A Landscape-Based Assessment of Climate Change Vulnerability for All Native Hawaiian Plants

Total Page:16

File Type:pdf, Size:1020Kb

A Landscape-Based Assessment of Climate Change Vulnerability for All Native Hawaiian Plants Technical Report HCSU-044 A LANDscape-bASED ASSESSMENT OF CLIMatE CHANGE VULNEraBILITY FOR ALL NatIVE HAWAIIAN PLANts Lucas Fortini1,2, Jonathan Price3, James Jacobi2, Adam Vorsino4, Jeff Burgett1,4, Kevin Brinck5, Fred Amidon4, Steve Miller4, Sam `Ohukani`ohi`a Gon III6, Gregory Koob7, and Eben Paxton2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaii National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawai‘i at Hilo, Hilo, HI 96720 4 U.S. Fish & Wildlife Service —Ecological Services, Division of Climate Change and Strategic Habitat Management, Honolulu, HI 96850 5 Hawai‘i Cooperative Studies Unit, Pacific Island Ecosystems Research Center, Hawai‘i National Park, HI 96718 6 The Nature Conservancy, Hawai‘i Chapter, Honolulu, HI 96817 7 USDA Natural Resources Conservation Service, Hawaii/Pacific Islands Area State Office, Honolulu, HI 96850 Hawai‘i Cooperative Studies Unit University of Hawai‘i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 November 2013 This product was prepared under Cooperative Agreement CAG09AC00070 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey. Technical Report HCSU-044 A LANDSCAPE-BASED ASSESSMENT OF CLIMATE CHANGE VULNERABILITY FOR ALL NATIVE HAWAIIAN PLANTS LUCAS FORTINI1,2, JONATHAN PRICE3, JAMES JACOBI2, ADAM VORSINO4, JEFF BURGETT1,4, KEVIN BRINCK5, FRED AMIDON4, STEVE MILLER4, SAM ʽOHUKANIʽOHIʽA GON III 6, GREGORY KOOB7, AND EBEN PAXTON2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaiʽi National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawaiʽi at Hilo, Hilo, HI 96720 4 U. S. Fish & Wildlife Service—Ecological Services, Division of Climate Change and Strategic Habitat Management, Honolulu, HI 96850 5 Hawaiʽi Cooperative Studies Unit, Pacific Island Ecosystems Research Center, Hawaiʽi National Park, HI 96718 6 The Nature Conservancy, Hawai’i Chapter, Honolulu, HI 96817 7 USDA Natural Resources Conservation Service, Hawaii/Pacific Islands Area State Office, Honolulu, HI 96850 Hawaiʽi Cooperative Studies Unit University of Hawaiʽi at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 November 2013 This article has been peer reviewed and approved for publication consistent with USGS Fundamental Science Practices (http://pubs.usgs.gov/circ/1367/). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. ii TABLE OF CONTENTS List of Tables ....................................................................................................................... iv List of Figures ...................................................................................................................... v Abstract ............................................................................................................................... 1 Introduction ......................................................................................................................... 1 Assessing the Vulnerability of Species to Climate Change .................................................... 2 Understanding Species Responses to Changes in Climate .................................................... 3 A Response-based Definition of Species Vulnerability to Climate Change .............................. 3 Scope of Landscape-based Climate Change Vulnerability Assessment ................................... 5 Methods .............................................................................................................................. 5 Estimating the Ability of Species to Respond to Climate Change ........................................... 5 Response-based Species Vulnerability Indicator .................................................................. 6 Linking Species Distribution Models and Species Responses to Climate Change ..................... 6 Vulnerability Factors Considered in Assessment .................................................................. 7 Creation and Parameterization of Bayesian Network Based Species Vulnerability Model ....... 14 From Landscape Metrics to Climate Change Responses ..................................................... 16 Vulnerability Indicator Transformation .............................................................................. 16 Vulnerability Contrasts .................................................................................................... 16 Species Vulnerability Model Evaluation ............................................................................. 17 Species Distribution Model Methods ................................................................................. 17 Dynamic Updating of Analysis .......................................................................................... 17 Assessment Assumptions and Limitations ......................................................................... 18 Results .............................................................................................................................. 18 Model vs. Expert Comparison ........................................................................................... 18 Summary of Vulnerability Factors Across All Species .......................................................... 18 Identification of High-vulnerability Species and Taxonomic Groups ..................................... 21 Most and Least Vulnerable Genera and Families ................................................................ 24 Identification of Characteristics Associated with Vulnerable Taxa ....................................... 25 Impact of Worst and Best Habitat Quality Scenarios on Species Vulnerabilities ................... 26 Generalizing from Species-specific Results to Regional and Local Management Scale .......... 27 Correlation Analyses ........................................................................................................ 28 Discussion ......................................................................................................................... 33 General Patterns of Species Vulnerability to Climate Change .............................................. 37 Drivers of Climate Change Vulnerability for Hawaiian Plant Species .................................... 39 iii Building a Framework to Assess Climate Change Vulnerability of Native Hawaiian Plant Species .......................................................................................................................... 40 Guidelines and Recommendations for Use of Vulnerability Assessment Results ................... 41 Future Research and Data Needs ..................................................................................... 43 Conclusions ....................................................................................................................... 44 Acknowledgements ............................................................................................................ 45 Literature Cited .................................................................................................................. 46 Appendix 1. Diagrams of complete Bayesian network models of species vulnerability to climate change .............................................................................................................................. 58 Appendix 2. Main assumptions and limitations of current vulnerability assessment ................. 63 Appendix 3. Vulnerability ranks and response probabilities to climate change for all native Hawaiian plant species. ...................................................................................................... 66 Appendix 4. List of all species with no future climate envelopes and/or no overlap between current and future climate envelope .................................................................................... 93 Appendix 5. Distributions of factors considered in vulnerability model .................................... 98 Appendix 6. Histogram distribution of the three responses considered in the analysis and the resulting vulnerability scores for all species combined .......................................................... 109 Appendix 7. Example vulnerability maps for Metrosideros polymorpha. ................................. 111 Appendix 8. Vulnerability factors and their categorized states for high/medium/low vulnerability example species ................................................................................................................ 115 Appendix 9. List of species with lost, gained, and maintained climate space between current and 2100 climate for Hanawi Natural Area Reserve, Maui, and their related vulnerability scores ... 119 Appendix 10. Characteristics associated with differences in vulnerability scores among species ........................................................................................................................................ 129 LIST OF TABLES Table 1. Relationship between species responses to climate change and vulnerability indicator behavior. ............................................................................................................................. 7 Table 2. Mean values for all vulnerability factors for native Hawaiian flora. ............................ 20 Table 3.
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Urera Kaalae
    Plants Opuhe Urera kaalae SPECIES STATUS: Federally Listed as Endangered Genetic Safety Net Species J.K.Obata©Smithsonian Inst., 2005 IUCN Red List Ranking – Critically Endangered (CR D) Hawai‘i Natural Heritage Ranking ‐ Critically Imperiled (G1) Endemism – O‘ahu Critical Habitat ‐ Designated SPECIES INFORMATION: Urera kaalae, a long‐lived perennial member of the nettle family (Urticaceae), is a small tree or shrub 3 to 7 m (10 to 23 ft) tall. This species can be distinguished from the other Hawaiian species of the genus by its heart‐shaped leaves. DISTRIBUTION: Found in the central to southern parts of the Wai‘anae Mountains on O‘ahu. ABUNDANCE: The nine remaining subpopulations comprise approximately 40 plants. LOCATION AND CONDITION OF KEY HABITAT: Urera kaalae typically grows on slopes and in gulches in diverse mesic forest at elevations of 439 to 1,074 m (1,440 to 3,523 ft). The last 12 known occurrences are found on both state and privately owned land. Associated native species include Alyxia oliviformis, Antidesma platyphyllum, Asplenium kaulfusii, Athyrium sp., Canavalia sp., Charpentiera sp., Chamaesyce sp., Claoxylon sandwicense, Diospyros hillebrandii, Doryopteris sp., Freycinetia arborea, Hedyotis acuminata, Hibiscus sp., Nestegis sandwicensis, Pipturus albidus, Pleomele sp., Pouteria sandwicensis, Psychotria sp., Senna gaudichaudii (kolomona), Streblus pendulinus, Urera glabra, and Xylosma hawaiiense. THREATS: Habitat degradation by feral pigs; Competition from alien plant species; Stochastic extinction; Reduced reproductive vigor due to the small number of remaining individuals. CONSERVATION ACTIONS: The goals of conservation actions are not only to protect current populations, but also to establish new populations to reduce the risk of extinction.
    [Show full text]
  • Department of the Interior Fish and Wildlife Service
    Thursday, February 27, 2003 Part II Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Final Designation or Nondesignation of Critical Habitat for 95 Plant Species From the Islands of Kauai and Niihau, HI; Final Rule VerDate Jan<31>2003 13:12 Feb 26, 2003 Jkt 200001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\27FER2.SGM 27FER2 9116 Federal Register / Vol. 68, No. 39 / Thursday, February 27, 2003 / Rules and Regulations DEPARTMENT OF THE INTERIOR units designated for the 83 species. This FOR FURTHER INFORMATION CONTACT: Paul critical habitat designation requires the Henson, Field Supervisor, Pacific Fish and Wildlife Service Service to consult under section 7 of the Islands Office at the above address Act with regard to actions carried out, (telephone 808/541–3441; facsimile 50 CFR Part 17 funded, or authorized by a Federal 808/541–3470). agency. Section 4 of the Act requires us SUPPLEMENTARY INFORMATION: RIN 1018–AG71 to consider economic and other relevant impacts when specifying any particular Background Endangered and Threatened Wildlife area as critical habitat. This rule also and Plants; Final Designation or In the Lists of Endangered and determines that designating critical Nondesignation of Critical Habitat for Threatened Plants (50 CFR 17.12), there habitat would not be prudent for seven 95 Plant Species From the Islands of are 95 plant species that, at the time of species. We solicited data and Kauai and Niihau, HI listing, were reported from the islands comments from the public on all aspects of Kauai and/or Niihau (Table 1).
    [Show full text]
  • Dr JL Birch School of Biosciences the University of Melbourne Parkville, VIC 3010 E-Mail
    Dr J.L. Birch School of BioSciences The University of Melbourne Parkville, VIC 3010 e-mail: [email protected] Phone: +613-8344-5040 EMPLOYMENT Herbarium Curator and Lecturer The University of Melbourne Herbarium (MELU) June 2016-current School of Biosciences Post-Doctoral Fellow Royal Botanic Gardens Victoria. November 2011-May 2016 Supervisor: Dr Daniel J. Murphy Project Title: Systematics of Australian tussock grasses (Poaceae tribe Poeae) EDUCATION Ph.D. Botany Department and Ecology, Evolution, and Conservation Biology, University of Hawaii at Manoa (UHM). August 2011 Advisor: Dr Clifford W. Morden Dissertation title: The systematics and historical biogeography of the Asteliaceae (Asparagales) Master's Plant Biology, University of Texas at Austin (UTA). August 2004 Advisor: Dr Beryl B. Simpson Thesis title: The Gideon Lincecum Herbarium: A Floristic and Ethnobotanic Analysis B.S. Plant Biology, University of Texas at Austin. August 2001 B.S. Botany, Victoria University of Wellington. December 1990 RESEARCH Research Grants (selected): (TOTAL: $514,000 AUD) 2016 Hermon Slade Foundation ($81,000 AUD) 2016 Australian Biological Resources Study Post-doctoral Fellowship Grant ($270,000 AUD) 2015 Australian Biological Resources Study Applied Taxonomy Grant ($88,000 AUD) 2013 Cuatrecasas Travel Fellowship, Smithsonian Institution ($700 AUD/$500 USD) 2011 Association of Plant Taxonomists, IBC Graduate Student Travel Award ($2800 AUD/$2,000 USD) 2011 Graduate Student Organization (UHM), Graduate Student Travel Grant (($2800 AUD/$2,000 USD) 2010 Graduate Division (UHM), RCUH Dissertation Completion Award ($12600 AUD/$9,000 USD) 2009 National Science Foundation, Doctoral Dissertation Improvement Grant ($7500 AUD/$5,350 USD) 2009 Evolution, Ecology, and Conservation Biology Program (UHM), Watson T.
    [Show full text]
  • Additional Experimental Crosses in Hawaiian Bidens (Asteraceae)1
    Additional Experimental Crosses in Hawaiian Bidens (Asteraceae) 1 GEORGE W. GILLETT2 FOR THE PAST 35 YEARS the phenomenon of coast and 2.5 miles (4.0 km) east of Black Sand natural hybridization has been linked with Beach. Associated plants include Metrosideros, Hawaiian Bidens, mostly through the energetic Scaevola taccada, and Polypodium. Elev. 12 m. and discerning fieldwork of Otto Degener. Sev- Bidens menziesii var. filiformis (Gray) Sherif. eral natural hybrids were reported by Sherif Gillett 1756. Hawaii. Erect shrub 2-4 m high (1937), based on the collections of Degener growing on the south slopes of Mauna Kea in and others. The list of putative natural hybrids dry land shrub vegetation including Dodonaea,' was extended to 16 by Gillett and Lim (1970). Osteomeles, Dubautia, and mixed grasses. Elev. The latter paper reported some 23 different ex- 1,800 m. perimental F1 hybrids, indicating weak to non- Bidens mauiensis var. cuneatoides (Gray) existent genetic barriers between species and Sherff. Gillett 1873. West Maui. Decumbent giving a general confirmation to the field and herb growing on the sand hills near Waihee, herbarium studies of hybridization. The purpose with Lipochaeta, Scaevola coriacea, Nama, Fim­ of this paper is to record additional experi- bristylis, and associated dune vegetation. About mental hybrids in Hawaiian Bidens, some of 500 m from the sea, elev. 20 m. these involving two species (B. fulvescens and Bidens mauiensis var. mauiensis (Gray) B. skottsbergii) which gave poor indications of Sherff. Gillett 1872. East Maui. Decumbent interspecific hybridizations in the earlier cross- herb growing on the south slope of Mt.
    [Show full text]
  • List 01 Hawaiian Names 01 Plants
    V\.{). 3 v BOTANICAL BULLETIN NO.2 JUNE. 1913 TERRITORY OF HAWAII BOARD OF AGRICULTURE AND FORESTRY List 01 Hawaiian Names 01 Plants BY JOSEPH F. ROCK Consulting Botanist, Board of Agriculture and Forestry HONOLULU: HAWAIIAN GAZETTE CO., LTD. 1913 ALPHABETICAL LIST OF HAWAIIAN NAMES OF PLANTS. The following list of Hawaiian plant-names has been compiled from various sources. Hillebrand in his valuable Flora of the Hawaiian Islands has given many Hawaiian names, especially of the more common species; these are incorporated in this list with a few corrections. Nearly all Hawaiian plant-names found in this list and not in Hillebrand's Flora were secured from Mr. Francis Gay of the Island of Kauai, an old resident in this Terri­ tory and well acquainted with its plants from a layman's stand­ point. It was the writer's privilege to camp with Mr. Gay in the mountains of Kauai collecting botanical material; for almost every species he could give the native name, which he had se­ cured in the early days from old and reliable natives. Mr. Gay had made spatter prints of many of the native plants in a large record book with their names and uses, as well as their symbolic meaning when occurring in mele (songs) or olioli (chants), at­ tached to them. For all this information the writer is indebted mainly to Mr. Francis Gay and also to Mr. Augustus F. Knudsen of the same Island. The writer also secured Hawaiian names from old na­ tives and Kahunas (priests) in the various islands of the group.
    [Show full text]
  • Biogeographic Origin, Taxonomic Status, and Conservation Biology of Asplenium Monanthes L
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-2003 Biogeographic origin, taxonomic status, and conservation biology of Asplenium monanthes L. in the southeastern United States Allison Elizabeth Shaw Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Shaw, Allison Elizabeth, "Biogeographic origin, taxonomic status, and conservation biology of Asplenium monanthes L. in the southeastern United States" (2003). Retrospective Theses and Dissertations. 20038. https://lib.dr.iastate.edu/rtd/20038 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Biogeographic origin, taxonomic status, and conservation biology of Asplenium monanthes L. in the southeastern United States by Allison Elizabeth Shaw A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Ecology and Evolutionary Biology Program of Study Committee: Donald R. Farrar (Major Professor) John D. Nason Fredric J. Janzen Iowa State University Ames, Iowa 2003 11 Graduate College Iowa State University This is to certify that the master's thesis of Allison Elizabeth Shaw has met the thesis requirements of Iowa State University Signatures have been redacted for privacy iii TABLE OF CONTENTS LIST OF FIGURES v LIST OF TABLES Vlll ACKNOWLEDGEMENTS ix ABSTRACT xi GENERAL INTRODUCTION 1 Research questions 1 Thesis organization 2 Taxonomy of Asplenium monanthes 2 Apo gamy 6 Distribution and habitat of Asplenium monanthes 12 Bioclimatic history of the southeastern U.S.
    [Show full text]
  • Chloroplast DNA Evidence for a North American Origin of the Hawaiian
    Proc, Natl. Acad. Sci. USA Vol. 88, pp. 1840-1843, March 1991 Evolution Chloroplast DNA evidence for a North American origin of the Hawaiian silversword alliance (Asteraceae) (insular evolution/adaptive radiation/biogeography/long-distance dispersal/phylogenetics) BRUCE G. BALDWIN*t, DONALD W. KYHOS*, JAN DVORAKO, AND GERALD D. CARR§ Departments of *Botany and tAgronomy and Range Science, University of California, Davis, CA 95616; and §Department of Botany, University of Hawaii, Honolulu, HI 96822 Communicated by Peter H. Raven, November 30, 1990 (received for review August 1, 1990) ABSTRACT Chloroplast DNA restriction-site compari- sity, structural (4, 5), biosystematic (6), allozymic (7), and sons were made among 24 species of the Hawaiian silversword chloroplast DNA (cpDNA) (8) data indicate the silversword alliance (Argyroxiphium, Dubautia, and Wilkesia) and 7 species alliance originated from a single colonizing species. of North American perennial tarweeds in Adenothamnus, Ma- Carlquist (1) presented convincing anatomical evidence dia, Raillardella, and Railkrdiopsis (Asteraceae-Madiinae). indicating taxonomic alignment of the Hawaiian silversword These data and results from intergeneric hybridization indi- alliance with the almost exclusively herbaceous American cated surprisingly close genetic affinity of the monophyletic Madiinae or tarweeds. Gray (9) earlier suggested such affinity Hawaiian group to two diploid species of montane perennial for Argyroxiphium, which was disputed by Keck (10) based herbs in California, Madia bolanderi and Raillardiopsis muiri. on presumed morphological dissimilarities and the magnitude Of 117 restriction-site mutations shared among a subset of two of the oceanic barrier to migration. Herein, we compare or more accessions, more than one-fifth (25 mutations) sepa- cpDNA restriction sites between the silversword alliance and rated the silversword alliance, M.
    [Show full text]
  • Astelia Waialealae
    Plants Pa‘iniu Astelia waialealae SPECIES STATUS: Federally Listed as Candidate Medeiros, © Smithsonian 2005 Genetic Safety Net Species IUCN Red List Ranking – Critically Endangered (CR D) Hawai‘i Natural Heritage Ranking‐ Critically Imperiled (G1) Endemism – Kaua‘i SPECIES INFORMATION: Astelia waialealae is a terrestrial rhizomatous perennial herb in the astelia family (Asteliaceae). Plants are short, from a bulbous caudex. Leaves silvery, 12‐20 cm long, and wooly pubescent. Scapes 10‐20 cm long. Racemes 3‐7 cm long. Tepals dark purple and densely pubescent. DISTRIBUTION: Astelia waialealae is endemic to the montane bogs on the central plateau of the island of Kaua‘i. Found only within the Alaka‘i Swamp, Sincock Bog, and Wai‘ale‘ale Summit areas. ABUNDANCE: Three subpopulations are known; with a total population of probably less than ten mature individuals in the Alaka‘i Swamp. The populations have shown a drastic decline over the past ten years. LOCATION AND CONDITION OF KEY HABITAT: Montane bogs located within wet forests in the cloud zone on the central plateau of the island of Kaua‘i. All three of the current occurrences are in Alaka‘i Swamp Wilderness Preserve. THREATS: In the past, most of the bogs have been heavily damaged by feral pigs; Competition with alien plants for light, space, and water; Fire; Small number of remaining individuals. CONSERVATION ACTIONS: The goals of conservation actions are not only to protect current populations, but also to establish further populations to reduce the risk of extinction. In addition to common statewide and island conservation actions, specific actions include: All remaining individuals are within small fenced, weeded, and monitored areas; Augment wild populations and establish new populations in safe harbors; Establish secure ex‐situ stocks with complete representation of remaining individuals.
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E.
    [Show full text]
  • Biogeography of the Monocotyledon Astelioid Clade (Asparagales): a History of Long-Distance Dispersal and Diversification with Emerging Habitats
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 Biogeography of the monocotyledon astelioid clade (Asparagales): A history of long-distance dispersal and diversification with emerging habitats Birch, Joanne L ; Kocyan, Alexander Abstract: The astelioid families (Asteliaceae, Blandfordiaceae, Boryaceae, Hypoxidaceae, and Lanari- aceae) have centers of diversity in Australasia and temperate Africa, with secondary centers of diversity in Afromontane Africa, Asia, and Pacific Islands. The global distribution of these families makes this an excellent lineage to test if current distribution patterns are the result of vicariance or long-distance dispersal and to evaluate the roles of tertiary climatic and geological drivers in lineage diversification. Sequence data were generated from five chloroplast regions (petL-psbE, rbcL, rps16-trnK, trnL-trnLF, trnS-trnSG) for 104 ingroup species sampled across global diversity. The astelioid phylogeny was inferred using maximum parsimony, maximum likelihood, and Bayesian inference methods. Divergence dates were estimated with a relaxed clock applied in BEAST. Ancestral ranges were reconstructed in ’BioGeoBEARS’ applying the corrected Akaike information criterion to test for the best-fit biogeographic model. Diver- sification rates were estimated in Bayesian Analysis of Macroevolutionary Mixtures [BAMM]. Astelioid relationships were inferred as Boryaceae(Blandfordiaceae(Asteliaceae(Hypoxidaceae plus Lanariaceae))). The crown astelioid node was dated to the Late Cretaceous (75.2 million years; 95% highest posterior densities interval 61.0-90.0 million years) with an inferred Eastern Gondwanan origin. However, aste- lioid speciation events have not been shaped by Gondwanan vicariance. Rather long-distance dispersal since the Eocene is inferred to account for current distributions.
    [Show full text]
  • *Wagner Et Al. --Intro
    NUMBER 60, 58 pages 15 September 1999 BISHOP MUSEUM OCCASIONAL PAPERS HAWAIIAN VASCULAR PLANTS AT RISK: 1999 WARREN L. WAGNER, MARIE M. BRUEGMANN, DERRAL M. HERBST, AND JOEL Q.C. LAU BISHOP MUSEUM PRESS HONOLULU Printed on recycled paper Cover illustration: Lobelia gloria-montis Rock, an endemic lobeliad from Maui. [From Wagner et al., 1990, Manual of flowering plants of Hawai‘i, pl. 57.] A SPECIAL PUBLICATION OF THE RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1998 Research publications of Bishop Museum are issued irregularly in the RESEARCH following active series: • Bishop Museum Occasional Papers. A series of short papers PUBLICATIONS OF describing original research in the natural and cultural sciences. Publications containing larger, monographic works are issued in BISHOP MUSEUM four areas: • Bishop Museum Bulletins in Anthropology • Bishop Museum Bulletins in Botany • Bishop Museum Bulletins in Entomology • Bishop Museum Bulletins in Zoology Numbering by volume of Occasional Papers ceased with volume 31. Each Occasional Paper now has its own individual number starting with Number 32. Each paper is separately paginated. The Museum also publishes Bishop Museum Technical Reports, a series containing information relative to scholarly research and collections activities. Issue is authorized by the Museum’s Scientific Publications Committee, but manuscripts do not necessarily receive peer review and are not intended as formal publications. Institutions and individuals may subscribe to any of the above or pur- chase separate publications from Bishop Museum Press, 1525 Bernice Street, Honolulu, Hawai‘i 96817-0916, USA. Phone: (808) 848-4135; fax: (808) 841-8968; email: [email protected]. Institutional libraries interested in exchanging publications should write to: Library Exchange Program, Bishop Museum Library, 1525 Bernice Street, Honolulu, Hawai‘i 96817-0916, USA; fax: (808) 848-4133; email: [email protected].
    [Show full text]