Development and Characterization of 24 Polymorphic Microsatellite Loci for the Freshwater Fish Ichthyoelephas Longirostris (Characiformes: Prochilodontidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structure of Tropical River Food Webs Revealed by Stable Isotope Ratios
OIKOS 96: 46–55, 2002 Structure of tropical river food webs revealed by stable isotope ratios David B. Jepsen and Kirk O. Winemiller Jepsen, D. B. and Winemiller, K. O. 2002. Structure of tropical river food webs revealed by stable isotope ratios. – Oikos 96: 46–55. Fish assemblages in tropical river food webs are characterized by high taxonomic diversity, diverse foraging modes, omnivory, and an abundance of detritivores. Feeding links are complex and modified by hydrologic seasonality and system productivity. These properties make it difficult to generalize about feeding relation- ships and to identify dominant linkages of energy flow. We analyzed the stable carbon and nitrogen isotope ratios of 276 fishes and other food web components living in four Venezuelan rivers that differed in basal food resources to determine 1) whether fish trophic guilds integrated food resources in a predictable fashion, thereby providing similar trophic resolution as individual species, 2) whether food chain length differed with system productivity, and 3) how omnivory and detritivory influenced trophic structure within these food webs. Fishes were grouped into four trophic guilds (herbivores, detritivores/algivores, omnivores, piscivores) based on literature reports and external morphological characteristics. Results of discriminant function analyses showed that isotope data were effective at reclassifying individual fish into their pre-identified trophic category. Nutrient-poor, black-water rivers showed greater compartmentalization in isotope values than more productive rivers, leading to greater reclassification success. In three out of four food webs, omnivores were more often misclassified than other trophic groups, reflecting the diverse food sources they assimilated. When fish d15N values were used to estimate species position in the trophic hierarchy, top piscivores in nutrient-poor rivers had higher trophic positions than those in more productive rivers. -
Karyotypic Characterization of Prochilodus Mariae, Semaprochilodus Kneri Ands. Laticeps (Teleostei: Prochilodontidae) from Caica
Neotropical Ichthyology, 1(1):47-52, 2003 Copyright © 2003 Sociedade Brasileira de Ictiologia Karyotypic characterization of Prochilodus mariae, Semaprochilodus kneri and S. laticeps (Teleostei: Prochilodontidae) from Caicara del Orinoco, Venezuela Claudio Oliveira*, Mauro Nirchio**, Ángel Granado*** and Sara Levy** Fish of the family Prochilodontidae are considered one of the most important components of commercial and subsistence fishery in freshwater environments in South America. This family consists of 21 species and three genera. In the present study, the karyotypes of Prochilodus mariae, Semaprochilodus kneri, and S. laticeps from Caicara del Orinoco, Bolivar State, Venezuela were studied. The species P. mariae, S. kneri and S. laticeps exhibited 2n=54 chromosomes (40 metacentric and 14 submetacentric), a single chromosome pair with nucleolus organizer regions, and a large amount of heterochromatin found at centromeric and pericentromeric positions in almost all chromosomes. The P. mariae specimens studied displayed 0 to 3 supernumerary microchromosomes. The data obtained here confirm the conservative nature of the chromosome number and morphology of Prochilodontidae and reinforce the hypothesis that small structural chromosome rearrangements were the main cause of the karyotypic diversification seen in this group. Os peixes da família Prochilodontidae são considerados um dos componentes mais importantes da pesca comercial e de subsistência em ambientes de água doce na América do Sul. Essa família compreende 21 espécies e três gêneros. No presente estudo foram analisados os cariótipos de Prochilodus mariae, Semaprochilodus kneri e S. laticeps provenientes de Caicara del Orinoco, Estado Bolivar, Venezuela. As espécies P. mariae, S. kneri e S. laticeps apresentaram 2n=54 cromossomos (40 metacêntricos e 14 submetacêntricos), um único par de cromossomos com regiões organizadoras de nucléolo e uma grande quantidade de heterocromatina em posição centromérica e pericentromérica de quase todos os cromossomos. -
A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname
Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname Editors: Leeanne E. Alonso and Trond H. Larsen 67 CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed RAP (Grensgebergte and Kasikasima) of Southeastern Suriname Bulletin of Biological Assessment 67 Editors: Leeanne E. Alonso and Trond H. Larsen CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION The RAP Bulletin of Biological Assessment is published by: Conservation International 2011 Crystal Drive, Suite 500 Arlington, VA USA 22202 Tel : +1 703-341-2400 www.conservation.org Cover photos: The RAP team surveyed the Grensgebergte Mountains and Upper Palumeu Watershed, as well as the Middle Palumeu River and Kasikasima Mountains visible here. Freshwater resources originating here are vital for all of Suriname. (T. Larsen) Glass frogs (Hyalinobatrachium cf. taylori) lay their -
Category Popular Name of the Group Phylum Class Invertebrate
Category Popular name of the group Phylum Class Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Reptile Chordata Reptilia Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Reptile Chordata Reptilia Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Mollusk Mollusca Bivalvia Vertebrate Amphibian Chordata Amphibia Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Invertebrate Mollusk Mollusca Bivalvia Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate -
The Role of Piscivores in a Species-Rich Tropical Food
THE ROLE OF PISCIVORES IN A SPECIES-RICH TROPICAL RIVER A Dissertation by CRAIG ANTHONY LAYMAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2004 Major Subject: Wildlife and Fisheries Sciences THE ROLE OF PISCIVORES IN A SPECIES-RICH TROPICAL RIVER A Dissertation by CRAIG ANTHONY LAYMAN Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved as to style and content by: _________________________ _________________________ Kirk O. Winemiller Lee Fitzgerald (Chair of Committee) (Member) _________________________ _________________________ Kevin Heinz Daniel L. Roelke (Member) (Member) _________________________ Robert D. Brown (Head of Department) August 2004 Major Subject: Wildlife and Fisheries Sciences iii ABSTRACT The Role of Piscivores in a Species-Rich Tropical River. (August 2004) Craig Anthony Layman, B.S., University of Virginia; M.S., University of Virginia Chair of Advisory Committee: Dr. Kirk O. Winemiller Much of the world’s species diversity is located in tropical and sub-tropical ecosystems, and a better understanding of the ecology of these systems is necessary to stem biodiversity loss and assess community- and ecosystem-level responses to anthropogenic impacts. In this dissertation, I endeavored to broaden our understanding of complex ecosystems through research conducted on the Cinaruco River, a floodplain river in Venezuela, with specific emphasis on how a human-induced perturbation, commercial netting activity, may affect food web structure and function. I employed two approaches in this work: (1) comparative analyses based on descriptive food web characteristics, and (2) experimental manipulations within important food web modules. -
May 2021 Kirk Owen Winemiller Department of Ecology And
1 CURRICULUM VITAE– May 2021 Kirk Owen Winemiller Department of Ecology and Conservation Biology Texas A&M University 2258 TAMU College Station, TX 77843-2258 Telephone: (979) 845-6295 Email: [email protected] Webpage: https://aquaticecology.tamu.edu Professional Positions Dates Interim Department Head, Department of Ecology and Conservation Jan. 2020-present Biology, Texas A&M University Interim Department Head, Dept. Wildlife and Fisheries Sciences, Oct.-Dec. 2019 Texas A&M University University Distinguished Professor, Texas A&M University April 2019-present Regents Professor, Texas AgriLife Research Jan. 2009-present Associate Department Head for Undergraduate Programs, June 2011-Aug. 2012 Department of Wildlife & Fisheries Sciences, Texas A&M University Associate Chair, Interdisciplinary Research Program in Ecology and Jan. 2008-Dec. 2009 Evolutionary Biology, Texas A&M University Founding Chair, Interdisciplinary Research Program in Ecology and Oct. 2004-Dec. 2007 Evolutionary Biology, Texas A&M University Professor, Dept. Wildlife & Fisheries Sciences, Texas A&M Univ. Sept. 2002-present Associate Professor, Dept. Wildlife & Fisheries Sciences, Texas A&M U. Sept. 1996-Aug. 2002 Fulbright Visiting Graduate Faculty, University of the Western Llanos, May-Sept. 1997 Venezuela Visiting Graduate Faculty, University of Oklahoma, Norman July 1994-1995 Assistant Professor, Dept. Wildlife & Fisheries, Texas A&M University May 1992-Aug. 1996 Research Associate- Oak Ridge National Lab, Environmental Sciences 1990-1992 Division, Oak Ridge, TN & Graduate Program in Ecology, University of Tennessee, Knoxville Lecturer- Department of Zoology, University of Texas, Austin 1987-88, 1990 Fulbright Research Associate- Zambia Fisheries Department 1989 Curator of Fishes- TNHC, Texas Memorial Museum, Austin 1988-89 Graduate Assistant Instructor- University of Texas, Austin 1981-83, 1986-87 2 Education Ph.D. -
Myxobolus Insignis Sp. N. (Myxozoa, Myxosporea, Myxobolidae), a Parasite of the Amazonian Teleost Fish Semaprochilodus Insignis (Osteichthyes, Prochilodontidae)
Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 100(3): 245-247, May 2005 245 Myxobolus insignis sp. n. (Myxozoa, Myxosporea, Myxobolidae), a parasite of the Amazonian teleost fish Semaprochilodus insignis (Osteichthyes, Prochilodontidae) JC Eiras/+, JCO Malta*, AMB Varella*, GC Pavanelli** Departamento de Zoologia e Antropologia, and CIIMAR, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal *Laboratório de Parasitologia e Patologia de Peixes, Inpa, Manaus, AM, Brasil **Departamento de Biologia, Universidade Estadual de Maringá, Maringá, PR, Brasil A new myxosporean species is described from the fish Semaprochilodus insignis captured from the Amazon River, near Manaus. Myxobolus insignis sp. n. was located in the gills of the host forming plasmodia inside the secondary gill lamellae. The spores had a thick wall (1.5-2 µm) all around their body, and the valves were symmetrical and smooth. The spores were a little longer than wide, with rounded extremities, in frontal view, and oval in lateral view. They were 14.5 (14-15) µm long by 11.3 (11-12) µm wide and 7.8 (7-8) µm thick. Some spores showed the presence of a triangular thickening of the internal face of the wall near the posterior end of the polar capsules. This thicken- ing could occur in one of the sides of the spore or in both sides. The polar capsules were large and equal in size surpassing the mid-length of the spore. They were oval with the posterior extremity rounded, and converging anteriorly with tapered ends. They were 7.6 (7-8) µm long by 4.2 (3-5) µm wide, and the polar filament formed 6 coils slightly obliquely to the axis of the polar capsule. -
A New Genetic Lineage Within the Tapajós River Basin
PLOS ONE RESEARCH ARTICLE Hidden diversity in Prochilodus nigricans: A new genetic lineage within the TapajoÂs River basin 1,2 1 1 Ueslei LopesID *, Pedro M. Galetti, Jr. , Patricia Domingues de FreitasID 1 Departamento de GeneÂtica e EvolucËão, Universidade Federal de São Carlos, São Carlos, SP, Brazil, 2 Centro de Ciências da Natureza, Campus Lagoa do Sino, Universidade Federal de São Carlos, Buri, SP, Brazil a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract Highly spread through the Amazon River basin, Prochilodus nigricans have had its taxo- nomic validity recently questioned, when genetic differences between Western and Eastern Amazon populations from the Brazilian shield were detected. This area has been seeing as OPEN ACCESS a region of high ichthyofaunal diversity and endemism, in which the hybrid origin of the Citation: Lopes U, Galetti PM, Jr., Domingues de TapajoÂs River basin has been raised. In this paper, we report a new molecular lineage within Freitas P (2020) Hidden diversity in Prochilodus P. nigricans of TapajoÂs River, highlighting this region still hides taxonomically significant nigricans: A new genetic lineage within the TapajoÂs diversity. Haplotype networks were reconstructed using the mitochondrial COI and ATP6/8 River basin. PLoS ONE 15(8): e0237916. https:// doi.org/10.1371/journal.pone.0237916 markers, which were also used to calculate genetic distances among clusters. We addition- ally conducted a delimiting species approach by employing a Generalized Mixed Yule-Coa- Editor: Paolo Ruggeri, Natural History Museum of London, UNITED KINGDOM lescent model (GMYC) with COI sequences produced here, and previous ones published for individuals sampled across the Amazon River basin. -
Body Size and Trophic Position in a Diverse Tropical Food Web
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Texas A&M University 2530 NOTES Ecology, Vol. 86, No. 9 Ecology, 86(9), 2005, pp. 2530±2535 q 2005 by the Ecological Society of America BODY SIZE AND TROPHIC POSITION IN A DIVERSE TROPICAL FOOD WEB CRAIG A. LAYMAN,1,5 KIRK O. WINEMILLER,2 D. ALBREY ARRINGTON,3 AND DAVID B. JEPSEN4 1Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106 USA 2Section of Ecology and Evolutionary Biology, Department of Wildlife and Fisheries Sciences, Texas A & M University, 210 Nagle Hall, College Station, Texas 77843-2258 USA 3Perry Institute for Marine Science, 100 North U.S. Highway 1, Suite 202, Jupiter, Florida 33477-5112 USA 4Oregon Department of Fish and Wildlife, Corvallis Research Lab, 28655 Highway 34, Corvallis, Oregon 97333 USA Abstract. We use stomach contents and stable isotope ratios of predatory ®shes, col- lected over a 10-year time span from a species-rich river in Venezuela, to examine potential body-size±trophic-position relationships. Mean body size of predator taxa and their prey (determined by stomach content analyses) were signi®cantly correlated, but trophic position of predators (estimated by stable isotope ratios) was not correlated with body size. This re¯ects no apparent relationship between body size and trophic position among prey taxa. Primary consumer taxa (algivores and detritivores) in this system are characterized by diverse size and morphology, and thus predatory ®sh of all body sizes and feeding strategies are able to exploit taxa feeding low in the food web. -
Fish Species
Fish Species Dorado or Golden Dorado- Classification: Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Characiformes Family: Characidae Genus: Salminus Species: maxillosus Binomial name: Salminus maxillosus Others: Salminus cuvieri, Salminus brasiliensis Characteristics: The dorado has been often referred to as the “tigre de rio” or jaguar of the river to be more accurate. They possess a bright golden coloration, accented by rows of tiny small back dots running along their powerful streamlined bodies. Their fins have a bright red coloration and the caudal fin has a black bar along the middle through the caudal peduncle. Their massive jaws are equipped with rows of razor sharp pointy teeth, living up quite accurately to its local nickname. Dorado can reach upwards of 100cm in length and weigh as much as 45lbs (20.5kgs), more commonly in the 22-33lb (10-15kg) range. Tabarana, the silver dorado- Classification- Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Characiformes Family: Characidae Genus: Salminus Species: hilarii Binomial name: Salminus hilarii Characteristics: This species is a close relative of the dorado, and shares many of its morphological features. However, this fish is smaller in average size, and has less girth. It is silver with bright orange specks between scales, and black and red accents on the caudal fin, as well as black accents on the dorsal and anal fins. This is why it is called the “white or silver dorado” in much of its range. This species is quite aggressive and preys upon smaller tetras and other baitfish such as sabalo (Prochilodus sp.). Its sharp teeth make quick work of the smaller characins in the river system. -
Genetic Diversity and Aquaculture Conservation for a Threatened Neotropical Catfish
Neotropical Ichthyology Original article https://doi.org/10.1590/1982-0224-2020-0028 Genetic diversity and aquaculture conservation for a threatened Neotropical catfish Renata S. Farias1, Bruno C. N. R. Silva1, Wilka V. G. Nascimento1, Gênison C. Silva1, Ronald K. Luz2, Francisco Prosdocimi3, Correspondence: 4 5 Maria R. M. Coimbra Rozzanno A. C. R. Figueiredo , Daniel C. Carvalho and 1 [email protected] Maria R. M. Coimbra Due to the ecological importance of Lophiosilurus alexandri, the present work evaluated its genetic representativeness by comparing wild stocks to broodstocks that were kept at three restocking hatcheries along the São Francisco River. A total of 97 samples were genotyped for newly developed microsatellite markers. Low levels of genetic diversity (average alleles number of 4.2 alleles) were detected in all cases, being more severe in captive groups. Significant pairwise F and D values, Structure, and DAPC analyses showed that wild animals ST EST were structured in two groups, and a third group was formed by captive animals, evidencing the need to adopt genetic criteria to retain genetic diversity in the hatcheries. For this reason, three full-sib families were constructed to select the best relatedness estimator for L. alexandri and establish a cut-off value aimed to avoid full-sibling matings in the hatcheries. Two estimators, Wang (R ) and W Lynch & Li (R ), were accurate in reflecting the relatedness level for full-sibs in LL Submitted April 20, 2020 this species. According to them, less than 50% of the potential breeding matings Accepted August 14, 2020 by in the three hatcheries are advisable. -
HANDBOOK of FISH BIOLOGY and FISHERIES Volume 1 Also Available from Blackwell Publishing: Handbook of Fish Biology and Fisheries Edited by Paul J.B
HANDBOOK OF FISH BIOLOGY AND FISHERIES Volume 1 Also available from Blackwell Publishing: Handbook of Fish Biology and Fisheries Edited by Paul J.B. Hart and John D. Reynolds Volume 2 Fisheries Handbook of Fish Biology and Fisheries VOLUME 1 FISH BIOLOGY EDITED BY Paul J.B. Hart Department of Biology University of Leicester AND John D. Reynolds School of Biological Sciences University of East Anglia © 2002 by Blackwell Science Ltd a Blackwell Publishing company Chapter 8 © British Crown copyright, 1999 BLACKWELL PUBLISHING 350 Main Street, Malden, MA 02148‐5020, USA 108 Cowley Road, Oxford OX4 1JF, UK 550 Swanston Street, Carlton, Victoria 3053, Australia The right of Paul J.B. Hart and John D. Reynolds to be identified as the Authors of the Editorial Material in this Work has been asserted in accordance with the UK Copyright, Designs, and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs, and Patents Act 1988, without the prior permission of the publisher. First published 2002 Reprinted 2004 Library of Congress Cataloging‐in‐Publication Data has been applied for. Volume 1 ISBN 0‐632‐05412‐3 (hbk) Volume 2 ISBN 0‐632‐06482‐X (hbk) 2‐volume set ISBN 0‐632‐06483‐8 A catalogue record for this title is available from the British Library. Set in 9/11.5 pt Trump Mediaeval by SNP Best‐set Typesetter Ltd, Hong Kong Printed and bound in the United Kingdom by TJ International Ltd, Padstow, Cornwall.