Keauhou Bird Conservation Center
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pu'u Wa'awa'a Biological Assessment
PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9 -
Aspects of House Finch Breeding Biology in Hawaii
ASPECTS OF HOUSE FINCH BREEDING BIOLOGY IN HAWAII CHARLES VAN RIPER III Bent (1968) summarized information avail- Puu Laau, is the last remaining major mamane-naio able on the breeding biology of the House forest in Hawaii. Finch ( Curpodacus mexicanus). Although The stippled areas of figure 1 represent a broad spectrum of the forest types on the island of Hawaii; this species has been studied quite extensively included are native, introduced, and mixed stands of in its North American home range, little atten- vegetation. Areas 2, 3, and 5 are dry forest regions tion has been paid to it in Hawaii. Grinnell with annual rainfall of 76 cm or less; Puu Laau (2) (1911) reported on different color patterns of has mean annual rainfall of 50 cm, Puu Waawaa (3) 64 cm, and Puu Lehua (5) has 76 cm. The Kohala the House Finch in Hawaii, and Richardson Mountain complex ( 1) has a mean annual rainfall of and Bowles (1964) mentioned that on 23 June 229 cm, Puu 00 (4) has 483 cm, and the Kulani- 1960 they found a nestling that had fallen from Mauna Loa complex (6) has 317 cm. its nest on Kauai. On Mauna Kea, Berger Birds were mist-netted, color-banded, and released (1972) found House Finch nests with eggs from 1971 through 1973. Nest and tree heights were taken with a clinometer when it was impractical to as early as 6 April (1968) and as late as 17 use a tape measure. Nests and eggs were measured July (1967). Eleven nests were built on hori- with calipers and weighed on a sensitive spring bal- zontal branches of mamane (Sophora chryso- ance. -
Department of the Interior Fish and Wildlife Service
Thursday, February 27, 2003 Part II Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Final Designation or Nondesignation of Critical Habitat for 95 Plant Species From the Islands of Kauai and Niihau, HI; Final Rule VerDate Jan<31>2003 13:12 Feb 26, 2003 Jkt 200001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\27FER2.SGM 27FER2 9116 Federal Register / Vol. 68, No. 39 / Thursday, February 27, 2003 / Rules and Regulations DEPARTMENT OF THE INTERIOR units designated for the 83 species. This FOR FURTHER INFORMATION CONTACT: Paul critical habitat designation requires the Henson, Field Supervisor, Pacific Fish and Wildlife Service Service to consult under section 7 of the Islands Office at the above address Act with regard to actions carried out, (telephone 808/541–3441; facsimile 50 CFR Part 17 funded, or authorized by a Federal 808/541–3470). agency. Section 4 of the Act requires us SUPPLEMENTARY INFORMATION: RIN 1018–AG71 to consider economic and other relevant impacts when specifying any particular Background Endangered and Threatened Wildlife area as critical habitat. This rule also and Plants; Final Designation or In the Lists of Endangered and determines that designating critical Nondesignation of Critical Habitat for Threatened Plants (50 CFR 17.12), there habitat would not be prudent for seven 95 Plant Species From the Islands of are 95 plant species that, at the time of species. We solicited data and Kauai and Niihau, HI listing, were reported from the islands comments from the public on all aspects of Kauai and/or Niihau (Table 1). -
Downloadable Data Collection
Smetzer et al. Movement Ecology (2021) 9:36 https://doi.org/10.1186/s40462-021-00275-5 RESEARCH Open Access Individual and seasonal variation in the movement behavior of two tropical nectarivorous birds Jennifer R. Smetzer1* , Kristina L. Paxton1 and Eben H. Paxton2 Abstract Background: Movement of animals directly affects individual fitness, yet fine spatial and temporal resolution movement behavior has been studied in relatively few small species, particularly in the tropics. Nectarivorous Hawaiian honeycreepers are believed to be highly mobile throughout the year, but their fine-scale movement patterns remain unknown. The movement behavior of these crucial pollinators has important implications for forest ecology, and for mortality from avian malaria (Plasmodium relictum), an introduced disease that does not occur in high-elevation forests where Hawaiian honeycreepers primarily breed. Methods: We used an automated radio telemetry network to track the movement of two Hawaiian honeycreeper species, the ʻapapane (Himatione sanguinea) and ʻiʻiwi (Drepanis coccinea). We collected high temporal and spatial resolution data across the annual cycle. We identified movement strategies using a multivariate analysis of movement metrics and assessed seasonal changes in movement behavior. Results: Both species exhibited multiple movement strategies including sedentary, central place foraging, commuting, and nomadism , and these movement strategies occurred simultaneously across the population. We observed a high degree of intraspecific variability at the individual and population level. The timing of the movement strategies corresponded well with regional bloom patterns of ‘ōhi‘a(Metrosideros polymorpha) the primary nectar source for the focal species. Birds made long-distance flights, including multi-day forays outside the tracking array, but exhibited a high degree of fidelity to a core use area, even in the non-breeding period. -
Twenty-Three of 69 Since Discovery of 17 SOME LIMITING
17 SOME LIMITING FACTORS AND RESEARCH NEEDS OF ENDANGERED HAWAIIAN FOREST BIRDS Winston E. Banko U. S. Fish & Wildlife Service Hawaii Volcanoes National Park Hawaii 96718 It is well known that Hawaiian birds are particularly sus ceptible to depopulation and extinction. Twenty-three of 69 endemic species or races have disappeared since discovery of Hawai'i by Europeans 200 years ago. Except for Warner (1968) and Atkinson (1977), only super ficial inquiries have been made into historical aspects and underlying factors of the Hawaiian forest bird decline. After several years of field and laboratory investigation, Warner explained th~ rlisappearance of forest birds as being caused primarily by disease. Atkinson advanced a theory based on historical evidence that arboreal predation by rats was a leading factor. The object of my long-term historical investigation is to document and compare the salient facts on the geography and chro nology of Hawaiian bird loss, species by species; to chronicle what is known about all factors of depopulation~-predation, disease, habitat alteration, and food competition; and to draw such conclusions as seem warranted. At the First Conference in Natural Sciences two years ago, Banko and Banko (1976) reported on the potential significance of food depletion in the decline of Hawaiian forest birds. The role played by the Big-headed ant (Pheidole megacephala) in destroying much of the endemic insect fauna at elevations generally less than 3000 feet (914 m) before 1890 was sketched at that time. (The term "insect" will be used hereafter as including other arthropods as well). I now wish to elaborate on the possible impact of foreign parasitic flies and .wasps in depleting native insect foods impor tant to the small Hawaiian forest birds at higher elevation~. -
Non-Native Trees Provide Habitat for Native Hawaiian Forest Birds
NON-NATIVE TREES PROVIDE HABITAT FOR NATIVE HAWAIIAN FOREST BIRDS By Peter J. Motyka A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of Master of Science In Biology Northern Arizona University December 2016 Approved: Jeffrey T. Foster, Ph.D., Co-chair Tad C. Theimer, Ph. D., Co-chair Carol L. Chambers, Ph. D. ABSTRACT NON-NATIVE TREES PROVIDE HABITAT FOR NATIVE HAWAIIAN FOREST BIRDS PETER J. MOTYKA On the Hawaiian island of Maui, native forest birds occupy an area dominated by non- native plants that offers refuge from climate-limited diseases that threaten the birds’ persistence. This study documented the status of the bird populations and their ecology in this novel habitat. Using point-transect distance sampling, I surveyed for birds over five periods in 2013-2014 at 123 stations across the 20 km² Kula Forest Reserve (KFR). I documented abundance and densities for four native bird species: Maui ‘alauahio (Paroreomyza montana), ʻiʻiwi (Drepanis coccinea), ʻapapane (Himatione sanguinea), and Hawaiʻi ʻamakihi, (Chlorodrepanis virens), and three introduced bird species: Japanese white-eye (Zosterops japonicas), red-billed leiothrix (Leiothrix lutea), and house finch (Haemorhous mexicanus). I found that 1) native forest birds were as abundant as non-natives, 2) densities of native forest birds in the KFR were similar to those found in native forests, 3) native forest birds showed varying dependence on the structure of the habitats, with ʻiʻiwi and ‘alauahio densities 20 and 30 times greater in forest than in scrub, 4) Maui ‘alauahio foraged most often in non-native cape wattle, eucalyptus, and tropical ash, and nested most often in non-native Monterey cypress, Monterey pine, and eucalyptus. -
A Landscape-Based Assessment of Climate Change Vulnerability for All Native Hawaiian Plants
Technical Report HCSU-044 A LANDscape-bASED ASSESSMENT OF CLIMatE CHANGE VULNEraBILITY FOR ALL NatIVE HAWAIIAN PLANts Lucas Fortini1,2, Jonathan Price3, James Jacobi2, Adam Vorsino4, Jeff Burgett1,4, Kevin Brinck5, Fred Amidon4, Steve Miller4, Sam `Ohukani`ohi`a Gon III6, Gregory Koob7, and Eben Paxton2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaii National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawai‘i at Hilo, Hilo, HI 96720 4 U.S. Fish & Wildlife Service —Ecological Services, Division of Climate Change and Strategic Habitat Management, Honolulu, HI 96850 5 Hawai‘i Cooperative Studies Unit, Pacific Island Ecosystems Research Center, Hawai‘i National Park, HI 96718 6 The Nature Conservancy, Hawai‘i Chapter, Honolulu, HI 96817 7 USDA Natural Resources Conservation Service, Hawaii/Pacific Islands Area State Office, Honolulu, HI 96850 Hawai‘i Cooperative Studies Unit University of Hawai‘i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 November 2013 This product was prepared under Cooperative Agreement CAG09AC00070 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey. Technical Report HCSU-044 A LANDSCAPE-BASED ASSESSMENT OF CLIMATE CHANGE VULNERABILITY FOR ALL NATIVE HAWAIIAN PLANTS LUCAS FORTINI1,2, JONATHAN PRICE3, JAMES JACOBI2, ADAM VORSINO4, JEFF BURGETT1,4, KEVIN BRINCK5, FRED AMIDON4, STEVE MILLER4, SAM ʽOHUKANIʽOHIʽA GON III 6, GREGORY KOOB7, AND EBEN PAXTON2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaiʽi National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawaiʽi at Hilo, Hilo, HI 96720 4 U. -
2019 Kiwikiu Conservation Translocation Report
2019 Kiwikiu Conservation Translocation Report Christopher C. Warren1, Laura K. Berthold1, Hanna L. Mounce1, Peter Luscomb2, Bryce Masuda3, Lainie Berry4 2020 Maui Forest Bird Recovery Project1 Pacific Bird Conservation2 San Diego Zoo Global3 State of Hawaiʻi, Department of Land and Natural Resources, Division of Forestry and Wildlife4 Suggested citation – Warren, C.C., L.K. Berthold, H.L. Mounce, P. Luscomb, B. Masuda. L. Berry. 2020. Kiwikiu Translocation Report 2019. Internal Report. Pages 1–101. Cover photo by Bret Mossman. Translocated female, WILD11, in Kahikinui Hawaiian Homelands. Photo credits – Photographs were supplied by Maui Forest Bird Recovery Project (MFBRP) staff, members of the press, and volunteers. Photographer credit is given for those not taken by MFBRP staff. The 2019 kiwikiu translocation was a joint operation conducted by member organizations of the Maui Forest Bird Working Group. Organizations that conducted the translocation included American Bird Conservancy, Maui Forest Bird Recovery Project, National Park Service, Pacific Bird Conservation, San Diego Zoo Global, State of Hawaiʻi Department of Land and Natural Resources – Division of Forestry and Wildlife, The Nature Conservancy of Hawai‘i, U.S. Fish & Wildlife Service, and U.S. Geological Survey. In addition to representatives of these organizations, six community volunteers aided in these efforts. This does not include the dozens of volunteers and other organizations involved in planning for the translocation and preparing the release site through restoration and other activities. These efforts were greatly supported by the skilled pilots at Windward Aviation. i Table of Contents 1. Summary of 2019 Reintroduction ......................................................................................................... 1 2. Background of the Reintroduction ....................................................................................................... 1 2.1. -
Apapane (Himatione Sanguinea)
The Birds of North America, No. 296, 1997 STEVEN G. FANCY AND C. JOHN RALPH 'Apapane Himatione sanguinea he 'Apapane is the most abundant species of Hawaiian honeycreeper and is perhaps best known for its wide- ranging flights in search of localized blooms of ō'hi'a (Metrosideros polymorpha) flowers, its primary food source. 'Apapane are common in mesic and wet forests above 1,000 m elevation on the islands of Hawai'i, Maui, and Kaua'i; locally common at higher elevations on O'ahu; and rare or absent on Lāna'i and Moloka'i. density may exceed 3,000 birds/km2 The 'Apapane and the 'I'iwi (Vestiaria at times of 'ōhi'a flowering, among coccinea) are the only two species of Hawaiian the highest for a noncolonial honeycreeper in which the same subspecies species. Birds in breeding condition occurs on more than one island, although may be found in any month of the historically this is also true of the now very rare year, but peak breeding occurs 'Ō'ū (Psittirostra psittacea). The highest densities February through June. Pairs of 'Apapane are found in forests dominated by remain together during the breeding 'ōhi'a and above the distribution of mosquitoes, season and defend a small area which transmit avian malaria and avian pox to around the nest, but most 'Apapane native birds. The widespread movements of the 'Apapane in response to the seasonal and patchy distribution of ' ōhi'a The flowering have important implications for disease Birds of transmission, since the North 'Apapane is a primary carrier of avian malaria and America avian pox in Hawai'i. -
Puaiohi Or Small Kaua‘I Thrush (Myadestes Palmeri)
Hawaiian Bird Conservation Action Plan Focal Species: Puaiohi or Small Kaua‘i Thrush (Myadestes palmeri) Synopsis: The Puaiohi is endemic to Kaua’i and is restricted to remote areas of the rugged ‘Alaka’i Plateau. It nests in hollows or on ledges of fern-covered cliffs along narrow streams. The species may always have been rare, and availability of suitable nest sites may limit the range and population size. Habitat management to prevent degradation by non-native plants and feral ungulates is a key to long-term conservation. Artificial nest structures are being investigated as a way of increasing nest site availability and decreasing nest predation. Puaiohi at nest. Photo Eric VanderWerf Typical Puaiohi nesting habitat. Photo KFBRP Geographic region: Kaua‘i, Hawaiian Islands Group: Forest Birds Federal Status: Endangered State status: Endangered IUCN status: Critically Endangered Conservation score, rank: 18/20, At-risk Watch List 2007 Score: RED Juvenile Puaiohi. Photo Eric VanderWerf Climate Change Vulnerability: High Population Size and Trend: The Puaiohi population was estimated to be about 500 birds in 2006 (range 200-1,000; Kaua’i Forest Bird Recovery Project [KFBRP] unpubl. data). The habitat used by Puaiohi is difficult to survey and calculating an accurate population estimate has been challenging. The population trend appears to be stable. In 2011, a new survey method (occupancy modeling; Mackenzie et al. 2006) was field tested and it is hoped that this method will yield a more precise population estimate and provide a more robust method for monitoring trends. Range: The breeding population is restricted to an area of < 20 km2 on the ‘Alaka’i Plateau, and 75% of the population is estimated to occur in just 10 km2 (KFBRP unpubl. -
8 Commercial Forestry Harvesting of Planted Koa
Acacia koa in Hawai‘i: Facing the Future Proceedings of the 2016 Symposium, Hilo, HI: www.TropHTIRC.org, www.ctahr.hawaii.edu/forestry COMMERCIAL FORESTRY HARVESTING OF PLANTED KOA: A CASE STUDY FROM HALEAKALA RANCH Steve McMinn (Pacific Rim Tonewoods) Paniolo Tonewoods is a joint venture between Taylor Guitars and Pacific Rim Tonewoods, and was formed in 2015 specifically to supply koa guitar components to Taylor and other instrument companies. It is our desire to promote, encourage and invest in koa forestry, and it is our intention to build a small, efficient milling operation in Hawai‘i in the coming years. Haleakala Ranch, (“HR”), on Maui, has two stands of Koa that were planted in 1985, in conjunction with “A Million Trees of Aloha”, a program started by Jean Ariyoshi, then Governor Ariysohi’s wife. The two stands, A and B, are of about 20 acres and 8 acres, (8 and 3 hectares), and are at 5000 feet and 6000 feet of elevation respectively (1500 and 1800 m) (figure 1 and 2). Figure 1: Stand A from below. 8 Acacia koa in Hawai‘i: Facing the Future Proceedings of the 2016 Symposium, Hilo, HI: www.TropHTIRC.org, www.ctahr.hawaii.edu/forestry Figure 2: Plaque commemorating the planting of the Haleakala Ranch stands. Both stands are said to have been planted from seedlings grown from Hawai‘i Island seed stock. In both stands, the canopies were closed, and both had a floor that was covered chiefly with leaf litter, although A had some gorse intrusion. B is long and narrow; the trees are more widely spaced. -
Conservation of Hawaiian Lobelioids — in Vitro and Molecular Studies
CONSERVATION OF HAWAIIAN LOBELIOIDS — IN VITRO AND MOLECULAR STUDIES A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAW ATI IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN HORTICULTURE MAY 1996 By Gregory A. Koob Dissertation Committee: Yoneo Sagawa, Co-Chairperson Sterling Keeley, Co-Chairperson Adelheid Kuehnle Fred Rauch Clifford Smith We certify that we have read this dissertation and that, in our opinion, it is satisfactory in scope and quality as a dissertation for the degree of Doctor of Philosophy in Horticulture. DISSERTATION COMMITTEE I (^Chairperson^ !^-Chairperson AkjJU^jA ■ UilU 11 © Copyright 1996 by Gregory A. Koob All Rights Reserved 111 Acknowledgments I would like to thank the staff and volunteers at the Harold L. Lyon Arboretum and the Lyon Arboretum Association for their support of the in vitro research. The staff of the National Tropical Botanical Garden, the State of Hawai'i Division of Forestry and Wildlife, the Nature Conservancy of Hawai'i, the U.S. Fish and Wildlife Service, John Obata, and Rick Palmer are appreciated for supplying plant material. Partial funding was supplied by the U.S. Fish and Wildlife Service, the State of Hawai'i Division of Forestry and Wildlife, the Center for Plant Conservation, the University of Hawai'i Foundation, and Sigma Xi Grants-in-Aid of Research. Thank you to Dave Lorence, Kay Lynch, Loyal Mehrhoff, Carol Nakamura, John Obata, Rick Palmer, Joshlyn Sands, and Alvin Yoshinaga for information used in this report. Special thanks to Sterling Keeley for the use of her lab and supplies and support for the RAPDs work and to Yoneo Sagawa for his knowledgeable support of the in vitro research.