Aspects of House Finch Breeding Biology in Hawaii

Total Page:16

File Type:pdf, Size:1020Kb

Aspects of House Finch Breeding Biology in Hawaii ASPECTS OF HOUSE FINCH BREEDING BIOLOGY IN HAWAII CHARLES VAN RIPER III Bent (1968) summarized information avail- Puu Laau, is the last remaining major mamane-naio able on the breeding biology of the House forest in Hawaii. Finch ( Curpodacus mexicanus). Although The stippled areas of figure 1 represent a broad spectrum of the forest types on the island of Hawaii; this species has been studied quite extensively included are native, introduced, and mixed stands of in its North American home range, little atten- vegetation. Areas 2, 3, and 5 are dry forest regions tion has been paid to it in Hawaii. Grinnell with annual rainfall of 76 cm or less; Puu Laau (2) (1911) reported on different color patterns of has mean annual rainfall of 50 cm, Puu Waawaa (3) 64 cm, and Puu Lehua (5) has 76 cm. The Kohala the House Finch in Hawaii, and Richardson Mountain complex ( 1) has a mean annual rainfall of and Bowles (1964) mentioned that on 23 June 229 cm, Puu 00 (4) has 483 cm, and the Kulani- 1960 they found a nestling that had fallen from Mauna Loa complex (6) has 317 cm. its nest on Kauai. On Mauna Kea, Berger Birds were mist-netted, color-banded, and released (1972) found House Finch nests with eggs from 1971 through 1973. Nest and tree heights were taken with a clinometer when it was impractical to as early as 6 April (1968) and as late as 17 use a tape measure. Nests and eggs were measured July (1967). Eleven nests were built on hori- with calipers and weighed on a sensitive spring bal- zontal branches of mamane (Sophora chryso- ance. phylla) and two in naio (Myoporum sand- wicense) trees. Complete clutches of three COURTSHIP eggs were found in two nests, four eggs in During early spring, the large flocks of House five nests, and five eggs in one nest. The Finches on Hawaii disband, although not only other reference I have found to the breed- totally, and pairing ensues. I have often noted ing aspects of the House Finch in Hawaii is males courting females at this time of the year, that of Hirai (1974) who studied an urban an activity that continues until mid-summer. House Finch population in Honolulu from At 18:00 on 28 May 1973 at Puu Laau, a 1972 through 1974. pair of birds flew into the uppermost dead According to Caum (1933), the House branches of a mamane tree. The birds landed Finch was introduced to Hawaii prior to 1870, approximately 1 m apart with the female probably having escaped from captivity. It is higher up on an ascending horizontal branch. now established on all of the main Hawaiian The female turned and faced away from the islands. Berger (1972) wrote that “The Linnet male; he then started walking up the limb is common in cities and towns, in both wet with his tail erect and fully spread, wings and dry rural areas, and in the high ranch and lowered at his side, and breast outward, thus forest lands on Maui and Hawaii. It is un- making the head and neck assume a “ram- common in the depths of the near-virgin rod” position. As he walked he intermittently rain forests, but it is abundant in the mamani- bowed and gave short, high-pitched chirps. naio forests on Mauna Kea, as well as in partly Spaced between chirps were low trills. When cutover mixed ohia-koa forests.” he approached to within 20 cm of the female, The House Finch population in Hawaii has she turned and chased him down the branch. been isolated but, aside from the work of This sequence was repeated twice until, on the Grinnell ( 1911)) no one has looked at possible third approach, the female did not chase but genetic shifts in this insular population. I remained facing away from the male. After an undertook to determine if, in the past 100 interval of less than 1 min both birds flew into years, any changes have occurred in the breed- a grove of pines, presumably to roost for the ing habits of the House Finch in Hawaii. night. Courtship feeding of the female by the male STUDY AREA AND METHODS occurs frequently during incubation, but I have observed it only twice prior to egg laying. I conducted field work on the island of Hawaii during On Kohala Mountain, during the third day of the years 1970, 1971, and 1972; additional observa- tions were made in the summers of 1969 and 1973. nest construction, I observed an unbanded All of the major forested regions on Hawaii-the male feed a banded female. The second in- Kohala Mountain area, Mauna Kea, Mauna Loa, and stance happened on Mauna Kea (area 4), Hualalai (fig. 1 )-were visited. Most of my observa- tions were made in area 2 on the northwestern slope of when a male fed a female prior to (or on the Mauna Kea. This region, hereafter referred to as first day of) nest construction. w41 The Condor 78:224-229, 1976 HOUSE FINCH IN HAWAII 225 TABLE 2. Location of nests in trees at Puu Laau, Hawaii. Number in Tree species Terminal forks Lateral forks Branches hlamane 10 17 15 Naio 2 6 4 Akoko 0 4 0 found in akoko (Euphorbia olozualuana) and one in an aalii (Dodonaea viscosa) shrub. I have found six nests in introduced pine trees at Puu Laau. On Hualalai, House Finches use mamane, pukeawe (Styphelia tameiameiae) shrubs, ohia, and kolea (Myrsine Zanaiensis) trees. On Mauna Loa (area 5), along with the above mentioned, the sandalwood tree (Santalum ellipticurn) is a frequent nesting location; in area 6 the koa (Acacia koa) is also sometimes used. FIGURE 1. The island of Hawaii with stippled sites In the Kohala Mountain region I found 24 representing study areas. nests in introduced pine trees-mainly Norfolk Island pine ( Araucaria excelsa) -and iron- NESTS wood ( Casuarinu equisetifolia) along the edge of the forest. The birds prefer these trees pre- The House Finch uses almost any available sumably because pasture land of the Parker species of tree for a nesting site. In the Ranch surrounds the forest and contains a mul- forests on Hawaii a fork or an upright limb, in titude of food types. L. Omura (pers. comm.) the more open interior part of the tree, is the found 18 nests in this area during the 1973 preferred nesting location. The nests I found breeding season and all but one were in pine were situated in the branches of trees with trees. The House Finch is not common in the two exceptions; one on Hualalai, which was in deep forest of Kohala Mountain, where I found a hole of an ohia (Metrosideros polymorpha) only eight nests, none more than 450 m from trunk and one nest that was wedged in the the forest edge; all were built in ohia trees. bark of a dead mamane tree at Puu Laau (van Nest sites fell into three categories. Terminal Riper 1974). forks included branches forming the most dis- Mamane and naio make up over 95% of tant group of stems from the trunk in the top- the trees in the Puu Laau area (van Riper most 20% of the canopy surface area. This 1975), and nest tree selection by the House category comprised over 35% of‘ the potential Finch is influenced accordingly. Mamane, nesting locations. Lateral forks were defined found in a 2 : 1 ratio over naio, is the preferred as the end clusters of branches in the remain- nesting tree (table 1). Mamane offers birds ing canopy. Branches included any horizontal a denser canopy than naio. Four nests were or vertical limb within the canopy cover. House Finches preferred the open interior TABLE 1. Heights (in meters) of nests, nest trees, portions of a tree for nesting, as over 75% of and randomly selected mamane and naio trees at Puu the nests found in mamane and over 80% of Laau, Hawaii. those found in naio were placed either inside the canopy or in lateral forks (table 2). Nest N iVIeani- SD RX?&% height is influenced by the height of the nest Mamane tree (r = 0.47, P < ,005, fig. 2). The consider- Random trees 91 6.5 -I 2.6 2.7-11.9 able variance in nest height shows use of Nest trees 36 6.0 & 1.9 3.4-10.7 many places within a tree. Nests 43 4.7 -r- 1.6 2.3- 9.1 The three most aberrant points in figure 2 Naio were all unusual nesting situations for House Random trees 56 5.9 2 2.2 2.8-11.6 Finches. Nest b was the immense nest dis- Nest trees 12 7.0 2 2.0 3.7-10.1 cussed earlier that had been built between the Nests 12 5.0 -r- 2.2 1.5- 9.0 sloughing bark and trunk of a dead mamane. 226 CHARLES VAN RIPER III IO These roots were probably obtained from @Mamane plants that had been pulled out by rooting 0Naio feral pigs or grazing sheep. FAAkoko House Finches have been reported to use the same nest for a second brood in a year. Only once in over 100 nests have I observed this in the forests on Hawaii. On 16 May 1971 I found a nest at 2135 m elevation at Puu Laau that contained two nestlings and two eggs; subsequently, all four young fledged. I re- turned to collect the nest on 11 June and found four new eggs in the nest.
Recommended publications
  • Department of the Interior Fish and Wildlife Service
    Thursday, February 27, 2003 Part II Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Final Designation or Nondesignation of Critical Habitat for 95 Plant Species From the Islands of Kauai and Niihau, HI; Final Rule VerDate Jan<31>2003 13:12 Feb 26, 2003 Jkt 200001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\27FER2.SGM 27FER2 9116 Federal Register / Vol. 68, No. 39 / Thursday, February 27, 2003 / Rules and Regulations DEPARTMENT OF THE INTERIOR units designated for the 83 species. This FOR FURTHER INFORMATION CONTACT: Paul critical habitat designation requires the Henson, Field Supervisor, Pacific Fish and Wildlife Service Service to consult under section 7 of the Islands Office at the above address Act with regard to actions carried out, (telephone 808/541–3441; facsimile 50 CFR Part 17 funded, or authorized by a Federal 808/541–3470). agency. Section 4 of the Act requires us SUPPLEMENTARY INFORMATION: RIN 1018–AG71 to consider economic and other relevant impacts when specifying any particular Background Endangered and Threatened Wildlife area as critical habitat. This rule also and Plants; Final Designation or In the Lists of Endangered and determines that designating critical Nondesignation of Critical Habitat for Threatened Plants (50 CFR 17.12), there habitat would not be prudent for seven 95 Plant Species From the Islands of are 95 plant species that, at the time of species. We solicited data and Kauai and Niihau, HI listing, were reported from the islands comments from the public on all aspects of Kauai and/or Niihau (Table 1).
    [Show full text]
  • Downloadable Data Collection
    Smetzer et al. Movement Ecology (2021) 9:36 https://doi.org/10.1186/s40462-021-00275-5 RESEARCH Open Access Individual and seasonal variation in the movement behavior of two tropical nectarivorous birds Jennifer R. Smetzer1* , Kristina L. Paxton1 and Eben H. Paxton2 Abstract Background: Movement of animals directly affects individual fitness, yet fine spatial and temporal resolution movement behavior has been studied in relatively few small species, particularly in the tropics. Nectarivorous Hawaiian honeycreepers are believed to be highly mobile throughout the year, but their fine-scale movement patterns remain unknown. The movement behavior of these crucial pollinators has important implications for forest ecology, and for mortality from avian malaria (Plasmodium relictum), an introduced disease that does not occur in high-elevation forests where Hawaiian honeycreepers primarily breed. Methods: We used an automated radio telemetry network to track the movement of two Hawaiian honeycreeper species, the ʻapapane (Himatione sanguinea) and ʻiʻiwi (Drepanis coccinea). We collected high temporal and spatial resolution data across the annual cycle. We identified movement strategies using a multivariate analysis of movement metrics and assessed seasonal changes in movement behavior. Results: Both species exhibited multiple movement strategies including sedentary, central place foraging, commuting, and nomadism , and these movement strategies occurred simultaneously across the population. We observed a high degree of intraspecific variability at the individual and population level. The timing of the movement strategies corresponded well with regional bloom patterns of ‘ōhi‘a(Metrosideros polymorpha) the primary nectar source for the focal species. Birds made long-distance flights, including multi-day forays outside the tracking array, but exhibited a high degree of fidelity to a core use area, even in the non-breeding period.
    [Show full text]
  • Keauhou Bird Conservation Center
    KEAUHOU BIRD CONSERVATION CENTER Discovery Forest Restoration Project PO Box 2037 Kamuela, HI 96743 Tel +1 808 776 9900 Fax +1 808 776 9901 Responsible Forester: Nicholas Koch [email protected] +1 808 319 2372 (direct) Table of Contents 1. CLIENT AND PROPERTY INFORMATION .................................................................... 4 1.1. Client ................................................................................................................................................ 4 1.2. Consultant ....................................................................................................................................... 4 2. Executive Summary .................................................................................................. 5 3. Introduction ............................................................................................................. 6 3.1. Site description ............................................................................................................................... 6 3.1.1. Parcel and location .................................................................................................................. 6 3.1.2. Site History ................................................................................................................................ 6 3.2. Plant ecosystems ............................................................................................................................ 6 3.2.1. Hydrology ................................................................................................................................
    [Show full text]
  • Twenty-Three of 69 Since Discovery of 17 SOME LIMITING
    17 SOME LIMITING FACTORS AND RESEARCH NEEDS OF ENDANGERED HAWAIIAN FOREST BIRDS Winston E. Banko U. S. Fish & Wildlife Service Hawaii Volcanoes National Park Hawaii 96718 It is well known that Hawaiian birds are particularly sus­ ceptible to depopulation and extinction. Twenty-three of 69 endemic species or races have disappeared since discovery of Hawai'i by Europeans 200 years ago. Except for Warner (1968) and Atkinson (1977), only super­ ficial inquiries have been made into historical aspects and underlying factors of the Hawaiian forest bird decline. After several years of field and laboratory investigation, Warner explained th~ rlisappearance of forest birds as being caused primarily by disease. Atkinson advanced a theory based on historical evidence that arboreal predation by rats was a leading factor. The object of my long-term historical investigation is to document and compare the salient facts on the geography and chro­ nology of Hawaiian bird loss, species by species; to chronicle what is known about all factors of depopulation~-predation, disease, habitat alteration, and food competition; and to draw such conclusions as seem warranted. At the First Conference in Natural Sciences two years ago, Banko and Banko (1976) reported on the potential significance of food depletion in the decline of Hawaiian forest birds. The role played by the Big-headed ant (Pheidole megacephala) in destroying much of the endemic insect fauna at elevations generally less than 3000 feet (914 m) before 1890 was sketched at that time. (The term "insect" will be used hereafter as including other arthropods as well). I now wish to elaborate on the possible impact of foreign parasitic flies and .wasps in depleting native insect foods impor­ tant to the small Hawaiian forest birds at higher elevation~.
    [Show full text]
  • Guideline 410 Prohibited Plant List
    VENTURA COUNTY FIRE PROTECTION DISTRICT FIRE PREVENTION BUREAU 165 DURLEY AVENUE CAMARILLO, CA 93010 www.vcfd.org Office: 805-389-9738 Fax: 805-388-4356 GUIDELINE 410 PROHIBITED PLANT LIST This list was first published by the VCFD in 2014. It has been updated as of April 2019. It is intended to provide a list of plants and trees that are not allowed within a new required defensible space (DS) or fuel modification zone (FMZ). It is highly recommended that these plants and trees be thinned and or removed from existing DS and FMZs. In certain instances, the Fire Department may require the thinning and or removal. This list was prepared by Hunt Research Corporation and Dudek & Associates, and reviewed by Scott Franklin Consulting Co, VCFD has added some plants and has removed plants only listed due to freezing hazard. Please see notes after the list of plants. For questions regarding this list, please contact the Fire Hazard reduction Program (FHRP) Unit at 085-389-9759 or [email protected] Prohibited plant list:Botanical Name Common Name Comment* Trees Abies species Fir F Acacia species (numerous) Acacia F, I Agonis juniperina Juniper Myrtle F Araucaria species (A. heterophylla, A. Araucaria (Norfolk Island Pine, Monkey F araucana, A. bidwillii) Puzzle Tree, Bunya Bunya) Callistemon species (C. citrinus, C. rosea, C. Bottlebrush (Lemon, Rose, Weeping) F viminalis) Calocedrus decurrens Incense Cedar F Casuarina cunninghamiana River She-Oak F Cedrus species (C. atlantica, C. deodara) Cedar (Atlas, Deodar) F Chamaecyparis species (numerous) False Cypress F Cinnamomum camphora Camphor F Cryptomeria japonica Japanese Cryptomeria F Cupressocyparis leylandii Leyland Cypress F Cupressus species (C.
    [Show full text]
  • Non-Native Trees Provide Habitat for Native Hawaiian Forest Birds
    NON-NATIVE TREES PROVIDE HABITAT FOR NATIVE HAWAIIAN FOREST BIRDS By Peter J. Motyka A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of Master of Science In Biology Northern Arizona University December 2016 Approved: Jeffrey T. Foster, Ph.D., Co-chair Tad C. Theimer, Ph. D., Co-chair Carol L. Chambers, Ph. D. ABSTRACT NON-NATIVE TREES PROVIDE HABITAT FOR NATIVE HAWAIIAN FOREST BIRDS PETER J. MOTYKA On the Hawaiian island of Maui, native forest birds occupy an area dominated by non- native plants that offers refuge from climate-limited diseases that threaten the birds’ persistence. This study documented the status of the bird populations and their ecology in this novel habitat. Using point-transect distance sampling, I surveyed for birds over five periods in 2013-2014 at 123 stations across the 20 km² Kula Forest Reserve (KFR). I documented abundance and densities for four native bird species: Maui ‘alauahio (Paroreomyza montana), ʻiʻiwi (Drepanis coccinea), ʻapapane (Himatione sanguinea), and Hawaiʻi ʻamakihi, (Chlorodrepanis virens), and three introduced bird species: Japanese white-eye (Zosterops japonicas), red-billed leiothrix (Leiothrix lutea), and house finch (Haemorhous mexicanus). I found that 1) native forest birds were as abundant as non-natives, 2) densities of native forest birds in the KFR were similar to those found in native forests, 3) native forest birds showed varying dependence on the structure of the habitats, with ʻiʻiwi and ‘alauahio densities 20 and 30 times greater in forest than in scrub, 4) Maui ‘alauahio foraged most often in non-native cape wattle, eucalyptus, and tropical ash, and nested most often in non-native Monterey cypress, Monterey pine, and eucalyptus.
    [Show full text]
  • Ecophysiology and Reproductive Biology of Cultivated Cacti
    04 Ecophysiology and reproductive biology of cultivated cacti Paolo Inglesea,Giorgia Liguoria and Erick de la Barrerab a Department of Agricultural and Forestry Sciences, University of Palermo, Italy b Institute of Research in Ecosystems, National Autonomous University of Mexico, Mexico City, Mexico Ecophysiology and reproductive biology 04 of cultivated cacti INTRODUCTION Mojave Desert in California, or the Rajasthan Desert in India (Felker and Inglese, 2003). Le Houérou (2002) de- Cactus pear − Opuntia fcus-indica (L.) Mill. − is a CAM scribes plantations in Aziza (Lybia) where the maximum (crassulacean acid metabolism) plant cultivated in a wide temperature may exceed 50° C. O. fcus-indica cladode range of environments, resulting in major differences in cannot survive at 70° C (Nobel, 2002). plant survival and development, and in crop potential. The fruits of O. fcus-indica can be harvested from July The ecological success of opuntias, specifcally O. f- to November in the Northern Hemisphere − Mediterra- cus-indica, is due largely to their peculiar daily pattern nean Basin, California, and Mexico − and from January of carbon uptake and water loss, both of which occur to April in the Southern Hemisphere, depending on mostly at night. Like other CAM plants, cactus pear the genotype and genotype × environment interac- opens its stomata at night to fx CO2 and accumulate tion. Natural or induced refowering may extend the and store malate in the vacuoles of the chlorenchyma ripening period to January-February in the Northern cells. Since night-time temperatures are lower than di- Hemisphere and to September-October in the South- urnal ones, and relative humidity is generally higher, the ern Hemisphere.
    [Show full text]
  • List 01 Hawaiian Names 01 Plants
    V\.{). 3 v BOTANICAL BULLETIN NO.2 JUNE. 1913 TERRITORY OF HAWAII BOARD OF AGRICULTURE AND FORESTRY List 01 Hawaiian Names 01 Plants BY JOSEPH F. ROCK Consulting Botanist, Board of Agriculture and Forestry HONOLULU: HAWAIIAN GAZETTE CO., LTD. 1913 ALPHABETICAL LIST OF HAWAIIAN NAMES OF PLANTS. The following list of Hawaiian plant-names has been compiled from various sources. Hillebrand in his valuable Flora of the Hawaiian Islands has given many Hawaiian names, especially of the more common species; these are incorporated in this list with a few corrections. Nearly all Hawaiian plant-names found in this list and not in Hillebrand's Flora were secured from Mr. Francis Gay of the Island of Kauai, an old resident in this Terri­ tory and well acquainted with its plants from a layman's stand­ point. It was the writer's privilege to camp with Mr. Gay in the mountains of Kauai collecting botanical material; for almost every species he could give the native name, which he had se­ cured in the early days from old and reliable natives. Mr. Gay had made spatter prints of many of the native plants in a large record book with their names and uses, as well as their symbolic meaning when occurring in mele (songs) or olioli (chants), at­ tached to them. For all this information the writer is indebted mainly to Mr. Francis Gay and also to Mr. Augustus F. Knudsen of the same Island. The writer also secured Hawaiian names from old na­ tives and Kahunas (priests) in the various islands of the group.
    [Show full text]
  • Akeake (Dodonaea Viscosa) Number 26
    Akeake (Dodonaea viscosa) Number 26 DESCRIPTION Akeake is easily recognised by its distinctive bright green long thin wavy leaves, flaking bark and its papery winged seed capsules. It is a hardy, coastal shrub or small tree. In the right conditions, it will grow to about 10m high with a spreading crown and a trunk of around 30cm in diameter. The leaves are alternate, thin, light green with smooth margins and raised veins. The bark is reddish brown and peels off in long, thin strips. Akeake flowers are non-descript. They form in panicles at the end of branches from spring through to mid-summer. The fruit, however, are very visible as a capsule with two to four pale yellow wings which turn brown when dry and ripe. There are usually one or two seeds per capsule. DISTRIBUTION Akeake is native to New Zealand and grows throughout the North Island and northern parts of the South Island. It has also been found on the Chatham Islands, where it may have been introduced. It is also widely distributed through the Southern Hemisphere, with different subspecies and varieties in Australia, Southeast Asia, Africa and Latin CONSERVATION America. Akeake is not a nationally threatened or endangered plant. It is recognised as being Akeake naturally occurs in coastal and regionally distinctive, as it is generally lowland zones, favouring areas of open uncommon in the Taranaki region. forest or scrub. It prefers drier sites such as coastal river valleys, steep hillsides and THREATS cliffs and stabilised dunes. It is drought- Trampling and browsing by domestic tolerant and will handle light frosts.
    [Show full text]
  • Apapane (Himatione Sanguinea)
    The Birds of North America, No. 296, 1997 STEVEN G. FANCY AND C. JOHN RALPH 'Apapane Himatione sanguinea he 'Apapane is the most abundant species of Hawaiian honeycreeper and is perhaps best known for its wide- ranging flights in search of localized blooms of ō'hi'a (Metrosideros polymorpha) flowers, its primary food source. 'Apapane are common in mesic and wet forests above 1,000 m elevation on the islands of Hawai'i, Maui, and Kaua'i; locally common at higher elevations on O'ahu; and rare or absent on Lāna'i and Moloka'i. density may exceed 3,000 birds/km2 The 'Apapane and the 'I'iwi (Vestiaria at times of 'ōhi'a flowering, among coccinea) are the only two species of Hawaiian the highest for a noncolonial honeycreeper in which the same subspecies species. Birds in breeding condition occurs on more than one island, although may be found in any month of the historically this is also true of the now very rare year, but peak breeding occurs 'Ō'ū (Psittirostra psittacea). The highest densities February through June. Pairs of 'Apapane are found in forests dominated by remain together during the breeding 'ōhi'a and above the distribution of mosquitoes, season and defend a small area which transmit avian malaria and avian pox to around the nest, but most 'Apapane native birds. The widespread movements of the 'Apapane in response to the seasonal and patchy distribution of ' ōhi'a The flowering have important implications for disease Birds of transmission, since the North 'Apapane is a primary carrier of avian malaria and America avian pox in Hawai'i.
    [Show full text]
  • Dodonaea Viscosa Jacq. SAPINDACEAE Synonym: Dodonaea Angustifolia
    Trees and Shrubs of the Maldives 83 Dodonaea viscosa Jacq. SAPINDACEAE Synonym: Dodonaea angustifolia . Common names: Giant bush hop, sand olive Dhivehi name: Kudhi-ruuvaali Status: Common in some of the islands in the southern group; rare in the northern islands. Description: A fast-growing small tree or shrub that grows to 1 to 3 m in height but is capable of reaching 8 m. Bark is dark grey coloured, fissured and peeling. Branchlets are rusty red in colour, sometimes narrowly winged or ridged. Branches exudate resin. Leaves are simple, papery with very short petiole or subsessile. Leaf shape varies from lanceolate to linear spooniform and secretes gummy exudate on both the surfaces and thus always appearing shiny. Leaf margin is entire or inconspicuously wavy and the leaf tip is pointed or round. Inflorescence is terminal or axillary and densely flowered. Flowers are very small, borne on long and slender flower stalks. Sepals are four in number, greenish-yellow in colour; petals are absent. Fruit is a capsule and two to three winged. In mature fruits, wings are coral red in colour. Seeds are small, black and lens like in shape. Each chamber of the fruit contains one to two seeds. Uses: D. viscosa is very effective in sand dune fixation and controlling coastal erosion since its roots are excellent soil binders. It is also used to reclaim marshes. It is grown as an ornamental plant for its shiny foliage and pink-red winged fruit. Poles are useful in fencing. Timber is hard and durable. In the Maldives, tree nails are prepared from the timber, which are used for boat building.
    [Show full text]
  • Crop Ecology, Cultivation and Uses of Cactus Pear
    CROP ECOLOGY, CULTIVATION AND USES OF CACTUS PEAR Advance draft prepared for the IX INTERNATIONAL CONGRESS ON CACTUS PEAR AND COCHINEAL CAM crops for a hotter and drier world Coquimbo, Chile, 26-30 March 2017 CROP ECOLOGY, CULTIVATION AND USES OF CACTUS PEAR Editorial team Prof. Paolo Inglese, Università degli Studi di Palermo, Italy; General Coordinator Of the Cactusnet Dr. Candelario Mondragon, INIFAP, Mexico Dr. Ali Nefzaoui, ICARDA, Tunisia Prof. Carmen Sáenz, Universidad de Chile, Chile Coordination team Makiko Taguchi, FAO Harinder Makkar, FAO Mounir Louhaichi, ICARDA Editorial support Ruth Duffy Book design and layout Davide Moretti, Art&Design − Rome Published by the Food and Agriculture Organization of the United Nations and the International Center for Agricultural Research in the Dry Areas Rome, 2017 The designations employed and the FAO encourages the use, reproduction and presentation of material in this information dissemination of material in this information product do not imply the expression of any product. Except where otherwise indicated, opinion whatsoever on the part of the Food material may be copied, downloaded and Agriculture Organization of the United and printed for private study, research Nations (FAO), or of the International Center and teaching purposes, or for use in non- for Agricultural Research in the Dry Areas commercial products or services, provided (ICARDA) concerning the legal or development that appropriate acknowledgement of FAO status of any country, territory, city or area as the source and copyright holder is given or of its authorities, or concerning the and that FAO’s endorsement of users’ views, delimitation of its frontiers or boundaries.
    [Show full text]