Migratory Neotropical Fish Subsidize Food Webs of Oligotrophic Blackwater Rivers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dissertação Final.Pdf
INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA – INPA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA DE ÁGUA DOCE E PESCA INTERIOR - BADPI CARACTERIZAÇÃO CITOGENÉTICA EM ESPÉCIES DE Cichla BLOCH & SCHNEIDER, 1801 (PERCIFORMES, CICHLIDAE) COM ÊNFASE NOS HÍBRIDOS INTERESPECÍFICOS JANICE MACHADO DE QUADROS MANAUS-AM 2019 JANICE MACHADO DE QUADROS CARACTERIZAÇÃO CITOGENÉTICA EM ESPÉCIES DE Cichla BLOCH & SCHNEIDER, 1801 (PERCIFORMES, CICHLIDAE) COM ÊNFASE NOS HÍBRIDOS INTERESPECÍFICOS ORIENTADORA: Eliana Feldberg, Dra. COORIENTADOR: Efrem Jorge Gondim Ferreira, Dr. Dissertação apresentada ao Programa de Pós- Graduação do Instituto Nacional de Pesquisas da Amazônia como parte dos requisitos para obtenção do título de Mestre em CIÊNCIAS BIOLÓGICAS, área de concentração Biologia de Água Doce e Pesca Interior. MANAUS-AM 2019 Ficha Catalográfica Q1c Quadros, Janice Machado de CARACTERIZAÇÃO CITOGENÉTICA EM ESPÉCIES DE Cichla BLOCH & SCHNEIDER, 1801 (PERCIFORMES, CICHLIDAE) COM ÊNFASE NOS HÍBRIDOS INTERESPECÍFICOS / Janice Machado de Quadros; orientadora Eliana Feldberg; coorientadora Efrem Ferreira. -- Manaus:[s.l], 2019. 56 f. Dissertação (Mestrado - Programa de Pós Graduação em Biologia de Água Doce e Pesca Interior) -- Coordenação do Programa de Pós- Graduação, INPA, 2019. 1. Hibridação. 2. Tucunaré. 3. Heterocromatina. 4. FISH. 5. DNAr. I. Feldberg, Eliana, orient. II. Ferreira, Efrem, coorient. III. Título. CDD: 639.2 Sinopse: A fim de investigar a existência de híbridos entre espécies de Cichla, nós analisamos, por meio de técnicas de citogenética clássica e molecular indivíduos de C. monoculus, C. temensis, C. pinima, C. kelberi, C. piquiti, C. vazzoleri de diferentes locais da bacia amazônica e entre eles, três indivíduos foram considerados, morfologicamente, híbridos. Todos os indivíduos apresentaram 2n=48 cromossomos acrocêntricos. A heterocromatina foi encontrada preferencialmente em regiões centroméricas e terminais, com variações entre indivíduos de C. -
Serrasalmus Geryi Ecological Risk Screening Summary
Serrasalmus geryi (a piranha, no common name) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, April 2012 Revised, July 2018 Web Version, 8/22/2019 Photo: greyloch. Licensed under Creative Commons BY-NC-ND 2.0. Available: https://www.flickr.com/photos/greyloch/26981441525. (July 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “South America: Tocantins River Basin in Brazil.” 1 Status in the United States This species has not been reported as introduced or established in the wild in the United States. This species is in trade in the United States. For example: From AquaScapeOnline (2018): “Violet Line Piranha 4"-6" (Serrasalmus Geryi [sic]) […] Special $300.00 Reg. Price $400.00” Possession or importation of fish of the genus Serrasalmus, or fish known as “piranha” in general, is banned or regulated in many States. Every effort has been made to list all applicable State laws and regulations pertaining to this species, but this list may not be comprehensive. From Alabama Department of Conservation and Natural Resources (2019): “No person, firm, corporation, partnership, or association shall possess, sell, offer for sale, import, bring, release or cause to be brought or imported into the State of Alabama any of the following live fish or animals: […] Any Piranha or any fish of the genera Serrasalmus, Pristobrycon, Pygocentrus, Catorprion, or Pygopristus; […]” From Alaska State Legislature (2019): “Except as provided in (b) - (d) of this section, no person may import any live fish into the state for purposes of stocking or rearing in the waters of the state. -
Final Report Galveston Bay Invasive Animal Field Guide TCEQ Contract Number 582-8-84976
Final Report Galveston Bay Invasive Animal Field Guide TCEQ Contract Number 582-8-84976 August 2010 Prepared For: Texas Commission on Environmental Quality Galveston Bay Estuary Program 17041 El Camino Real, Ste. 210 Houston, Texas 77058 GBEP Project Manager Lindsey Lippert Prepared By: Geotechnology Research Institute (GTRI) Houston Advanced Research Center (HARC) 4800 Research Forest Drive The Woodlands, Texas 77381 Principal Investigator Lisa A. Gonzalez [email protected] Prepared in Cooperation with the Texas Commission on Environmental Quality and U.S. Environmental Protection Agency The preparation of this report was financed through grants from the U.S. Environmental Protection Agency through the Texas Commission on Environmental Quality www.galvbayinvasives.org Table of Contents 1 Executive Summary _______________________________________________________4 2 Introduction ______________________________________________________________5 3 Project Methodology _______________________________________________________6 3.1 Invasive Species Chosen for Inclusion______________________________________ 6 3.2 Data Collection and Database Creation _____________________________________ 6 3.3 Creation and Printing of the Field Guide ____________________________________ 6 3.4 Website Development __________________________________________________ 7 4 Project Results ____________________________________________________________7 4.1 Hard Copy, Field Guide Printing __________________________________________ 7 4.2 Website Use __________________________________________________________ -
Freshwater Ornamental Fish Commonly Cultured in Florida 1 Jeffrey E
Circular 54 Freshwater Ornamental Fish Commonly Cultured in Florida 1 Jeffrey E. Hill and Roy P.E. Yanong2 Introduction Unlike many traditional agriculture industries in Florida which may raise one or only a few different species, tropical Freshwater tropical ornamental fish culture is the largest fish farmers collectively culture hundreds of different component of aquaculture in the State of Florida and ac- species and varieties of fishes from numerous families and counts for approximately 95% of all ornamentals produced several geographic regions. There is much variation within in the US. There are about 200 Florida producers who and among fish groups with regard to acceptable water collectively raise over 800 varieties of freshwater fishes. In quality parameters, feeding and nutrition, and mode of 2003 alone, farm-gate value of Florida-raised tropical fish reproduction. Some farms specialize in one or a few fish was about US$47.2 million. Given the additional economic groups, while other farms produce a wide spectrum of effects of tropical fish trade such as support industries, aquatic livestock. wholesalers, retail pet stores, and aquarium product manufacturing, the importance to Florida is tremendous. Fish can be grouped in a number of different ways. One major division in the industry which has practical signifi- Florida’s tropical ornamental aquaculture industry is cance is that between egg-laying species and live-bearing concentrated in Hillsborough, Polk, and Miami-Dade species. The culture practices for each division are different, counties with additional farms throughout the southern requiring specialized knowledge and equipment to succeed. half of the state. Historic factors, warm climate, the proxim- ity to airports and other infrastructural considerations This publication briefly reviews the more common groups (ready access to aquaculture equipment, supplies, feed, etc.) of freshwater tropical ornamental fishes cultured in Florida are the major reasons for this distribution. -
Phylogenetic Relationships Within the Speciose Family Characidae
Oliveira et al. BMC Evolutionary Biology 2011, 11:275 http://www.biomedcentral.com/1471-2148/11/275 RESEARCH ARTICLE Open Access Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling Claudio Oliveira1*, Gleisy S Avelino1, Kelly T Abe1, Tatiane C Mariguela1, Ricardo C Benine1, Guillermo Ortí2, Richard P Vari3 and Ricardo M Corrêa e Castro4 Abstract Background: With nearly 1,100 species, the fish family Characidae represents more than half of the species of Characiformes, and is a key component of Neotropical freshwater ecosystems. The composition, phylogeny, and classification of Characidae is currently uncertain, despite significant efforts based on analysis of morphological and molecular data. No consensus about the monophyly of this group or its position within the order Characiformes has been reached, challenged by the fact that many key studies to date have non-overlapping taxonomic representation and focus only on subsets of this diversity. Results: In the present study we propose a new definition of the family Characidae and a hypothesis of relationships for the Characiformes based on phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes (4,680 base pairs). The sequences were obtained from 211 samples representing 166 genera distributed among all 18 recognized families in the order Characiformes, all 14 recognized subfamilies in the Characidae, plus 56 of the genera so far considered incertae sedis in the Characidae. The phylogeny obtained is robust, with most lineages significantly supported by posterior probabilities in Bayesian analysis, and high bootstrap values from maximum likelihood and parsimony analyses. -
ERSS-Payara (Hydrolycus Armatus)
Payara (Hydrolycus armatus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, April 2014 Revised, February 2018 Web Version, 7/31/2018 Photo: Miloslav Petrtyl. Licensed under Creative Commons (CC-BY-NC). Available: http://eol.org/pages/214219/overview (February 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2017): “South America: Amazon basin, Orinoco basin, rivers of Guyana.” From Eschmeyer et al. (2018): “Distribution: Amazon and Orinoco River basins and rivers of Guyana: Brazil, Bolivia, Colombia, Guyana and Venezuela.” Status in the United States This species has not been reported as introduced or established in the United States. 1 This species is present in trade in the United States. For example: From AquaScapeOnline (2018): “Hydrolycus Armatus [sic] 4" […] List Price: $100.00 Our Price: $85.00 You Save: $15.00 (15%)” Means of Introductions in the United States This species has not been reported as introduced or established in the United States. Remarks The common name “Payara” is applied to multiple species in the genus Hydrolycus. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2018): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Osteichthyes Class Actinopterygii Subclass Neopterygii Infraclass Teleostei Superorder Ostariophysi Order Characiformes Family Cynodontidae Subfamily Cynodontinae Genus Hydrolycus Species Hydrolycus armatus” “Taxonomic Status: valid” Size, Weight, and Age Range From Froese and Pauly (2017): “[…] Max length : 89.0 cm TL male/unsexed; [Giarrizzo et al. 2015]; max. published weight: 8.5 kg [Cella-Ribeiro et al. 2015]” 2 Environment From Froese and Pauly (2017): “Freshwater; pelagic.” Climate/Range From Froese and Pauly (2017): “Tropical” Distribution Outside the United States Native From Froese and Pauly (2017): “South America: Amazon basin, Orinoco basin, rivers of Guyana.” From Eschmeyer et al. -
Taxonomic Revision and Morphological
UNIVERSIDADE FEDERAL DO PARANÁ TAÍSA MENDES MARQUES TAXONOMIC REVISION AND MORPHOLOGICAL PHYLOGENETIC ANALYSIS OF KNOWN SPECIES OF ERGASILUS (CRUSTACEA: POECILOSTOMATOIDA, ERGASILIDAE) PARASITES OF FRESHWATER NEOTROPICAL FISHES CURITIBA, 2014 TAÍSA MENDES MARQUES TAXONOMIC REVISION AND MORPHOLOGICAL PHYLOGENETIC ANALYSIS OF KNOWN SPECIES OF ERGASILUS (CRUSTACEA: POECILOSTOMATOIDA, ERGASILIDAE) PARASITES OF FRESHWATER NEOTROPICAL FISHES Dissertação apresentada ao Programa de Pós- Graduaçãoem Ciências Biológicas - Microbiologia, Parasitologia e Patologia, Setor de Ciências Biológicas da Universidade Federal do Paraná, como requisito parcial à obtenção do título de Mestre em Ciências Biológicas área de concentração Parasitologia. Orientador: Walter A. Boeger, Ph.D. CURITIBA, 2014 i Agradecimentos Em primeiro lugar, agradeço a Deus, não só nesta etapa, mas em toda minha vida. Agradeço, especialmente, meu orientador, Dr. Walter Boeger, pesquisador exemplar, que acreditou em mim. Obrigada pela oportunidade e confiança, por estar sempre disposto e paciente para tirar minhas dúvidas, pela ajuda significativa que contribuiu para meu desenvolvimento acadêmico e para realização deste projeto. É com muita admiração e respeito que demonstro meu sincero agradecimento. Gostaria de agradecer a minha família, por sempre acreditar em mim, me apoiar e sonhar junto. À minha mãe, que colocou meus estudos como prioridade. Ao meu pai que me ajudou e ajuda inclusive com coletas, guardando brânquias. Ainda vamos pescar muito juntos. Amo vocês! Ao meu melhor amigo, companheiro e noivo, Carlos, que sempre me apoiou e cuidou de mim. Por todas as vezes que, mesmo sem entender nada da área, leu e tentou me ajudar com esses “bichinhos doidos”. Obrigada Carlos, amo você! Aos meus colegas de laboratório, pelo convívio diário, sugestões e ajuda em todos os momentos que precisei. -
Structure of Tropical River Food Webs Revealed by Stable Isotope Ratios
OIKOS 96: 46–55, 2002 Structure of tropical river food webs revealed by stable isotope ratios David B. Jepsen and Kirk O. Winemiller Jepsen, D. B. and Winemiller, K. O. 2002. Structure of tropical river food webs revealed by stable isotope ratios. – Oikos 96: 46–55. Fish assemblages in tropical river food webs are characterized by high taxonomic diversity, diverse foraging modes, omnivory, and an abundance of detritivores. Feeding links are complex and modified by hydrologic seasonality and system productivity. These properties make it difficult to generalize about feeding relation- ships and to identify dominant linkages of energy flow. We analyzed the stable carbon and nitrogen isotope ratios of 276 fishes and other food web components living in four Venezuelan rivers that differed in basal food resources to determine 1) whether fish trophic guilds integrated food resources in a predictable fashion, thereby providing similar trophic resolution as individual species, 2) whether food chain length differed with system productivity, and 3) how omnivory and detritivory influenced trophic structure within these food webs. Fishes were grouped into four trophic guilds (herbivores, detritivores/algivores, omnivores, piscivores) based on literature reports and external morphological characteristics. Results of discriminant function analyses showed that isotope data were effective at reclassifying individual fish into their pre-identified trophic category. Nutrient-poor, black-water rivers showed greater compartmentalization in isotope values than more productive rivers, leading to greater reclassification success. In three out of four food webs, omnivores were more often misclassified than other trophic groups, reflecting the diverse food sources they assimilated. When fish d15N values were used to estimate species position in the trophic hierarchy, top piscivores in nutrient-poor rivers had higher trophic positions than those in more productive rivers. -
Serrasalmus Elongatus (Slender Piranha) Ecological Risk Screening Summary
Slender Piranha (Serrasalmus elongatus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, April 2012 Revised, July 2018 and August 2019 Web Version, 8/21/2019 Photo: Clinton & Charles Robertson. Licensed under Creative Commons BY 2.0. Available: https://commons.wikimedia.org/w/index.php?curid=16042555. (July 2018). 1 Native Range and Status in the United States 1 Native Range From Eschmeyer et al. (2018): “Amazon and Orinoco River basins: Bolivia, Brazil, Colombia, Ecuador, Peru and Venezuela.” Status in the United States This species has not been reported as introduced or established in the wild in the United States. This species is in trade in the United States, for example: From AquaScapeOnline (2018): “Elongatus Piranha 5"-6" (Serrasalmus Elongatus [sic]) […] Our Price: $125.00” “Elongatus black mask 6"-7" (Serrasalmus Elongatus [sic]) […] Our Price: $150.00” Possession or importation of fish of the genus Serrasalmus, or fish known as “piranha” in general, is banned or regulated in many States. Every effort has been made to list all applicable State laws and regulations pertaining to this species, but this list may not be comprehensive. From Alabama Department of Conservation and Natural Resources (2019): “No person, firm, corporation, partnership, or association shall possess, sell, offer for sale, import, bring, release or cause to be brought or imported into the State of Alabama any of the following live fish or animals: […] Any Piranha or any fish of the genera Serrasalmus, Pristobrycon, Pygocentrus, Catorprion, or Pygopristus; […]” From Alaska State Legislature (2019): “Except as provided in (b) - (d) of this section, no person may import any live fish into the state for purposes of stocking or rearing in the waters of the state. -
Goliath Catfish Spawning in the Far Western Amazon Confirmed by the Distribution of Mature Adults, Drifting Larvae and Migrating Juveniles
www.nature.com/scientificreports OPEN Goliath catfish spawning in the far western Amazon confirmed by the distribution of mature adults, Received: 28 June 2016 Accepted: 28 December 2016 drifting larvae and migrating Published: 06 February 2017 juveniles Ronaldo B. Barthem1, Michael Goulding2, Rosseval G. Leite3, Carlos Cañas2, Bruce Forsberg3, Eduardo Venticinque4, Paulo Petry5, Mauro L. de B. Ribeiro6, Junior Chuctaya7 & Armando Mercado2 We mapped the inferred long-distance migrations of four species of Amazonian goliath catfishes (Brachyplatystoma rousseauxii, B. platynemum, B. juruense and B. vaillantii) based on the presence of individuals with mature gonads and conducted statistical analysis of the expected long-distance downstream migrations of their larvae and juveniles. By linking the distribution of larval, juvenile and mature adult size classes across the Amazon, the results showed: (i) that the main spawning regions of these goliath catfish species are in the western Amazon; (ii) at least three species—B. rousseauxii, B. platynemum, and B. juruense—spawn partially or mainly as far upstream as the Andes; (iii) the main spawning area of B. rousseauxii is in or near the Andes; and (iv) the life history migration distances of B. rousseauxii are the longest strictly freshwater fish migrations in the world. These results provide an empirical baseline for tagging experiments, life histories extrapolated from otolith microchemistry interpretations and other methods to establish goliath catfish migratory routes, their seasonal timing and possible return (homing) to western headwater tributaries where they were born. The Amazon has two main groups of migratory fish species, and they belong to the orders Siluriformes (catfishes) and Characiformes (characins)1–3. -
State of the Art of Identification of Eggs and Larvae of Freshwater Fish in Brazil Estado Da Arte Da Identificação De Ovos E Larvas De Peixes De Água Doce No Brasil
Review Article Acta Limnologica Brasiliensia, 2020, vol. 32, e6 https://doi.org/10.1590/S2179-975X5319 ISSN 2179-975X on-line version State of the art of identification of eggs and larvae of freshwater fish in Brazil Estado da arte da identificação de ovos e larvas de peixes de água doce no Brasil David Augusto Reynalte-Tataje1* , Carolina Antonieta Lopes2 , Marthoni Vinicius Massaro3 , Paula Betina Hartmann3 , Rosalva Sulzbacher3 , Joyce Andreia Santos4 and Andréa Bialetzki5 1 Programa de Pós-graduação em Ambiente e Tecnologias Sustentáveis, Universidade Federal da Fronteira Sul – UFFS, Avenida Jacob Reinaldo Haupenthal, 1580, CEP 97900-000, Cerro Largo, RS, Brasil 2 Programa de Pós-graduação em Aquicultura, Universidade Federal de Santa Catarina – UFSC, Rodovia Admar Gonzaga, 1346, CEP 88034-001, Itacorubi, Florianópolis, SC, Brasil 3 Universidade Federal da Fronteira Sul – UFFS, Avenida Jacob Reinaldo Haupenthal, 1580, CEP 97900-000, Cerro Largo, RS, Brasil 4 Programa de Pós-graduação em Ecologia, Instituto de Ciências Biológicas – ICB, Universidade Federal de Juiz de Fora – UFJF, Campos Universitário, CEP 36036-900, Bairro São Pedro, Juiz de Fora, MG, Brasil 5 Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais, Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura – Nupélia, Universidade Estadual de Maringá – UEM, Avenida Colombo, 5790, bloco G-80, CEP 87020-900, Maringá, PR, Brasil *e-mail: [email protected] Cite as: Reynalte-Tataje, D. A. et al. State of the art of identification of eggs and larvae of freshwater fish in Brazil. Acta Limnologica Brasiliensia, 2020, vol. 32, e6. Abstract: Aim: This study aimed to assist in guiding research with eggs and larvae of continental fish in Brazil, mainly in the knowledge of the early development, as well as to present the state of the art and to point out the gaps and future directions for the development of researches in the area. -
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................