A Pilot Study of Occupational Noise Exposures Among Selected Csusm Employees

Total Page:16

File Type:pdf, Size:1020Kb

A Pilot Study of Occupational Noise Exposures Among Selected Csusm Employees Running head: OCCUPATIONAL NOISE EXPOSURE PILOT STUDY AT CSUSM CALIFORNIA STATE UNIVERSITY SAN MARCOS THESIS SIGNATURE PAGE THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE MASTER OF PUBLIC HEALTH IN HEALTH PROMOTION AND EDUCATION THESIS TITLE: A PILOT STUDY OF OCCUPATIONAL NOISE EXPOSURES AMONG SELECTED CSUSM EMPLOYEES AUTHOR: SIAMAK DOROODI DATE OF SUCCESSFUL DEFENSE: NOVEMBER 29, 2017 THE THESIS HAS BEEN ACCEPTED BY THE THESIS COMMITTEE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF PUBLIC HEALTB IN HEALTH PROMOTION AND EDUCATION Emmanuel Iyiegbuniwe, Ph.D. ~"'~:i~:..a_ 11/ 2-1/ r7-- THESIS COMMITTEE CHAIR sIGNATURE DATE Christina Holub, Ph.D. lf {;)_9(l1- THESIS COMMITTEE MEMBER DATE Kristine Diekman, M.F.A 11/dJ1!1r THESIS COMMITTEE MEMBER SIGNATURE ~ Running head: OCCUPATIONAL NOISE EXPOSURE PILOT STUDY AT CSUSM A PILOT STUDY OF OCCUPATIONAL NOISE EXPOSURES AMONG SELECTED CSUSM EMPLOYEES Siamak Doroodi California State University San Marcos OCCUPATIONAL NOISE EXPOSURE PILOT STUDY AT CSUSM 2 Abstract We conducted a pilot study on personal noise exposure assessments for seventeen employees at California State University San Marcos (CSUSM) during August and September of 2017. Noise exposures were measured using calibrated dosimeters with data-logging capabilities to document average sound level (LAVG), eight-hour time weighted average sound level (LTWA), peak noise level (LCPK), and the Dose. In addition, all participants completed survey questionnaires inquiring about their use of personal protective equipment (hearing protection), knowledge of the Occupational Safety and Health Administration (OSHA) PPE standards, and attitudes towards requirements for PPE. The results of this pilot study showed that LAVG ranged from 47.5 to 73.9 dBA (Dose = 0.1-9.7%) and the highest LCPK was found to be 140.6 dBA. All the participants were within OSHA’s permissible noise exposure standard of 90 dBA for an 8-hour period. However, two of the seventeen participants marginally exceeded the OSHA’s LCPK level of 140 dBA by 0.6 dBA.. The results from the survey questionnaire showed that 80% of the participants were satisfied with their PPE, approximately 87% wore their hearing protection when required. and followed all established CSUSM policies for hearing conservation. Overall, the results showed that CSUSM employees included in this study have minimal risks of developing hearing loss from occupational noise exposures. However, it is recommended that employees must continue to adhere to the existing and effective Hearing Conservation Program at CSUSM with a view to maintaining compliance with OSHA’s Occupational Noise Exposure Standard (29 CFR 1910.95). OCCUPATIONAL NOISE EXPOSURE PILOT STUDY AT CSUSM 3 Acknowledgements I would like to thank my parents for their endless love, sacrifices, and encouragement throughout my life. I am extremely thankful for their continued support. I would also like to sincerely thank my thesis advisor, Dr. Emmanuel Iyiegbuniwe, for his guidance throughout this MPH degree program as well as my thesis committee members, Dr. Christina Holub and Prof. Kristine Diekman for their support and feedback. It was a privilege to work with Dr. Iyiegbuniwe, and I greatly appreciate the opportunity to conduct this pilot study, guided by his expertise. I would also like to thank Dr. Holub for her advice and for providing me with the tools and knowledge that will guide me in my career to become a successful public health scientist. OCCUPATIONAL NOISE EXPOSURE PILOT STUDY AT CSUSM 4 List of Tables Table 1. Average survey responses for demographic data from pilot study. Table 2. Summary of personal noise exposure results by occupation. Table 3. Survey responses to the selected to the questions below, arranged by job title as a group. Table 4. Survey responses to the selected questions below, arranged by job title as a group. Table 5. Survey responses to the selected questions below, arranged by job title as a group. Table 6. Description of participants included in the Noise Pilot Study. Table 7. Results of personal Noise Exposure. Table 8. Summary of personal noise exposure results. Table 9. Results of personal noise exposure by job title. Table 10. One-way ANOVA results for demographic data from survey responses (including Administrative assistants). Table 11. One-way ANOVA results for employee related data from survey responses (including Administrative assistants). Table 12. One-way ANOVA results for PPE knowledge and usage from survey responses (excluding Administrative assistant responses). Table 13. One-way ANOVA results for attitudes towards PPE from survey responses (excluding Administrative assistant responses). Table 14. Selected survey responses regarding employment at CSUSM. Table 15. Participant’s responses to survey questions regarding PPE usage. Table 16. Survey Responses regarding description of PPE usage and potential noise sources. Table 17. Survey Responses regarding feelings and attitudes towards PPE. Table 18. Participant’s responses to questions regarding demographics. OCCUPATIONAL NOISE EXPOSURE PILOT STUDY AT CSUSM 5 Table 19. Sampling dates and times for personal noise exposure recordings. OCCUPATIONAL NOISE EXPOSURE PILOT STUDY AT CSUSM 6 List of Figures Figure 1. Distribution of the participants who took the survey for the personal noise exposure sampling. Figure 2. Age demographics from survey responses. Figure 3. Race/Ethnicity demographics from survey responses. Figure 4. Education demographics from survey responses. Figure 5. Participant’s responses to the survey question, “How many hours per shift (out of 8 hours) are you outside?” Figure 6. Survey responses to “Do you wear PPE (e.g. hearing protection) during your work shift/session when required by OSHA standards?” by job title. Figure 7. Survey responses to “In the past month how often did you wear hearing protection while working at CSUSM?” by job title. Figure 8. Level of extent response to “I am satisfied with my required PPE” survey response by job title. Figure 9. Level of extent response to “Hearing protection is conveniently located at my worksite” survey response by occupation. Figure 10. Level of extent response to “Wearing PPE causes me discomfort” survey response by occupation. Figure 11. Level of extent response to “I do not know why I should wear PPE” survey response by occupation. Figure 12. Statistical summary of personal noise exposure for time weighted average data from individual readings. OCCUPATIONAL NOISE EXPOSURE PILOT STUDY AT CSUSM 7 Figure 13. Statistical summary of personal noise exposure for Peak data from individual readings. Figure 14. Statistical summary of personal noise exposure for Dose data from individual readings. Figure 15. Summary of personal noise exposure results for average noise exposure levels based on job title. Figure 16. Statistical summary of personal noise exposure for Time-weighted average based on job titles. Figure 17. Statistical summary of personal noise exposure for peak recording based on job titles. Figure 18. Statistical summary of personal noise exposure based on job titles. OCCUPATIONAL NOISE EXPOSURE PILOT STUDY AT CSUSM 8 Table of Contents Abstract ....................................................................................................................................... 2 Acknowledgements ..................................................................................................................... 3 List of Tables ............................................................................................................................... 4 List of Figures ............................................................................................................................. 6 Introduction ............................................................................................................................... 11 Health Effects of Noise Exposure ......................................................................................... 13 Noise-induced Hearing Loss ................................................................................................. 14 Occupational Noise-induced Hearing Loss ........................................................................... 15 Prevention of Occupational Noise-Induced Hearing Loss .................................................... 16 Previous Studies on Occupational Noise-Induced Hearing Loss .......................................... 17 Methods ..................................................................................................................................... 20 Participants Recruitment........................................................................................................ 20 Data Collection ...................................................................................................................... 20 Statistical Analysis ................................................................................................................ 22 Results ....................................................................................................................................... 23 Participants ............................................................................................................................ 23 Survey Responses .................................................................................................................. 24 Personal Noise Exposure Recordings ...................................................................................
Recommended publications
  • Hearing Conservation Program
    HEARING CONSERVATION PROGRAM Program Element R2-10-207(11)(c) Each agency shall develop, implement, and monitor a Hearing Conservation Program element when applicable. Harmful sound, or noise, must be identified and evaluated with sound pressure level (SPL) monitoring devices when it is present in the workplace. Employers must protect employee hearing via engineering controls, administrative controls, or hearing protection devices (HPDs) when the OSHA Action Limit is met or exceeded in the workplace. Definition: A hearing conservation program is a written program that is designed to prevent hearing loss in employees that work in environments where noise levels above 85 dBA or a daily noise dose of 50% over an 8-hour time- weighted average (TWA) are present. Why do I need this This program is needed to ensure employers have program? assessed noise levels which may result in hearing damage, and to ensure that employees exposed to noise are protected and monitored to prevent hearing loss. How do I know if this Employers must establish and implement a Hearing program applies to my Conservation Program for those employees who are agency and my specific exposed to a sound level greater than the “Action job hazards? Level” of 85 dBA TWA and/or 50% of the Daily Noise Dose. Impulsive noise levels shall not exceed 140 dBC. The key elements of an effective Hearing Conservation Program are: a) Noise exposure monitoring and analysis b) Use of engineering controls c) Use of administrative controls d) Use and selection of proper hearing protection devices (HPDs) e) Initial and annual audiometric testing f) Initial and annual employee training g) Recordkeeping; and h) Annual program evaluation Hearing Conservation Program, R2-10-207(11)(c) Page 1 of 4 January 2015 What are the minimum There are five OSHA required Hearing Conservation required elements and/ Program elements: or best practices for a Hearing Conservation 1.
    [Show full text]
  • Organizational Behavior Seventh Edition
    PRINT Organizational Behavior Seventh Edition John R. Schermerhorn, Jr. Ohio University James G. Hunt Texas Tech University Richard N. Osborn Wayne State University ORGANIZATIONAL BEHAVIOR 7TH edition Copyright 2002 © John Wiley & Sons, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base retrieval system, without prior written permission of the publisher. ISBN 0-471-22819-2 (ebook) 0-471-42063-8 (print version) Brief Contents SECTION ONE 1 Management Challenges of High Performance SECTION FOUR 171 Organizations 81 Organizational Behavior Today 3 Illustrative Case: Creating a High Performance Power 173 Learning About Organizational Behavior 5 Organization 84 Empowerment 181 Organizations as Work Settings 7 Groups in Organizations 87 Organizational Politics 183 Organizational Behavior and Management 9 Stages of Group Development 90 Political Action and the Manager 186 Ethics and Organizational Behavior 12 Input Foundations of Group Effectiveness 92 The Nature of Communication 190 Workforce Diversity 15 Group and Intergroup Dynamics 95 Essentials of Interpersonal Communication Demographic Differences 17 Decision Making in Groups 96 192 Aptitude and Ability 18 High Performance Teams 100 Communication Barriers 195 Personality 19 Team Building 103 Organizational Communication 197 Personality Traits and Classifications 21 Improving Team Processes 105
    [Show full text]
  • 422 PART 227—OCCUPATIONAL NOISE EXPOSURE Subpart A—General
    Pt. 227 49 CFR Ch. II (10–1–20 Edition) by the BLS. The wage component is weight- 227.15 Information collection. ed by 40% and the equipment component by 60%. Subpart B—Occupational Noise Exposure 2. For the wage component, the average of for Railroad Operating Employees the data from Form A—STB Wage Statistics for Group No. 300 (Maintenance of Way and 227.101 Scope and applicability. Structures) and Group No. 400 (Maintenance 227.103 Noise monitoring program. of Equipment and Stores) employees is used. 227.105 Protection of employees. 3. For the equipment component, 227.107 Hearing conservation program. LABSTAT Series Report, Producer Price 227.109 Audiometric testing program. Index (PPI) Series WPU 144 for Railroad 227.111 Audiometric test requirements. Equipment is used. 227.113 Noise operational controls. 4. In the month of October, second-quarter 227.115 Hearing protectors. wage data are obtained from the STB. For 227.117 Hearing protector attenuation. equipment costs, the corresponding BLS rail- 227.119 Training program. road equipment indices for the second quar- 227.121 Recordkeeping. ter are obtained. As the equipment index is APPENDIX A TO PART 227—NOISE EXPOSURE reported monthly rather than quarterly, the COMPUTATION average for the months of April, May and APPENDIX B TO PART 227—METHODS FOR ESTI- June is used for the threshold calculation. 5. The wage data are reported in terms of MATING THE ADEQUACY OF HEARING PRO- dollars earned per hour, while the equipment TECTOR ATTENUATION cost data are indexed to a base year of 1982. APPENDIX C TO PART 227—AUDIOMETRIC BASE- 6.
    [Show full text]
  • Tinnitus Characteristics at High-And Low-Risk Occupations from Occupational Noise Exposure Standpoint
    PERSPECTIVE DOI: 10.5935/0946-5448.20210016 International Tinnitus Journal. 2021;25(1):87-93 Tinnitus characteristics at high-and low-risk occupations from occupational noise exposure standpoint Mehdi Asghari ABSTRACT Introduction: The aim of the present study was to compare tinnitus characteristics in high- and low-risk occupations from the occupational noise exposure standpoint, considering demographic data, hearing loss and concomitant diseases. Methods: Demographic data, characteristics of tinnitus, hearing and concomitant diseases were recorded in the questionnaires. Their pure tone air conduction thresholds were determined using a double-channel diagnostic Audiometer and the Bone Conduction was assessed using a B-71 bone vibrator. Results: Totally, 6.3% subjects (6.8% high-risk group and 5.6% low-risk group) had subjective tinnitus, mainly as whistling sound. In the high-risk group, tinnitus was mainly left-sided (41.18%) and hearing loss was mild. Bilateral tinnitus (52.63%) and slight hearing loss were observed predominantly in the low-risk group. Conclusions: The study showed higher incidence of tinnitus in high-risk professions regarding with occupational noise exposure. Keywords: Tinnitus; Loudness; Hearing loss; Noise exposure; High-risk occupations. 1Department of Medical Sciences, Arak University, Iran *Send correspondence to: Mehdi Asghari Department of Medical Sciences, Arak University, Iran. E-mail: [email protected], Phone: +81302040753 Paper submitted on February 07, 2021; and Accepted on April 18, 2021 87 International Tinnitus Journal, Vol. 25, No 1 (2021) www.tinnitusjournal.com INTRODUCTION 20 to 60 years referred to XXX Occupational Medicine Centers in 2018, Arak, Iran. Inclusion criteria included Tinnitus is a sound sensation in the ears or head in the age ≥18, at least a fifth grade education, wok experience absence of an external auditory or electrical source.
    [Show full text]
  • Preventing Hazardous Noise and Hearing Loss
    Preventing Hazardous Noise and Hearing Loss during Project Design and Operation Prevention through Design (PtD) Prevention through Design (PtD) Why is PtD Needed? Description of can be defined as designing out Integrating PtD concepts into busi- Exposure or eliminating safety and health ness processes helps reduce injury and hazards associated with processes, Prolonged exposure to high noise levels structures, equipment, tools, or illness in the workplace, as well as costs can cause hearing loss and tinnitus. work organization. The National associated with injuries. PtD lays the Other health effects include headaches, Institute for Occupational Safety foundation for a sustainable culture of fatigue, stress, and cardiovascular and Health (NIOSH) launched a safety with lower workers’ compensation problems [Yueh et al. 2003]. High noise PtD initiative in 2007. The mission expenses, fewer retrofits, and improved levels can also cause workers to be dis- tracted and interfere with communica- is to reduce or prevent occupational productivity. When PtD concepts are in- injuries, illnesses, and fatalities by tion and warning signals. If workers do troduced early in the design process, re- considering hazard prevention in not hear warning signals, they may not the design, re-design, and retrofit of sources can be allocated more efficiently. take precautions to prevent hazards or new and existing workplaces, tools, injuries [NIOSH 1996, 1998; Yoon et al. equipment, and work processes Summary 2015; Cantley et al. 2015]. [NIOSH 2008a,b]. Exposure to high noise levels in the workplace can cause hearing loss and Workers at Risk Contents affect worker productivity and compen- An estimated twenty-two million work- ▶ Why is PtD Needed sation costs.
    [Show full text]
  • FAA/OSHA Aviation Safety and Health Team, First Report
    FAA / OSHA Aviation Safety and Health Team First Report Application of OSHA’s Requirements to Employees on Aircraft in Operation December 2000 FAA/OSHA Aviation Safety and Health Team (First Report) Table of Contents Executive Summary. ..................................................................................................ii Introduction. .............................................................................................................. iv Discussion....................................................................................................................1 Issue 1 - Recordkeeping. .........................................................................................2 Issue 2 - Bloodborne pathogens. .............................................................................6 Issue 3 - Noise. ......................................................................................................11 Issue 4 - Sanitation. ...............................................................................................14 Issue 5 - Hazard communication. ..........................................................................18 Issue 6 - Anti-discrimination. ................................................................................22 Issue 7 - Access to employee exposure/medical records.......................................25 Matters for Further Consideration. .......................................................................27 Appendices. A. FAA/OSHA Memorandum of Understanding, August 7, 2000. ...................29
    [Show full text]
  • MARCH, 1970 Ilini’Tj-Ljiril’ Jleu/S Qtie U\Lmgty-Cafmes^
    MARCH, 1970 Ilini’tj-lJiriL’ Jleu/s QTie u\lmGty-cAfmes^. umn March, 1970 Speaking of potential, have you •w heard about Turi Wideroe? A most at­ As I sit here about to start my tractive young lady Airline Captain Monthly Message to you, the sun is from Oslo, Norway. Hope she will shining on glistening white snow and become a Ninety-Nine and let us all the temperature is zero. There isn’t a in on her secret to success. I know you all join me in wishing her well MARCH, 1970 cloud in the sky and I’m thinking in her new assignment. We’re all so ahead a couple of hours and the fact proud of our feminine accomplish­ THE NINETY-NINES, Inc. that I will be flying today and this ments in the field of aviation. After all Will Rogers World Airport brings to mind how very hard a long this is what our Ninety-Nines’ Museum International Headquarters win’er is on people. I guess people just Oklahoma City, Oklahoma 73159 is made of. aren’t like bears content with hiberna­ Sectional Meeting time is here and Headquarters Secretary tion. It seems easy to let little things “Project Awareness” will be our LORETTA GRAGG begin to bother you when you feel theme. You know the best way to learn couped up and winter is that kind of a subject is to teach it. So get involved Editor thing at times. With Spring in the air in this Seminar on Ninety-Nineman- HAZEL McKENDRICK let’s all get the cob-webs out of our ship.
    [Show full text]
  • Hearing Loss Prevention, Chapter 296-817
    Chapter 296-817 WAC Introduction Hearing Loss Prevention (Noise) _________________________________________________________________________________________________________ Chapter 296-817 WAC Hearing Loss Prevention (Noise) (Form Number 414-117-000) This book contains rules for Safety Standards for hearing loss prevention (Noise), as adopted under the Washington Industrial Safety and Health Act of 1973 (Chapter 49.17 RCW). The rules in this book are effective December 2015. A brief promulgation history, set within brackets at the end of this chapter, gives statutory authority, administrative order of promulgation, and date of adoption of filing. TO RECEIVE E-MAIL UPDATES: Sign up at https://public.govdelivery.com/accounts/WADLI/subscriber/new?topic_id=WADLI_19 TO PRINT YOUR OWN PAPER COPY OR TO VIEW THE RULE ONLINE: Go to https://www.lni.wa.gov/safety-health/safety-rules/rules-by-chapter/?chapter=817/ DOSH CONTACT INFORMATION: Physical address: 7273 Linderson Way Tumwater, WA 98501-5414 (Located off I-5 Exit 101 south of Tumwater.) Mailing address: DOSH Standards and Information PO Box 44810 Olympia, WA 98504-4810 Telephone: 1-800-423-7233 For all L&I Contact information, visit https://www.lni.wa.gov/agency/contact/ Also available on the L&I Safety & Health website: DOSH Core Rules Other General Workplace Safety & Health Rules Industry and Task-Specific Rules Proposed Rules and Hearings Newly Adopted Rules and New Rule Information DOSH Directives (DD’s) See http://www.lni.wa.gov/Safety-Health/ Chapter 296-817 WAC Table of Contents Hearing Loss Prevention (Noise) _________________________________________________________________________________________________________ Chapter 296-817 WAC Safety Standards for Hearing Loss Prevention (Noise) WAC Page WAC 296-817-099 Noise definitions.
    [Show full text]
  • Occupational Noise Exposure Noise, Or Unwanted Sound, Is One of the Most Pervasive Occupational Health Problems
    Occupational Noise Exposure Noise, or unwanted sound, is one of the most pervasive occupational health problems. It is a by-product of many industrial processes. Sound consists of pressure changes in a medium (usually air), caused by vibration or turbulence. These pressure changes produce waves emanating away from the turbulent or vibrating source. Exposure too high levels of noise causes hearing loss and may cause other harmful health effects as well. The extent of damage depends primarily on the intensity of the noise and the duration of the exposure. Noise-induced hearing loss can be temporary or permanent. Temporary hearing loss results from short-term exposures to noise, with normal hearing returning after a period of rest. Generally, prolonged exposure to high noise levels over a period of time gradually causes permanent damage. OSHA's hearing conservation program is designed to protect workers with significant occupational noise exposures from suffering material hearing impairment even if they are subject to such noise exposures over their entire working lifetimes. Monitoring The hearing conservation program requires employers to monitor noise exposure levels in a manner that will accurately identify employees who are exposed to noise at or above 85 decibels (dB) averaged over 8 working hours, or an 8-hour time-weighted average (TWA.) That is, employers must monitor all employees whose noise exposure is equivalent to or greater than a noise exposure received in 8 hours where the noise level is constantly 85 dB. The exposure measurement must include all continuous, intermittent, and impulsive noise within an 80 dB to 130-dB range and must be taken during a typical work situation.
    [Show full text]
  • Occupational Noise Measurement
    Occupational Noise Measurement Occupational hearing loss is damage to the inner ear from noise or vibrations due to certain types of jobs or entertainment. Occupational hearing loss is a form of acoustic trauma caused by exposure to vibration or sound. Sound is heard as the ear converts vibration from sound waves into impulses in the nerves of the ear. Sounds above 90 decibels (dB, a measurement of the loudness or strength of sound vibration) may cause vibration intense enough to damage the inner ear, especially if the sound continues for a long time. Did you know that occupational hearing loss was an ergonomic type injury? The reason being that if is a cumulative trauma which translates to exposures over time. In order to control and prevent occupational deafness you must be able to measure the exposures. 90 dB -- a large truck 5 yards away (motorcycles, snowmobiles, and similar engines range from 85 - 90 dB) 100 dB -- some rock concerts 120 dB -- a jackhammer about 3 feet away 130 dB -- a jet engine from 100 feet away A general rule of thumb is that if you need to shout to be heard, the sound is in the range that can damage hearing. Some jobs carry a high risk for hearing loss, such as: Airline ground maintenance Construction Farming Jobs involving loud music or machinery Oil rigs Refineries Measuring noise levels and workers' noise exposures is the most important part of a workplace hearing conservation and noise control program. It helps identify work locations where there are noise problems, employees who may be affected, and where additional noise measurements need to be made.
    [Show full text]
  • Volume 28, Issue 13 Virginia Register of Regulations February 27, 2012 1039 PUBLICATION SCHEDULE and DEADLINES
    VOL. 28 ISS. 13 PUBLISHED EVERY OTHER WEEK BY THE VIRGINIA CODE COMMISSION FEBRUARY 27, 2012 TABLE OF CONTENTS Register Information Page .........................................................................................................................................1039 Publication Schedule and Deadlines.......................................................................................................................1040 Petitions for Rulemaking ............................................................................................................................................1041 Notices of Intended Regulatory Action .................................................................................................................1042 Regulations .......................................................................................................................................................................1043 8VAC115-30. Richard Bland College Weapons on Campus Regulation (Final) ..................................................................1043 10VAC5-40. Credit Unions (Final)........................................................................................................................................1043 11VAC10-20. Regulations Pertaining to Horse Racing with Pari-Mutuel Wagering (Final) ................................................1045 11VAC10-50. Racing Officials (Final)..................................................................................................................................1052
    [Show full text]
  • Noise Induced Hearing Loss: an Occupational Medicine Perspective Emily Z
    Noise induced hearing loss: An occupational medicine perspective Emily Z. Stucken MD Michigan Ear Institute Robert S. Hong MD, PhD Michigan Ear Institute Corresponding author: Robert S. Hong MD, PhD Michigan Ear Institute 30055 Northwestern Highway, Suite #101 Farmington Hills, MI 48334 Phone (248) 865-4444 Abstract Purpose of review: Up to 30 million workers in the United States are exposed to potentially detrimental levels of noise. While reliable medications for minimizing or reversing noise induced hearing loss (NIHL) are not currently available, NIHL is entirely preventable. The purpose of this article is to review the epidemiology and pathophysiology of occupational NIHL. We will focus on at-risk populations and discuss prevention programs. Current prevention programs focus on reduction of inner ear damage by minimizing environmental noise production and through the use of personal hearing protective devices. Recent findings: Noise induced hearing loss is the result of a complex interaction between environmental factors and patient factors, both genetic and acquired. The effects of noise exposure are specific to an individual. Trials are currently underway evaluating the role of antioxidants in protection from, and even reversal of, NIHL. Summary: Occupational NIHL is the most prevalent occupational disease in the United States. Occupational noise exposures may contribute to temporary or permanent threshold shifts, though even temporary threshold shifts may predispose an individual to eventual permanent hearing loss. Noise prevention programs are paramount in reducing hearing loss as a result of occupational exposures. Key words: occupational noise induced hearing loss, occupational noise exposure, hearing protection programs Introduction Hearing loss is the most widespread disability in Westernized society.
    [Show full text]