This Article Appeared in a Journal Published by Elsevier. the Attached Copy Is Furnished to the Author for Internal Non-Commerci
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
METACYC ID Description A0AR23 GO:0004842 (Ubiquitin-Protein Ligase
Electronic Supplementary Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2012 Heat Stress Responsive Zostera marina Genes, Southern Population (α=0. -
The Analysis for Alteration in Starch Biosynthesis Metabolism in a Japonica Rice Grain Mutant Which Does Not Accumulate Starch
MOJ Proteomics & Bioinformatics Research Article Open Access The analysis for alteration in starch biosynthesis metabolism in a japonica rice grain mutant which does not accumulate starch Abstract Volume 7 Issue 5 - 2018 Rice grain‒filling is an important agronomic trait that contributes greatly to grain Weidong Xu,1,2 Chunhai Shi,1 Zhenzhen weight. A grain mutant from the japonica cultivar Nipponbare by mutagenesis with 1 1 3 ethyl methane sulfonate (EMS), which had no accumulation of starch granules in Cao, Fangmin Cheng, Jianguo Wu 1Department of Agronomy, Zhejiang University, China endosperm with a transparent liquid during grain filling stage, was used to analyze 2Jiaxing Academy of Agricultural Sciences Institute, China the caryopsis development and starch biosynthesis metabolism in present study. 3Department of Horticulture, Zhejiang A&F University, China Measurement of soluble substances in the liquid of developing endosperm showed that there was remarkably higher soluble sugar content in this no starch mutant. Correspondence: Chunhai Shi, Agronomy Department, Semi‒quantitative reverse transcription‒PCR (RT‒PCR) analysis of the starch‒ College of Agriculture and Biotechnology, Zhejiang University, synthesizing genes revealed that soluble starch synthase1 (SSS1) gene could be Yuhangtang Road 866, Hangzhou 310058, PR. China, Tel normally expressed in the mutant. Substantially lower expressions of starch branching +86 57188982691, Email [email protected] enzyme1 (SBE1), isoamylase1 (ISA1) and pullulanase (PUL) were detected in the no starch mutant compared with the wild type, whereas the expression of ADP‒glucose Received:‒ September 19, 2018 | Published: October 31, 2018 pyrophosphorylase large subunit 1 (AGPL1) and ADP‒glucose pyrophosphorylase small subunit 1 (AGPS1) were visibly increased. -
Mslsc2001c04
Metabolism MSLSC2001C04 Course Instructor Dr. Gautam Kumar Dr.Gautam Kr. Dept. of Life Sc. 1 Dr.Gautam Kr. Dept. of Life Sc. 2 Dr.Gautam Kr. Dept. of Life Sc. 3 Dr.Gautam Kr. Dept. of Life Sc. 4 • Cellulose is a major constituent of plant cell walls, providing strength and rigidity • Preventing the swelling of the cell and rupture of the plasma membrane • Plants synthesize more than 1011 metric tons of cellulose, making this simple polymer one of the most abundant compounds in the biosphere. • cellulose must be synthesized from intracellular precursors but deposited and assembled outside the plasma membrane. Dr.Gautam Kr. Dept. of Life Sc. 5 • Terminal complexes, also called rosettes, to be composed of six large particles arranged in a regular hexagon. • The outside surface of the plant plasma membrane in a freeze-fractured sample, viewed here with electron microscopy • Enzyme complex includes a catalytic subunit with eight transmembrane segments and several other subunits that are presumed to act in threading cellulose chains through the catalytic site and out of the cell, and in the crystallization of 36 cellulose strands into the paracrystalline microfibrils Rosettes Dr.Gautam Kr. Dept. of Life Sc. 6 • The complex enzymatic machinery that assembles cellulose chains spans the plasma membrane • UDP-glucose, in the cytosol and another part extending to the outside, responsible for elongating and crystallizing cellulose molecules in the extracellular space. • UDP-glucose used for cellulose synthesis is generated from sucrose produced during photosynthesis, by the reaction catalysed by sucrose synthase • Cellulose synthase spans the plasma Model for the structure of membrane and uses cytosolic UDP-glucose as Cellulose synthase. -
Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility. -
TO Thermostable Sucrose Phosphorylase 20120924
Thermostable sucrose phosphorylase Ghent Bio-Energy Valley, a consortium of research laboratories of Ghent University, is seeking partners interested in the industrial and enzymatic production of glycosides or glucose-1-phosphate at temperatures of 60°C or higher using a thermostable phosphorylase. Introduction Sucrose phosphorylase catalyses the reversible phosphorolysis of sucrose into α-glucose-1-phosphate and fructose. Because of the broad acceptor specificity of the enzyme, it can further be used for the production of a number of glycosylated compounds. At the industrial scale, such production processes are preferably run at 60°C or higher, mainly to avoid microbial contamination. Unfortunately, no sucrose phosphorylases are known yet which perform well at such high temperatures. Technology Researchers at Ghent University have identified a thermostable sucrose phosphorylase derived from the prokaryote Bifidobacterium adolescentis which performs well at 60°C or higher. The enzyme is active for at least 16h at 60°C when it is in the continuous presence of its substrate, and/or, when it is mutated at specific residues, and/or, when it is immobilized on a carrier or when it is immobilized by cross-linking so that it is part of a so-called “cross- linked enzyme aggregate (CLEA)”. Applications Enzymatic and/or recombinant methods to produce high value glycosides at elevated temperatures. Advantages • being able to produce glycosylated compounds at high temperatures avoids microbial contamination; • recycling of the immobilized biocatalyst in consecutive reactions increases the commercial potential. Status of development The sucrose phosphorylase of B. adolescentis was recombinantly expressed in E. coli and further purified. In addition, the enzyme was immobilized on an epoxy- activated enzyme carrier (Sepabeads EC-HFA) or was incorporated in a CLEA or was mutated to obtain enzyme variants. -
Generate Metabolic Map Poster
Authors: Pallavi Subhraveti Anamika Kothari Quang Ong Ron Caspi An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Peter D Karp Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Csac1394711Cyc: Candidatus Saccharibacteria bacterium RAAC3_TM7_1 Cellular Overview Connections between pathways are omitted for legibility. Tim Holland TM7C00001G0420 TM7C00001G0109 TM7C00001G0953 TM7C00001G0666 TM7C00001G0203 TM7C00001G0886 TM7C00001G0113 TM7C00001G0247 TM7C00001G0735 TM7C00001G0001 TM7C00001G0509 TM7C00001G0264 TM7C00001G0176 TM7C00001G0342 TM7C00001G0055 TM7C00001G0120 TM7C00001G0642 TM7C00001G0837 TM7C00001G0101 TM7C00001G0559 TM7C00001G0810 TM7C00001G0656 TM7C00001G0180 TM7C00001G0742 TM7C00001G0128 TM7C00001G0831 TM7C00001G0517 TM7C00001G0238 TM7C00001G0079 TM7C00001G0111 TM7C00001G0961 TM7C00001G0743 TM7C00001G0893 TM7C00001G0630 TM7C00001G0360 TM7C00001G0616 TM7C00001G0162 TM7C00001G0006 TM7C00001G0365 TM7C00001G0596 TM7C00001G0141 TM7C00001G0689 TM7C00001G0273 TM7C00001G0126 TM7C00001G0717 TM7C00001G0110 TM7C00001G0278 TM7C00001G0734 TM7C00001G0444 TM7C00001G0019 TM7C00001G0381 TM7C00001G0874 TM7C00001G0318 TM7C00001G0451 TM7C00001G0306 TM7C00001G0928 TM7C00001G0622 TM7C00001G0150 TM7C00001G0439 TM7C00001G0233 TM7C00001G0462 TM7C00001G0421 TM7C00001G0220 TM7C00001G0276 TM7C00001G0054 TM7C00001G0419 TM7C00001G0252 TM7C00001G0592 TM7C00001G0628 TM7C00001G0200 TM7C00001G0709 TM7C00001G0025 TM7C00001G0846 TM7C00001G0163 TM7C00001G0142 TM7C00001G0895 TM7C00001G0930 Detoxification Carbohydrate Biosynthesis DNA combined with a 2'- di-trans,octa-cis a 2'- Amino Acid Degradation an L-methionyl- TM7C00001G0190 superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. -
Of Sucrose Phosphorylase: Combining Improved Stability with Altered Specificity
Int. J. Mol. Sci. 2012, 13, 11333-11342; doi:10.3390/ijms130911333 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article An Imprinted Cross-Linked Enzyme Aggregate (iCLEA) of Sucrose Phosphorylase: Combining Improved Stability with Altered Specificity Karel De Winter, Wim Soetaert and Tom Desmet * Centre of Expertise for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Biosciences Engineering, Ghent University, Coupure Links 653, Ghent B-9000, Belgium; E-Mails: [email protected] (K.D.W.); [email protected] (W.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +32-9-2649-920; Fax: +32-9-2646-032. Received: 28 August 2012; in revised form: 5 September 2012 / Accepted: 5 September 2012 / Published: 11 September 2012 Abstract: The industrial use of sucrose phosphorylase (SP), an interesting biocatalyst for the selective transfer of α-glucosyl residues to various acceptor molecules, has been hampered by a lack of long-term stability and low activity towards alternative substrates. We have recently shown that the stability of the SP from Bifidobacterium adolescentis can be significantly improved by the formation of a cross-linked enzyme aggregate (CLEA). In this work, it is shown that the transglucosylation activity of such a CLEA can also be improved by molecular imprinting with a suitable substrate. To obtain proof of concept, SP was imprinted with α-glucosyl glycerol and subsequently cross-linked with glutaraldehyde. As a consequence, the enzyme’s specific activity towards glycerol as acceptor substrate was increased two-fold while simultaneously providing an exceptional stability at 60 °C. -
Leloir Glycosyltransferases in Applied Biocatalysis: a Multidisciplinary Approach
International Journal of Molecular Sciences Review Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach Luuk Mestrom 1, Marta Przypis 2,3 , Daria Kowalczykiewicz 2,3, André Pollender 4 , Antje Kumpf 4,5, Stefan R. Marsden 1, Isabel Bento 6, Andrzej B. Jarz˛ebski 7, Katarzyna Szyma ´nska 8, Arkadiusz Chru´sciel 9, Dirk Tischler 4,5 , Rob Schoevaart 10, Ulf Hanefeld 1 and Peter-Leon Hagedoorn 1,* 1 Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands; [email protected] (L.M.); [email protected] (S.R.M.); [email protected] (U.H.) 2 Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; [email protected] (M.P.); [email protected] (D.K.) 3 Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland 4 Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; [email protected] (A.P.); [email protected] (A.K.); [email protected] (D.T.) 5 Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany 6 EMBL Hamburg, Notkestraβe 85, 22607 Hamburg, Germany; [email protected] 7 Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland; [email protected] 8 Department of Chemical and Process Engineering, Silesian University of Technology, Ks. M. Strzody 7, 44-100 Gliwice Poland.; [email protected] 9 MEXEO Wiesław Hreczuch, ul. -
An Evolving Hierarchical Family Classification for Glycosyltransferases
doi:10.1016/S0022-2836(03)00307-3 J. Mol. Biol. (2003) 328, 307–317 COMMUNICATION An Evolving Hierarchical Family Classification for Glycosyltransferases Pedro M. Coutinho1, Emeline Deleury1, Gideon J. Davies2 and Bernard Henrissat1* 1Architecture et Fonction des Glycosyltransferases are a ubiquitous group of enzymes that catalyse the Macromole´cules Biologiques transfer of a sugar moiety from an activated sugar donor onto saccharide UMR6098, CNRS and or non-saccharide acceptors. Although many glycosyltransferases catalyse Universite´s d’Aix-Marseille I chemically similar reactions, presumably through transition states with and II, 31 Chemin Joseph substantial oxocarbenium ion character, they display remarkable diversity Aiguier, 13402 Marseille in their donor, acceptor and product specificity and thereby generate a Cedex 20, France potentially infinite number of glycoconjugates, oligo- and polysacchar- ides. We have performed a comprehensive survey of glycosyltransferase- 2Structural Biology Laboratory related sequences (over 7200 to date) and present here a classification of Department of Chemistry, The these enzymes akin to that proposed previously for glycoside hydrolases, University of York, Heslington into a hierarchical system of families, clans, and folds. This evolving York YO10 5YW, UK classification rationalises structural and mechanistic investigation, harnesses information from a wide variety of related enzymes to inform cell biology and overcomes recurrent problems in the functional prediction of glycosyltransferase-related open-reading frames. q 2003 Elsevier Science Ltd. All rights reserved Keywords: glycosyltransferases; protein families; classification; modular *Corresponding author structure; genomic annotations The biosynthesis of complex carbohydrates and are involved in glycosyl transfer and thus conquer polysaccharides is of remarkable biological import- what Sharon has provocatively described as “the ance. -
Integrated Omics Analyses Identify Key Pathways Involved in Petiole Rigidity Formation in Sacred Lotus
International Journal of Molecular Sciences Article Integrated Omics Analyses Identify Key Pathways Involved in Petiole Rigidity Formation in Sacred Lotus 1, 2, 3 1 1, Ming Li y , Ishfaq Hameed y, Dingding Cao , Dongli He and Pingfang Yang * 1 State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; [email protected] (M.L.); [email protected] (D.H.) 2 Departments of Botany, University of Chitral, Chitral 17200, Khyber Pukhtunkhwa, Pakistan; [email protected] 3 Institue of Oceanography, Minjiang University, Fuzhou 350108, China; [email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Received: 12 May 2020; Accepted: 15 July 2020; Published: 18 July 2020 Abstract: Sacred lotus (Nelumbo nucifera Gaertn.) is a relic aquatic plant with two types of leaves, which have distinct rigidity of petioles. Here we assess the difference from anatomic structure to the expression of genes and proteins in two petioles types, and identify key pathways involved in petiole rigidity formation in sacred lotus. Anatomically, great variation between the petioles of floating and vertical leaves were observed. The number of collenchyma cells and thickness of xylem vessel cell wall was higher in the initial vertical leaves’ petiole (IVP) compared to the initial floating leaves’ petiole (IFP). Among quantified transcripts and proteins, 1021 and 401 transcripts presented 2-fold expression increment (named DEGs, genes differentially expressed between IFP and IVP) in IFP and IVP, 421 and 483 proteins exhibited 1.5-fold expression increment (named DEPs, proteins differentially expressed between IFP and IVP) in IFP and IVP, respectively. -
Recent Progress Toward Understanding the Role of Starch Biosynthetic Enzymes in the Cereal Endosperm
Amylase 2017; 1: 59–74 Review Article Cheng Li, Prudence O. Powell, Robert G. Gilbert* Recent progress toward understanding the role of starch biosynthetic enzymes in the cereal endosperm DOI 10.1515/amylase-2017-0006 Abbreviations: ADPGlc, adenosine 5'-diphosphate Received July 31, 2017; accepted September 22, 2017 glucose; AGPase, ADP-glucose pyrophosphorylase; Abstract: Starch from cereal endosperm is a major CBM, carbohydrate-binding module; CLD, chain-length energy source for many mammals. The synthesis of this distribution; DAF, days after flowering; DBE, debranching starch involves a number of different enzymes whose enzyme; D-enzyme, disproportionating enzyme; mode of action is still not completely understood. ADP- DP, degree of polymerization; GBSS, granule bound glucose pyrophosphorylase is involved in the synthesis starch synthase; GH, glycoside hydrolase; GT, glycosyl of starch monomer (ADP-glucose), a process, which transferase; ISA, isoamylase; MOS, maltooligosaccharides; almost exclusively takes place in the cytosol. ADP- 3-PGA, 3-phosphoglyceric acid; Pi, inorganic phosphate; glucose is then transported into the amyloplast and PUL, pullulanase; SBE, starch-branching enzyme; SP, incorporated into starch granules by starch synthase, starch phosphorylase; SS, starch synthases; SuSy, sucrose starch-branching enzyme and debranching enzyme. synthase; UDPGlc, nucleoside diphosphate glucose. Additional enzymes, including starch phosphorylase and disproportionating enzyme, may be also involved in the formation of starch granules, although their exact 1 Introduction functions are still obscure. Interactions between these Starch is a highly branched d-glucose homopolymer enzymes in the form of functional complexes have been with a wide range of uses. It is accumulated in the cereal proposed and investigated, resulting more complicated endosperm as an energy reserve for seed germination, as starch biosynthetic pathways. -
Application of Enzymes in Regioselective and Stereoselective Organic Reactions
catalysts Review Application of Enzymes in Regioselective and Stereoselective Organic Reactions Ruipu Mu 1,*, Zhaoshuai Wang 2,3,* , Max C. Wamsley 1, Colbee N. Duke 1, Payton H. Lii 1, Sarah E. Epley 1, London C. Todd 1 and Patty J. Roberts 1 1 Department of Chemistry, Centenary College of Louisiana, Shreveport, LA 71104, USA; [email protected] (M.C.W.); [email protected] (C.N.D.); [email protected] (P.H.L.); [email protected] (S.E.E.); [email protected] (L.C.T.); [email protected] (P.J.R.) 2 Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA 3 Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA * Correspondence: [email protected] (R.M.); [email protected] (Z.W.) Received: 22 June 2020; Accepted: 21 July 2020; Published: 24 July 2020 Abstract: Nowadays, biocatalysts have received much more attention in chemistry regarding their potential to enable high efficiency, high yield, and eco-friendly processes for a myriad of applications. Nature’s vast repository of catalysts has inspired synthetic chemists. Furthermore, the revolutionary technologies in bioengineering have provided the fast discovery and evolution of enzymes that empower chemical synthesis. This article attempts to deliver a comprehensive overview of the last two decades of investigation into enzymatic reactions and highlights the effective performance progress of bio-enzymes exploited in organic synthesis. Based on the types of enzymatic reactions and enzyme commission (E.C.) numbers, the enzymes discussed in the article are classified into oxidoreductases, transferases, hydrolases, and lyases.