Twenty-Three of 69 Since Discovery of 17 SOME LIMITING
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alien Dominance of the Parasitoid Wasp Community Along an Elevation Gradient on Hawai’I Island
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck U.S. Geological Survey, [email protected] Paul C. Banko U.S. Geological Survey Marla Schwarzfeld U.S. Geological Survey Melody Euaparadorn U.S. Geological Survey Kevin W. Brinck U.S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Peck, Robert W.; Banko, Paul C.; Schwarzfeld, Marla; Euaparadorn, Melody; and Brinck, Kevin W., "Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island" (2008). USGS Staff -- Published Research. 652. https://digitalcommons.unl.edu/usgsstaffpub/652 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Biol Invasions (2008) 10:1441–1455 DOI 10.1007/s10530-008-9218-1 ORIGINAL PAPER Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck Æ Paul C. Banko Æ Marla Schwarzfeld Æ Melody Euaparadorn Æ Kevin W. Brinck Received: 7 December 2007 / Accepted: 21 January 2008 / Published online: 6 February 2008 Ó Springer Science+Business Media B.V. 2008 Abstract Through intentional and accidental increased with increasing elevation, with all three introduction, more than 100 species of alien Ichneu- elevations differing significantly from each other. monidae and Braconidae (Hymenoptera) have Nine species purposely introduced to control pest become established in the Hawaiian Islands. -
Pu'u Wa'awa'a Biological Assessment
PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9 -
Aspects of House Finch Breeding Biology in Hawaii
ASPECTS OF HOUSE FINCH BREEDING BIOLOGY IN HAWAII CHARLES VAN RIPER III Bent (1968) summarized information avail- Puu Laau, is the last remaining major mamane-naio able on the breeding biology of the House forest in Hawaii. Finch ( Curpodacus mexicanus). Although The stippled areas of figure 1 represent a broad spectrum of the forest types on the island of Hawaii; this species has been studied quite extensively included are native, introduced, and mixed stands of in its North American home range, little atten- vegetation. Areas 2, 3, and 5 are dry forest regions tion has been paid to it in Hawaii. Grinnell with annual rainfall of 76 cm or less; Puu Laau (2) (1911) reported on different color patterns of has mean annual rainfall of 50 cm, Puu Waawaa (3) 64 cm, and Puu Lehua (5) has 76 cm. The Kohala the House Finch in Hawaii, and Richardson Mountain complex ( 1) has a mean annual rainfall of and Bowles (1964) mentioned that on 23 June 229 cm, Puu 00 (4) has 483 cm, and the Kulani- 1960 they found a nestling that had fallen from Mauna Loa complex (6) has 317 cm. its nest on Kauai. On Mauna Kea, Berger Birds were mist-netted, color-banded, and released (1972) found House Finch nests with eggs from 1971 through 1973. Nest and tree heights were taken with a clinometer when it was impractical to as early as 6 April (1968) and as late as 17 use a tape measure. Nests and eggs were measured July (1967). Eleven nests were built on hori- with calipers and weighed on a sensitive spring bal- zontal branches of mamane (Sophora chryso- ance. -
Downloadable Data Collection
Smetzer et al. Movement Ecology (2021) 9:36 https://doi.org/10.1186/s40462-021-00275-5 RESEARCH Open Access Individual and seasonal variation in the movement behavior of two tropical nectarivorous birds Jennifer R. Smetzer1* , Kristina L. Paxton1 and Eben H. Paxton2 Abstract Background: Movement of animals directly affects individual fitness, yet fine spatial and temporal resolution movement behavior has been studied in relatively few small species, particularly in the tropics. Nectarivorous Hawaiian honeycreepers are believed to be highly mobile throughout the year, but their fine-scale movement patterns remain unknown. The movement behavior of these crucial pollinators has important implications for forest ecology, and for mortality from avian malaria (Plasmodium relictum), an introduced disease that does not occur in high-elevation forests where Hawaiian honeycreepers primarily breed. Methods: We used an automated radio telemetry network to track the movement of two Hawaiian honeycreeper species, the ʻapapane (Himatione sanguinea) and ʻiʻiwi (Drepanis coccinea). We collected high temporal and spatial resolution data across the annual cycle. We identified movement strategies using a multivariate analysis of movement metrics and assessed seasonal changes in movement behavior. Results: Both species exhibited multiple movement strategies including sedentary, central place foraging, commuting, and nomadism , and these movement strategies occurred simultaneously across the population. We observed a high degree of intraspecific variability at the individual and population level. The timing of the movement strategies corresponded well with regional bloom patterns of ‘ōhi‘a(Metrosideros polymorpha) the primary nectar source for the focal species. Birds made long-distance flights, including multi-day forays outside the tracking array, but exhibited a high degree of fidelity to a core use area, even in the non-breeding period. -
Keauhou Bird Conservation Center
KEAUHOU BIRD CONSERVATION CENTER Discovery Forest Restoration Project PO Box 2037 Kamuela, HI 96743 Tel +1 808 776 9900 Fax +1 808 776 9901 Responsible Forester: Nicholas Koch [email protected] +1 808 319 2372 (direct) Table of Contents 1. CLIENT AND PROPERTY INFORMATION .................................................................... 4 1.1. Client ................................................................................................................................................ 4 1.2. Consultant ....................................................................................................................................... 4 2. Executive Summary .................................................................................................. 5 3. Introduction ............................................................................................................. 6 3.1. Site description ............................................................................................................................... 6 3.1.1. Parcel and location .................................................................................................................. 6 3.1.2. Site History ................................................................................................................................ 6 3.2. Plant ecosystems ............................................................................................................................ 6 3.2.1. Hydrology ................................................................................................................................ -
Unusual Aggregation of Macrobrochis Gigas (Walker, 1854)
78 TROP. LEPID. RES., 30(2): 78-80, 2020 ARJUN ET AL.: Aggregation of Macrobrochis gigas Scientific Note: Unusual aggregation of Macrobrochis gigas (Walker, 1854) in southern India (Lepidoptera, Erebidae, Arctiinae, Lithosiini) Charambilly Purushothaman Arjun1, 2*, Chatoth Kooteri Deepak4, Thazhathe Purakkal Rajesh2, 3 1. Fraternity for One-Health Research and Conservation Education, Kerala, India. 2. Malabar Awareness and Rescue Center for Wildlife, Kerala, India. 3. Department of Animal Sciences, School of Biological Sciences, Central University of Kerala, Kasargod, India. 4. “Sreyas”, Near S.R.O, Kadirur (P O), Thalassery, Kannur, Kerala, India *1,[email protected], [email protected], 2,[email protected] Date of issue online: 21 December 2020 Electronic copies (ISSN 2575-9256) in PDF format at: http://journals.fcla.edu/troplep; https://zenodo.org; archived by the Institutional Repository at the University of Florida (IR@UF), http://ufdc.ufl.edu/ufir;DOI : 10.5281/zenodo.4317533 © The author(s). This is an open access article distributed under the Creative Commons license CC BY-NC 4.0 (https://creativecommons.org/ licenses/by-nc/4.0/). Abstract: Macrobrochis gigas (Erebidae, Arctiinae, Lithosini) is among the less studied moths found in southern and southeastern Asia. Here, we report an unusual mass aggregation of adult M. gigas from southern India, where large swarms of the species were seen feeding on nectar of Terminalia paniculata (Combretaceae) flowers. This note also presents observations on the aggregation and feeding behavior of M. gigas caterpillars. Some species of Lepidoptera (butterflies and moths) On 15 June 2014, a large swarm (more than 500 are known to aggregate in large numbers, both in their adult individuals) of Macrobrochis gigas (Walker, 1854) was and larval stages (Brower et al., 1977; Ivie, 1990; Duthie et observed and photographed flying around dichogamous al., 2003). -
Non-Native Trees Provide Habitat for Native Hawaiian Forest Birds
NON-NATIVE TREES PROVIDE HABITAT FOR NATIVE HAWAIIAN FOREST BIRDS By Peter J. Motyka A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of Master of Science In Biology Northern Arizona University December 2016 Approved: Jeffrey T. Foster, Ph.D., Co-chair Tad C. Theimer, Ph. D., Co-chair Carol L. Chambers, Ph. D. ABSTRACT NON-NATIVE TREES PROVIDE HABITAT FOR NATIVE HAWAIIAN FOREST BIRDS PETER J. MOTYKA On the Hawaiian island of Maui, native forest birds occupy an area dominated by non- native plants that offers refuge from climate-limited diseases that threaten the birds’ persistence. This study documented the status of the bird populations and their ecology in this novel habitat. Using point-transect distance sampling, I surveyed for birds over five periods in 2013-2014 at 123 stations across the 20 km² Kula Forest Reserve (KFR). I documented abundance and densities for four native bird species: Maui ‘alauahio (Paroreomyza montana), ʻiʻiwi (Drepanis coccinea), ʻapapane (Himatione sanguinea), and Hawaiʻi ʻamakihi, (Chlorodrepanis virens), and three introduced bird species: Japanese white-eye (Zosterops japonicas), red-billed leiothrix (Leiothrix lutea), and house finch (Haemorhous mexicanus). I found that 1) native forest birds were as abundant as non-natives, 2) densities of native forest birds in the KFR were similar to those found in native forests, 3) native forest birds showed varying dependence on the structure of the habitats, with ʻiʻiwi and ‘alauahio densities 20 and 30 times greater in forest than in scrub, 4) Maui ‘alauahio foraged most often in non-native cape wattle, eucalyptus, and tropical ash, and nested most often in non-native Monterey cypress, Monterey pine, and eucalyptus. -
Arthropod Diversity Estimates for Three Native Subalpine Plant
ARTHROPOD DIVERSITY ESTIMATES FOR THREE NATIVE SUBALPINE PLANT SPECIES ON THE MAUNAKEA VOLCANO OF HAWAI‘I ISLAND A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT HILO IN PARTIAL FULFULLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN TROPICAL CONSERVATION BIOLOGY AND ENVIRONMENTAL SCIENCE DECEMBER 2016 By Heather Stever Thesis Committee: Jesse Eiben, Chairperson Ryan Perroy Paul Selmants Keywords: Arthropods, Endemic, Hawai‘i, Insects, Maunakea, Subalpine Acknowledgements I am immensely grateful for the knowledge, advice, support, and funding that I received from the many people and organizations that helped to make this project possible. I would like to especially thank my academic advisor, Jesse Eiben, the University of Hawai‘i at Hilo Office of Maunakea Management, and the Tropical Conservation Biology and Environmental Science faculty and students. I would also like to thank, in alphabetical order, Nina Buchanan, Jessica Kirkpatrick, Frederick Klasner, Devin Leopold, Stephanie Nagata, Julien Pétillon, Ryan Perroy, Daniel Rubinoff, Esther Sebastián-González, Paul Selmants, Marleena Sheffield, Michael Shintaku, Andrew Stever, Amber Stillman, and Darcy Yogi. ii Abstract Terrestrial arthropods are among the most abundant and diverse animals on Earth, especially in Hawai‘i where they constitute the vast majority of endemic fauna and play crucial roles in nearly every habitat throughout the islands. Arthropod surveys and inventories are useful methods for documenting arthropod diversity, but studying arthropods can be extremely difficult. Arthropod collection is often taxing because many species are very mobile and exist in harsh climates or on terrain that is difficult to access. Arthropod identification can also be challenging since many arthropods are remarkably small with complex morphologies and diverse life histories. -
Apapane (Himatione Sanguinea)
The Birds of North America, No. 296, 1997 STEVEN G. FANCY AND C. JOHN RALPH 'Apapane Himatione sanguinea he 'Apapane is the most abundant species of Hawaiian honeycreeper and is perhaps best known for its wide- ranging flights in search of localized blooms of ō'hi'a (Metrosideros polymorpha) flowers, its primary food source. 'Apapane are common in mesic and wet forests above 1,000 m elevation on the islands of Hawai'i, Maui, and Kaua'i; locally common at higher elevations on O'ahu; and rare or absent on Lāna'i and Moloka'i. density may exceed 3,000 birds/km2 The 'Apapane and the 'I'iwi (Vestiaria at times of 'ōhi'a flowering, among coccinea) are the only two species of Hawaiian the highest for a noncolonial honeycreeper in which the same subspecies species. Birds in breeding condition occurs on more than one island, although may be found in any month of the historically this is also true of the now very rare year, but peak breeding occurs 'Ō'ū (Psittirostra psittacea). The highest densities February through June. Pairs of 'Apapane are found in forests dominated by remain together during the breeding 'ōhi'a and above the distribution of mosquitoes, season and defend a small area which transmit avian malaria and avian pox to around the nest, but most 'Apapane native birds. The widespread movements of the 'Apapane in response to the seasonal and patchy distribution of ' ōhi'a The flowering have important implications for disease Birds of transmission, since the North 'Apapane is a primary carrier of avian malaria and America avian pox in Hawai'i. -
8 Commercial Forestry Harvesting of Planted Koa
Acacia koa in Hawai‘i: Facing the Future Proceedings of the 2016 Symposium, Hilo, HI: www.TropHTIRC.org, www.ctahr.hawaii.edu/forestry COMMERCIAL FORESTRY HARVESTING OF PLANTED KOA: A CASE STUDY FROM HALEAKALA RANCH Steve McMinn (Pacific Rim Tonewoods) Paniolo Tonewoods is a joint venture between Taylor Guitars and Pacific Rim Tonewoods, and was formed in 2015 specifically to supply koa guitar components to Taylor and other instrument companies. It is our desire to promote, encourage and invest in koa forestry, and it is our intention to build a small, efficient milling operation in Hawai‘i in the coming years. Haleakala Ranch, (“HR”), on Maui, has two stands of Koa that were planted in 1985, in conjunction with “A Million Trees of Aloha”, a program started by Jean Ariyoshi, then Governor Ariysohi’s wife. The two stands, A and B, are of about 20 acres and 8 acres, (8 and 3 hectares), and are at 5000 feet and 6000 feet of elevation respectively (1500 and 1800 m) (figure 1 and 2). Figure 1: Stand A from below. 8 Acacia koa in Hawai‘i: Facing the Future Proceedings of the 2016 Symposium, Hilo, HI: www.TropHTIRC.org, www.ctahr.hawaii.edu/forestry Figure 2: Plaque commemorating the planting of the Haleakala Ranch stands. Both stands are said to have been planted from seedlings grown from Hawai‘i Island seed stock. In both stands, the canopies were closed, and both had a floor that was covered chiefly with leaf litter, although A had some gorse intrusion. B is long and narrow; the trees are more widely spaced. -
HETF 2013 Annual Report
Prepared by the: USDA Forest Service Pacific Southwest Research Station in Hilo Institute of Pacific Islands Forestry 60 Nowelo St., Hilo, HI 96720 2013 Annual Report Hawai‘i Experimental Tropical Forest Authors: Melissa Dean and Tabetha Block Date: May 2014 | Page The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation's forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National Grasslands, it strives -- as directed by Congress --to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (800)795-3272 -
Acacia Koa Fabaceae
Acacia koa Gray Fabaceae - Mimosoideae koa LOCAL NAMES English (koa acacia,koa,Hawaiian mahogany); Hawaian (koa); Trade name (koa) BOTANIC DESCRIPTION Acacia koa is a large, evergreen tree to 25 m tall, stem diameter to 150 cm at breast height. Trees occurring in dense, wet native forest stands typically retain a straight, narrow form. In the open, trees develop more spreading, branching crowns and shorter, broader trunks. A. koa has one main tap root and an otherwise shallow, spreading root system. Bark gray, Exclosure at Pohakuokala Gulch, Maui, rough, scaly and thick. Hawaii (Forest and Kim Starr) A. koa belongs to the thorn-less, phyllodinous group of the Acacia subgenus Heterophyllum. Young seedlings have bipinnate compound true leaves with 12-15 pairs of leaflets. Where forest light is sufficient, seedlings stop producing true leaves while they are less than 2 m tall. True leaves are retained longer by trees growing in dense shade. Phyllodes are sickle-shaped and often more than 2.5 cm wide in the middle and blunt pointed on each end. Inflorescence is a pale yellow ball, 8.5 mm in diameter, 1-3 on a common stalk. Each inflorescence is composed of many bisexual flowers. Each Habit at Makawao forest reserve, Maui, flower has an indefinite number of stamens and a single elongated style. Hawaii (Forest and Kim Starr) Pods are slow to dehisce, 15 cm long and 2.5-4 cm wide. They contain 6- 12 seeds that vary from dark brown to black. The generic name ‘acacia’ comes from the Greek word ‘akis’, meaning point or barb.