Tempo and Mode of Lineage and Morphological Diversification in a Hyperdiverse Freshwater Fish Radiation (Teleostei: Characiformes)

Total Page:16

File Type:pdf, Size:1020Kb

Tempo and Mode of Lineage and Morphological Diversification in a Hyperdiverse Freshwater Fish Radiation (Teleostei: Characiformes) AN ABSTRACT OF THE DISSERTATION OF Michael D. Burns for the degree of Doctor of Philosophy in Fisheries Science presented on April 17, 2018. Title: Tempo and Mode of Lineage and Morphological Diversification in a Hyperdiverse Freshwater Fish Radiation (Teleostei: Characiformes) Abstract approved: ________________________________________________ Brian L. Sidlauskas Characiform fishes form one of the most diverse freshwater fish clades in the world. Comprising more than 2000 species and distributed primarily in South America and Africa, characiforms vary dramatically in their ecomorphology. However, the evolutionary processes responsible for the immense ecomorphological diversity remains unknown. Recently, a study postulated that the unparalleled ecomorphological diversification arose through an ancient adaptive radiation, as evidenced by the clear segregation of morphological traits, such as body shape, among different trophic and habitat groups. However, no formal macroevolutionary analyses have been conducted on the entire order of Characiformes and the mechanism responsible for the diversity remains unknown. Here, I conduct a macroevolutionary analysis of body shape diversification to determine if Characiformes evolved through an adaptive radiation. I estimated the first time-calibrated molecular phylogeny for the order Characiformes, assembled the first ever geometric morphometric body shape dataset, and compiled an exhaustive trophic ecology database. In my second chapter, I combined these datasets to test whether body shape adapted to shifts into different trophic guilds and to reconstruct body shape diversification in the Old and New World radiations. I found that body shape adaptation resulted in many non-repeated morphologies; lineages that shifted into the same trophic ecology evolved different morphotypes, except for convergent piscivores. Furthermore, we found that body shape diversification between the Old and New World radiations followed very different pathways, with the New World radiation occupying twice as much morphospace as their Old World counterparts. Both radiations exhibited higher morphological disparity than would be expected under Brownian motion, early in cladogenesis, matching expectations of an adaptive radiation. In my third chapter, I tested whether evolutionary modularity increased body shape diversification in the order. I found that characiform body shape was comprised of three independent modules that diversified at different times and rates while under different selective regimes. I postulate that the high evolutionary modularity plausibly explains why many body shapes evolved only once, when lineages evolved similar trophic ecologies across the radiation. The generality of the relationship between evolutionary modularity and increased morphological disparity has not been well studied in vertebrate lineages. More studies need to look at the role that evolutionary modularity and integration can have in shaping deterministic and contingent patterns of evolution across broad and restricted radiations of vertebrates. In my fourth chapter, I analyzed the rates of lineage and morphological diversification to determine whether Characiformes exhibited an early burst of speciation and morphological evolution as predicted by classical adaptive radiations. I found that the rate of speciation and evolution on the first morphological principal component were very high early in cladogenesis and quickly slowed down, following a pattern of adaptive radiation. However, the evolutionary simulations indicate that heavily pruning the tree overestimates the speciation rate early in cladogenesis, making the results consistent with a constant rates model. Higher taxon sampling is needed to fully understand whether the order exhibited the speciation patterns consistent with an adaptive radiation. My dissertation presents the first ever time-calibrated molecular phylogeny of Characiformes, the largest geometric morphometric dataset of Characiformes, and the most densely sampled clade-wide analysis of modularity in fishes. I found that characiform body shape likely radiated early in cladogenesis giving rise to many of the distinct morphologies that define the order. ©Copyright by Michael D. Burns April 17, 2018 All Rights Reserved Tempo and Mode of Lineage and Morphological Diversification in a Hyperdiverse Freshwater Fish Radiation (Teleostei: Characiformes) By Michael D. Burns A DISSERTATION submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Presented April 17, 2018 Commencement June 2018 Doctor of Philosophy dissertation of Michael D. Burns presented on April 17, 2018 APPROVED: Major Professor, representing Fisheries Science Head of the Department of Fisheries and Wildlife Dean of the Graduate School I understand that my dissertation will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my dissertation to any reader upon request. Michael D. Burns, Author ACKNOWLEDGEMENTS This dissertation would not have been possible without the help of many different people. First, I would like to thank my M.S. advisor, Kathleen Cole, for convincing me that Brian Sidlauskas would be an amazing PhD advisor. I want to thank Brian Sidlauskas for being everything Kassi said and more. Brian’s guidance has been instrumental in me becoming the researcher that I am today. His mentoring has shaped the way that I think, write, and teach; I am forever grateful for what he has helped me achieve. I also want to thank Brian for taking me to various meetings near and far and always allowing me to work on independent projects because the side hussle is my scientific muse. I want to thank the late Rich Vari for teaching a marine ichthyologist (me) all about tropical freshwater fishes. His patience and kindness were instrumental to the early success of my dissertation work. More importantly, I want to thank Rich for teaching me how to be a professional scientist by balancing work and life. Rich was a total scientific rockstar, but carried himself with extreme kindness, humbleness, and grace. His compassion was truly inspirational. Thank you for being you, Rich. The entire community misses you very much. I want to thank my committee for always having great input and helping me see the forest for the phylogenetic trees. I want to thank Vicki Tolar-Burton for helping me to love writing again. I lost it for awhile, but Vicki’s kindess and acceptance reignited my passion for written word. Thank you to all of my labmates, past and present, including Ben Frable, Kendra Hoekzema, Whitcomb Bronaugh, Casey Dillman, and Thaddaeus Buser. Kendra, thank you for teaching me how to be a disciplined reaearcher. Whit, thank you for being my sports outlet in the lab. Ben and Thaddaeus, thank you for always bringing the laughs to lab meeting and scientific conferences. Much of my scientific happiness has been forged in our late night chats at different meetings. I want to thank Peter Konstantinidis for super helpful discussions on fish morphology and evolution. Peter being hired by OSU was life changing for me. I want to thank Devin Bloom for being a secret (or not so secret?) role model of mine by showing me that someone like me can be successful in academia. I want to thank my parents for always believing in me, pushing me to expand my horizons, and always forcing me to find my own answers to the questions I asked. I believe that my mom and dad must have learned parenting under the late Socrates. They employed the Socratic Method of debate at every family dinner, and thus dinner served as my first committee meetings. I could not be more grateful for this because my scientific iron was forged in the fire of grilled burgers. Mom, I want to thank you for teaching me to be tough, you are the strongest person I have ever met and much of what I learned from you helped keep me sane during my PhD. Dad, I want to thank you for being my hero. Words cannot describe how much your kindness and love has shaped the person I am today. I hope in some small way my PhD fulfills your dream of being a scientist because I would not be one today without your endless passion for biology (even though you like birds more than fish now). I want to thank my brothers, Dan and Andrew, for always inspiring me. Dan, Andrew, from the day I was born, I have been chasing each of you, either on bikes or intelluctually. I might never catch you, but you will always help me reach higher than I ever could have on my own. I want to thank the Fregosi family for adopting me as their own during my PhD. Their love and acceptance lessened the blow of being away from my own family. I want to thank Selene for being everything. I really mean everything. Selene you are my emotional support, travel buddy, confidant, copy editor, sounding board, and best friend. None of this would have been possible without you helping me at every step. Thank you. I want to thank two amazing doggos, Piper “Fox” Fregosi and Murphy Jameson Burns. You borked, barked, and whined me into happiness everytime I was sad. Lastly, but definitely not leastly, I want to thank Brooks Burr, my undergraduate advisor. Brooks you took a chance on a 19-year-old who just loved sun, fishing and tropical fish aquaria. You taught me about science. You taught me about evolution. You taught me about ichthyology. You taught me all of this while never making me feel dumb, belittled, or beneath you. Your stories of growing up in the early 60’s in California, surfing breaks on a custom Dale Vezy longboard, made me realize that a scientist could be a regular person. You made me realize I could be a scientist. You were everything I needed in an advisor at that age and much of the passion you instilled in me then has kept me going now. I dedicate my dissertation to you Brooks because you saw my PhD as a reality while I was still a 19-year-old catching bass in Thompson Lake, dreaming I was on a tropical beach.
Recommended publications
  • Red Tail Barracuda (Acestrorhynchus Falcatus) Ecological Risk Screening Summary
    Red Tail Barracuda (Acestrorhynchus falcatus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, March 2014 Revised, January 2018 and June 2018 Web Version, 6/7/2018 Photo: S. Brosse. Licensed under Creative Commons (CC BY-NC). Available: http://www.fishbase.org/photos/PicturesSummary.php?StartRow=0&ID=23498&what=species& TotRec=2 (January 2018). 1 1 Native Range, and Status in the United States Native Range From Froese and Pauly (2017): “South America: Amazon and Orinoco River basins and rivers of Guyana, Suriname and French Guiana.” Status in the United States This species has not been reported as introduced or established in the United States. This species is in trade in the United States. For example: From Pet Zone Tropical Fish (2018): “Red Tail Barracuda […] Your Price: $29.99 […] Product Description Red Tail Barracuda (Acestrorhynchus falcatus)” Pet Zone Tropical Fish is based in San Diego, California. From Arizona Aquatic Gardens (2018): “Yellow Tail Barracuda Acestrorhynchus falcatus List: $129.00 - $149.00 $68.00 – $88.00” Arizona Aquatic Gardens is based in Tucson, Arizona. Means of Introductions in the United States This species has not been reported as introduced or established in the United States. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2018): Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Osteichthyes Class Actinopterygii 2 Subclass Neopterygii Infraclass Teleostei Superorder Ostariophysi
    [Show full text]
  • Growth and Ontogeny
    G rowth and ontogeny The inland water fishes of Africa G rowth is one of the most complex processes for an organism . On the metabolic level, part of the energy consumed will be devoted to increasing its weight, but the proportion of energy used to generate living matter depends on the age of the individuals, their physiological state, their environmental conditions, etc. Firs t stages of deve lopme nt Little is know n about the first stages of development in Af rican fishes. A review of literature shows th at data is only available for 18 of 74 ident ifie d fam ilies (Carnbrav & Teugels. 1988). ONTOGENY AND MAIN STAGES OF DEVELOPMENT Ontogeny is the process of differentiation • the juvenile period begins w hen the fins of the diff erent stages of development are we ll-diffe rentiated and w hen all temporary in the life of an organism. We usually distinguish organs are replaced by final organs. several periods in the life of a fish. This stage ends w ith the first maturation (BaIon, 1981, 1984 and 1986): of gametes. This is usually a period of rapid • the embryonic period wh ich begins w ith growth sometimes characterized by a specific fertilization and is characterized by exclusively colouration; endogenous nutrition from the egg yolk; • the adult period begins w ith the first • the larval period w hich begins with maturation of gametes. the progressive but rapid transition from It is characterized by a decrease in somatic an endogenous food supply to exogenous grow th rate; feeding. This period is characterized by • finally, there is sometimes a period the presence of tem porary larval organisms; of senescence.
    [Show full text]
  • Relatório Simplificado 05 - Programa De Monitoramento Da Ictiofauna, Ictioplâncton E Invertebrados Aquáticos
    UHE FERREIRA GOMES RELATÓRIO SIMPLIFICADO 05 - PROGRAMA DE MONITORAMENTO DA ICTIOFAUNA, ICTIOPLÂNCTON E INVERTEBRADOS AQUÁTICOS Ferreira Gomes/AP /MG - Outubro/2016 Azurit Engenharia Ltda. Ichthyology Consultoria Ambiental Ltda. Av. Carandaí, n° 288, sala 201, Funcionários. Rua Jaú, n° 288, Paraíso. Belo Horizonte/MG Belo Horizonte/MG Tel.: (31) 3227 5722 UHE FERREIRA GOMES RELATÓRIO SIMPLIFICADO 05 PROGRAMA DE MONITORAMENTO DA ICTIOFAUNA, ICTIOPLÂNCTON E INVERTEBRADOS AQUÁTICOS NA ÁREA DE INFLUÊNCIA DA UHE FERREIRA GOMES OUTUBRO DE 2016 Elaborado para: Ferreira Gomes Energia S.A. São Paulo - SP Elaborado por: Azurit Engenharia Ltda. e Ichthyology Consultoria Ambiental Ltda. Belo Horizonte - MG SUMÁRIO 1 APRESENTAÇÃO .......................................................................................................... 1 2 OBJETIVOS ................................................................................................................... 3 2.1 Objetivos Específicos .............................................................................................. 3 3 ASPECTOS METODOLÓGICOS ................................................................................... 4 3.1 Norteamento dos Trabalhos .................................................................................... 4 3.2 Área de Trabalho .................................................................................................... 4 3.3 Coleta de Peixes e Processamento do Material em Campo .................................... 5 3.4 Identificação Taxonômica
    [Show full text]
  • Ostariophysi: Characiformes: Anostomidae)
    Neotropical Ichthyology, 4(1):27-44, 2006 Copyright © 2006 Sociedade Brasileira de Ictiologia Revision of the South American freshwater fish genus Laemolyta Cope, 1872 (Ostariophysi: Characiformes: Anostomidae) Kelly Cristina Mautari and Naércio Aquino Menezes The anostomid genus Laemolyta Cope, 1872, is redefined.Various morphological, especially osteological characters in addi- tion to the commonly utilized features of dentition proved useful for its characterization. A taxonomic revision of all species was made using meristics, morphometrics and color pattern. Five species are recognized: Laemolyta fernandezi Myers, 1950, from the río Orinoco (Venezuela) and the sub-basins Tocantins/Araguaia and Xingu, L. orinocensis (Steindachner, 1879), restricted to the río Orinoco, L. garmani (Borodin, 1931) and L. proxima (Garman, 1890), from the Amazon basin with the latter also occurring in the Essequibo River (Guiana), and L. taeniata (Kner, 1859), from the Amazon and Orinoco basins. Laemolyta garmani macra is considered a synonym of L. garmani, L. petiti a synonym of L. fernandezi, and L. nitens and L. varia synonyms of L. proxima. Lectotypes are designated herein for L. orinocencis and L. taeniata. O gênero Laemolyta Cope, 1872 da família Anostomidae é redefinido e além das características da dentição usualmente utilizadas, outros caracteres morfológicos, principalmente osteológicos, também se revelaram úteis para sua conceituação. Foi feita a revisão taxonômica de todas as espécies utilizando-se dados morfométricos, merísticos e padrão de colorido. Cinco espécies são reconhecidas: Laemolyta fernandezi Myers, 1950 do rio Orinoco (Venezuela) e rios Tocantins/Araguaia e Xingu, Laemolyta orinocensis (Steindachner, 1879) restrita ao rio Orenoco, L. garmani (Borodin, 1931) e Laemolyta proxima (Garman, 1890) da bacia Amazônica, esta última ocorrendo também no rio Essequibo (Guianas) e Laemolyta taeniata (Kner, 1859) da bacia Amazônica e rio Orenoco.
    [Show full text]
  • Fish Diversity, Community Structure, Feeding Ecology, and Fisheries of Lower Omo River and the Ethiopian Part of Lake Turkana, East Africa
    Fish Diversity, Community Structure, Feeding Ecology, and Fisheries of Lower Omo River and the Ethiopian Part of Lake Turkana, East Africa Mulugeta Wakjira Addis Ababa University June 2016 Cover photos: Lower Omo River at Omorate town about 50 km upstream of the delta (upper photo); Lake Turkana from Ethiopian side (lower photo). © Mulugeta Wakjira and Abebe Getahun Fish diversity, Community structure, Feeding ecology, and Fisheries of lower Omo River and the Ethiopian part of Lake Turkana, East Africa Mulugeta Wakjira A Thesis Submitted to the Department of Zoological Sciences, Addis Ababa University, Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biology (Fisheries and Aquatic Sciences) June 2016 ADDIS ABABA UNIVERSITY SCHOOL OF GRADUATE PROGRAM This is to certify that the thesis prepared by Mulugeta Wakjira entitled, "Fish Diversity, Community Structure, Feeding Ecology, and Fisheries of lower Omo River and the Ethiopian part of Lake Turkana, East Africa", and submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology (Fisheries and Aquatic Science) complies with the regulations of the university and meets the accepted standards with respect to originality and quality. Signed by the Examining Committee Examiner (external): Dr. Leo Nagelkerke Signature ____________ Date_________ Examiner (internal): Dr. Elias Dadebo Signature ____________ Date_________ Advisor: Dr. Abebe Getahun Signature ____________ Date__________ ____________________________________________________________ Chair of Department or Graduate Program Coordinator Abstract Ethiopia has a freshwater system in nine major drainage basins which fall into four ichthyofaunal provinces and one subprovince. Omo-Turkana Basin, spanning considerable geographic area in southwestern Ethiopia and northern Kenya, essentially consists of Omo River (also known as Omo-Gibe) and Lake Turkana.
    [Show full text]
  • Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 Version Available for Download From
    Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 14, 3rd edition). A 4th edition of the Handbook is in preparation and will be available in 2009. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY. DD MM YY Beatriz de Aquino Ribeiro - Bióloga - Analista Ambiental / [email protected], (95) Designation date Site Reference Number 99136-0940. Antonio Lisboa - Geógrafo - MSc. Biogeografia - Analista Ambiental / [email protected], (95) 99137-1192. Instituto Chico Mendes de Conservação da Biodiversidade - ICMBio Rua Alfredo Cruz, 283, Centro, Boa Vista -RR. CEP: 69.301-140 2.
    [Show full text]
  • Review of Freshwater Fish
    CMS Distribution: General CONVENTION ON MIGRATORY UNEP/CMS/Inf.10.33 1 November 2011 SPECIES Original: English TENTH MEETING OF THE CONFERENCE OF THE PARTIES Bergen, 20-25 November 2011 Agenda Item 19 REVIEW OF FRESHWATER FISH (Prepared by Dr. Zeb Hogan, COP Appointed Councillor for Fish) Pursuant to the Strategic Plan 2006-2011 mandating a review of the conservation status for Appendix I and II species at regular intervals, the 15 th Meeting of the Scientific Council (Rome, 2008) tasked the COP Appointed Councillor for Fish, Mr. Zeb Hogan, with preparing a report on the conservation status of CMS-listed freshwater fish. The report, which reviews available population assessments and provides guidance for including further freshwater fish on the CMS Appendices, is presented in this Information Document in the original form in which it was delivered to the Secretariat. Preliminary results were discussed at the 16 th Meeting of the Scientific Council (Bonn, 2010). An executive summary is provided as document UNEP/CMS/Conf.10.31 and a Resolution as document UNEP/CMS/Resolution 10.12. For reasons of economy, documents are printed in a limited number, and will not be distributed at the meeting. Delegates are kindly requested to bring their copy to the meeting and not to request additional copies. Review of Migratory Freshwater Fish Prepared by Dr. Zeb Hogan, CMS Scientific Councilor for Fish on behalf of the CMS Secretariat 1 Table of Contents Acknowledgements .................................................................................................................................3
    [Show full text]
  • A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname
    Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname Editors: Leeanne E. Alonso and Trond H. Larsen 67 CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed RAP (Grensgebergte and Kasikasima) of Southeastern Suriname Bulletin of Biological Assessment 67 Editors: Leeanne E. Alonso and Trond H. Larsen CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION The RAP Bulletin of Biological Assessment is published by: Conservation International 2011 Crystal Drive, Suite 500 Arlington, VA USA 22202 Tel : +1 703-341-2400 www.conservation.org Cover photos: The RAP team surveyed the Grensgebergte Mountains and Upper Palumeu Watershed, as well as the Middle Palumeu River and Kasikasima Mountains visible here. Freshwater resources originating here are vital for all of Suriname. (T. Larsen) Glass frogs (Hyalinobatrachium cf. taylori) lay their
    [Show full text]
  • APORTACION5.Pdf
    Ⓒ del autor: Domingo Lloris Ⓒ mayo 2007, Generalitat de Catalunya Departament d'Agricultura, Alimentació i Acció Rural, per aquesta primera edició Diseño y producción: Dsignum, estudi gràfic, s.l. Coordinación: Lourdes Porta ISBN: Depósito legal: B-16457-2007 Foto página anterior: Reconstrucción de las mandíbulas de un Megalodonte (Carcharocles megalodon) GLOSARIO ILUSTRADO DE ICTIOLOGÍA PARA EL MUNDO HISPANOHABLANTE Acuariología, Acuarismo, Acuicultura, Anatomía, Autoecología, Biocenología, Biodiver- sidad, Biogeografía, Biología, Biología evolutiva, Biología conservativa, Biología mole- cular, Biología pesquera, Biometría, Biotecnología, Botánica marina, Caza submarina, Clasificación, Climatología, Comercialización, Coro logía, Cromatismo, Ecología, Ecolo- gía trófica, Embriología, Endocri nología, Epizootiología, Estadística, Fenología, Filoge- nia, Física, Fisiología, Genética, Genómica, Geografía, Geología, Gestión ambiental, Hematología, Histolo gía, Ictiología, Ictionimia, Merística, Meteorología, Morfología, Navegación, Nomen clatura, Oceanografía, Organología, Paleontología, Patología, Pesca comercial, Pesca recreativa, Piscicultura, Química, Reproducción, Siste mática, Taxono- mía, Técnicas pesqueras, Teoría del muestreo, Trofismo, Zooar queología, Zoología. D. Lloris Doctor en Ciencias Biológicas Ictiólogo del Instituto de Ciencias del Mar (CSIC) Barcelona PRÓLOGO En mi ya lejana época universitaria se estudiaba mediante apuntes recogidos en las aulas y, más tarde, según el interés transmitido por el profesor y la avidez de conocimiento del alumno, se ampliaban con extractos procedentes de diversos libros de consulta. Así descubrí que, mientras en algunas disciplinas resultaba fácil encontrar obras en una lengua autóctona o traducida, en otras brillaban por su ausen- cia. He de admitir que el hecho me impresionó, pues ponía al descubierto toda una serie de oscuras caren- cias que marcaron un propósito a seguir en la disciplina que me ha ocupado durante treinta años: la ictiología.
    [Show full text]
  • Trophic Ecology of Frugivorous Fishes in Floodplain Forests Of
    TROPHIC ECOLOGY OF FRUGIVOROUS FISHES IN FLOODPLAIN FORESTS OF THE COLOMBIAN AMAZON A Dissertation by SANDRA BIBIANA CORREA VALENCIA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2012 Major Subject: Wildlife and Fisheries Sciences Trophic Ecology of Frugivorous Fishes in Floodplain Forests of the Colombian Amazon Copyright August 2012 Sandra Bibiana Correa Valencia TROPHIC ECOLOGY OF FRUGIVOROUS FISHES IN FLOODPLAIN FORESTS OF THE COLOMBIAN AMAZON A Dissertation by SANDRA BIBIANA CORREA VALENCIA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Kirk Winemiller Committee Members, Spence Behmer Stephen Davis Derbert Gatlin Thomas Olszewski Head of Department, John Carey (Iterim) August 2012 Major Subject: Wildlife and Fisheries Sciences iii ABSTRACT Trophic Ecology of Frugivorous Fishes in Floodplain Forests of the Colombian Amazon. (August 2012) Sandra Bibiana Correa Valencia, B.S., Universidad del Valle; M.S., University of Florida Chair of Advisory Committee: Dr. Kirk Winemiller Diverse fish species consume fruits and seeds in the Neotropics, in particular in the lowland reaches of large rivers, such as the Amazon, Orinoco, and Paraná in South America. Floodplains of the Amazon River and its lowland tributaries are characterized by marked hydrological seasonality and diverse assemblages of frugivorous fishes, including closely related and morphologically similar species of several characiform families. Here, I investigated whether or not these fishes are capable of detecting fluctuations in food availability and if they are, how they adjust their feeding strategies.
    [Show full text]
  • Boletim 90(2)
    SOCIEDADE BRASILEIRA DE BOLETIM ICTIOLOGIA ISSNISSN 1808-1436 1808-1436 Utilidade Pública Municipal: Decreto Municipal 36.331, São Paulo Rio de Janeiro Nº Utilidade Pública Estadual: Decreto Estadual 42.825, São Paulo MARÇO - 2008 90 Utilidade PúblicaFederal: Portaria Federal 373 de 12 de maio de 2000 Editorial empre que inicio a redação de um novo editorial do MeioAmbiente através da página: Boletim Informativo, percebo que nossa Sociedade está http://www.planalto.gov.br/ccivil_03/consulta_publica/consulta_biologica.htm Scada vez mais forte e atuante. Nesta edição, você Recomendamos que os associados manifestem seu apoio ao encontrará notícias da sobre a Assembléia Geral Extraordinária da documento do Fórum de Sociedades Científicas. SBI, realizada em 20 de fevereiro de 2008 durante o XXVII Noutra iniciativa, relacionada com sua missão estatutária de Congresso Brasileiro de Zoologia, em Pinhais, PR. A Assembléia zelar pela conservação e utilização da fauna de peixes do Brasil, a foi um grande sucesso, demonstrando que a SBI tem condições de SBI apoiou a elaboração de um manifesto técnico sobre liberação realizar reuniões nacionais mesmo fora dos já tradicionais da pesca de surubins e dourado integrantes da fauna de espécies Encontros Brasileiros de Ictiologia. Esta maturidade e capacidade ameaçadas do Estado do Rio Grande do Sul. O texto aprovado de organização deve ser motivo de orgulho de todos os pelo Conselho Deliberativo está sendo divulgado neste número do associados. Também foi um grande sucesso o Simpósio sobre Boletim e também está disponível no Portal da SBI na Internet. Biogeografia e Sistemática de Peixes Neotropicais organizado Por fim, gostaria de destacar o fato de que Sociedade Brasileira pela SBI e coordenado pelo associado Francisco Langeani Neto, de Ictiologia está completando 25 anos de existência! Deve-se no âmbito do CBZ, e os trabalhos de ictiologia tiveram um novo destacar, também, que este é o Boletim da SBI de número 90 e recorde no referido congresso.
    [Show full text]
  • Trophic Ecology of the Ichthyofauna of a Stretch of The
    Acta Limnologica Brasiliensia, 2013, vol. 25, no. 1, p. 54-67 http://dx.doi.org/10.1590/S2179-975X2013000100007 Trophic ecology of the ichthyofauna of a stretch of the Urucu River (Coari, Amazonas, Brazil) Ecologia trófica da ictiofauna de um trecho do rio Urucu (Coari, Amazonas, Brasil) Igor David da Costa1 and Carlos Edwar de Carvalho Freitas2 1Departamento de Engenharia de Pesca e Aquicultura – DEPA, Fundação Universidade Federal de Rondônia – UNIR, Rua da Paz, 4376, CEP 76916-000, Presidente Médici, RO, Brazil e-mail: [email protected] 2Departmento de Ciências Pesqueiras, Universidade Federal do Amazonas – UFAM, Av. Gen. Rodrigo Otávio, 3000, CEP 69077-000, Manaus, AM, Brazil e-mail: [email protected] Abstract: Introduction: The floodplains of the large Amazonian rivers are very productive as a result of seasonal fluctuations of water levels. This favors the fishes as they are provided with a wide range of habitats and food resources; Aim: In this study, we identified the trophic structure of fish assemblages in the upper river Urucu area (State of Amazonas – Brazil), observing seasonal changes determined by the hydrological cycle; Methods: Samples were collected with the aid of gillnets, during the flood season (April/2008) and the dry season (August/2008) in areas upstream and downstream of ports of the Urucu river within the municipality of Coari, Amazonas, Brazil; Results: 902 individuals of seven orders, 23 families and 82 species were collected. Fishes were more abundant in the dry season than in the flood season, and the piscivores and carnivores (Serrasalumus rhombeus and Osteoglossum bicirrhosum) were the most significant trophic categories in the dry season whereas piscivores and insectivores (Serrasalumus rhombeus, Bryconops alburnoides and Dianema urostriatum) were more abundant in the flood season.
    [Show full text]