You Have Problems Item Number Item Quantity 4 Storage and Stability 703210 GR Assay Buffer (10X) 1 vial 4 Materials Needed but Not Supplied INTRODUCTION 5 Background 703212 GR Sample Buffer (10X) 1 vial 5 About This Assay 703214 GR Glutathione Reductase (control) 1 vial PRE-ASSAY PREPARATION 6 Reagent Preparation 7 Sample Preparation 703216 GR GSSG 1 vial ASSAY PROTOCOL 9 Plate Set Up 703218 GR NADPH 3 vials 11 Performing the Assay 400014 96-Well Solid Plate (Colorimetric Assay) 1 plate ANALYSIS 12 Calculations 13 Performance Characteristics 400012 96-Well Cover Sheet 1 cover RESOURCES 14 Interferences If any of the items listed above are damaged or missing, please contact our 16 Troubleshooting Customer Service department at (800) 364-9897 or (734) 971-3335. We cannot 17 References accept any returns without prior authorization. 18 Plate Template 19 Notes WARNING: THIS PRODUCT IS FOR RESEARCH ONLY - NOT FOR HUMAN OR VETERINARY DIAGNOSTIC OR THERAPEUTIC USE. 19 Warranty and Limitation of Remedy ! GENERAL INFORMATION 3 Safety Data INTRODUCTION This material should be considered hazardous until further information becomes available. Do not ingest, inhale, get in eyes, on skin, or on clothing. Wash Background thoroughly after handling. Before use, the user must review the complete Safety Glutathione (GSH) is a tripeptide widely distributed in both plants and Data Sheet, which has been sent via email to your institution.
    [Show full text]
  • The Role of Intermembrane Space Redox Factors in Glutathione Metabolism and Intracellular Redox Equilibrium Hatice Kubra Ozer University of South Carolina
    University of South Carolina Scholar Commons Theses and Dissertations 2015 The Role of Intermembrane Space Redox Factors In Glutathione Metabolism And Intracellular Redox Equilibrium Hatice Kubra Ozer University of South carolina Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Chemistry Commons Recommended Citation Ozer, H. K.(2015). The Role of Intermembrane Space Redox Factors In Glutathione Metabolism And Intracellular Redox Equilibrium. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/3702 This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. THE ROLE OF INTERMEMBRANE SPACE REDOX FACTORS IN GLUTATHIONE METABOLISM AND INTRACELLULAR REDOX EQUILIBRIUM by Hatice Kubra Ozer Bachelor of Science Uludag University, 2004 Master of Food Science and Nutrition Clemson University, 2010 Submitted in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Chemistry College of Arts and Sciences University of South Carolina 2015 Accepted by: Caryn E. Outten, Major Professor F. Wayne Outten, Committee Chair Erin Connolly, Committee Member Andrew B. Greytak, Committee Member Lacy K. Ford, Senior Vice Provost and Dean of Graduate Studies © Copyright by Hatice Kubra Ozer, 2015 All Rights Reserved. ii ACKNOWLEDGEMENTS First, I would like to thank my advisor, Dr. Caryn E. Outten for her patience, guidance, expertise, and confidence in me to complete the work contained herein. She has been an excellent mentor during my graduate program. She is also the only person beside myself who is guaranteed to have read every word of this manuscript and to review every presentations in the past and her insight was irreplaceable.
    [Show full text]
  • Emerging Players in the Regulation of Protein S-Nitrosation in Plants
    plants Review Thioredoxins: Emerging Players in the Regulation of Protein S-Nitrosation in Plants Tereza Jedelská , Lenka Luhová and Marek Petˇrivalský * Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitel ˚u27, 78371 Olomouc, Czech Republic; [email protected] (T.J.); [email protected] (L.L.) * Correspondence: [email protected] Received: 17 August 2020; Accepted: 22 October 2020; Published: 24 October 2020 Abstract: S-nitrosation has been recognized as an important mechanism of ubiquitous posttranslational modification of proteins on the basis of the attachment of the nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-based modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. This review summarizes the current knowledge on the emerging role of the thioredoxin-thioredoxin reductase (TRXR-TRX) system in protein denitrosation. Important advances have been recently achieved on plant thioredoxins (TRXs) and their properties, regulation, and functions in the control of protein S-nitrosation in plant root development, translation of photosynthetic light harvesting proteins, and immune responses. Future studies of plants with down- and upregulated TRXs together with the application of genomics and proteomics approaches will contribute to obtain new insights into plant S-nitrosothiol metabolism and its regulation. Keywords: denitrosation;
    [Show full text]