Biogeographic Origin, Taxonomic Status, and Conservation Biology of Asplenium Monanthes L

Total Page:16

File Type:pdf, Size:1020Kb

Biogeographic Origin, Taxonomic Status, and Conservation Biology of Asplenium Monanthes L Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-2003 Biogeographic origin, taxonomic status, and conservation biology of Asplenium monanthes L. in the southeastern United States Allison Elizabeth Shaw Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Shaw, Allison Elizabeth, "Biogeographic origin, taxonomic status, and conservation biology of Asplenium monanthes L. in the southeastern United States" (2003). Retrospective Theses and Dissertations. 20038. https://lib.dr.iastate.edu/rtd/20038 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Biogeographic origin, taxonomic status, and conservation biology of Asplenium monanthes L. in the southeastern United States by Allison Elizabeth Shaw A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Ecology and Evolutionary Biology Program of Study Committee: Donald R. Farrar (Major Professor) John D. Nason Fredric J. Janzen Iowa State University Ames, Iowa 2003 11 Graduate College Iowa State University This is to certify that the master's thesis of Allison Elizabeth Shaw has met the thesis requirements of Iowa State University Signatures have been redacted for privacy iii TABLE OF CONTENTS LIST OF FIGURES v LIST OF TABLES Vlll ACKNOWLEDGEMENTS ix ABSTRACT xi GENERAL INTRODUCTION 1 Research questions 1 Thesis organization 2 Taxonomy of Asplenium monanthes 2 Apo gamy 6 Distribution and habitat of Asplenium monanthes 12 Bioclimatic history of the southeastern U.S. 23 Climate of A. monanthes' habitat in the southeastern U.S. 24 PART I. BIOGEOGRAPIDC ORIGIN AND TAXONOMIC STATUS OF ASPLENIUM MONANTHES L. IN THE SOUTHEASTERN UNITED STATES 36 INTRODUCTION 37 Goals 37 Alternative hypotheses for Asplenium monanthes' origin in southeastern U.S. 37 Causes of biogeographic disjunctions in fems 41 Justification of methods 43 MATERIALS & METHODS 46 Taxa and populations sampled 46 Comparative spore morphology 49 Comparative gametophyte morphology and ontogeny 50 Starch gel electrophoresis 50 Analysis of isozyme data 53 RESULTS 57 Comparative spore morphology 57 Comparative gametophyte morphology and ontogeny 60 Starch gel electrophoresis 73 DISCUSSION 92 Morphological and genetic diversity and differentiation 92 Origin and taxonomic status of the SEUS populations 98 Significance 103 IV PART II. CONSERVATION BIOLOGY OF ASPLENIUM MONANTHES L. IN THE SOUTHEASTERN UNITED STATES 105 INTRODUCTION 106 Goals 106 Considerations and strategies for plant conservation 106 MATERIALS & METHODS 110 Substrate and microclimate characterization 110 Starch gel electrophoresis 115 Gametophyte cultures 115 Population demographics 117 RESULTS 121 Substrate and microclimate characterization 121 Starch gel electrophoresis 143 Gametophyte cultures 144 Population demographics 150 DISCUSSION 158 SEUS microhabitat and microclimate 158 Genetic structure in the southeastern U.S. 164 Plant growth and reproduction in the southeastern U.S. 165 SEUS population trends 172 Conservation recommendations 179 GENERAL CONCLUSION 183 REFERENCES CITED 186 v LIST OF FIGURES Figure 1: Sporophytes of A. monanthes 5 Figure 2: Alternative origins of triploid species 7 Figure 3: Sporogenesis in sexual ferns and various apogamous ferns 9 Figure 4: Approximate northern distribution of A. monanthes in the New World 18 Figure 5: Range of tropical habitats of A. monanthes 19 Figure 6: Range of habitat of A. monanthes in the southeastern U.S. 21 Figure 7: Close-up of typical location hosting A. monanthes in the southeastern U.S. 22 Figure 8: Mean daily maximum temperatures at weather stations in the western Carolinas, northeastern Alabama, and panhandle Florida 26 Figure 9: Mean daily minimum temperatures at weather stations in the western Carolinas, northeastern Alabama, and panhandle Florida 27 Figure 10: Monthly precipitation at weather stations in the western Carolinas, northeastern Alabama, and panhandle Florida 28 Figure 11: Mean monthly precipitation at weather stations in the western Carolinas, northeastern Alabama, and panhandle Florida for 1991-2001 in comparison with long-term mean 29 Figure 12: Alternative colonization scenarios to explain Asplenium monanthes' current distribution in the southeastern U.S. 39 Figure 13: Zymogram showing Asplenium monanthes samples with three different alleles at an isozyme locus 52 Figure 14: Comparison of A. monanthes spores from three of the regions studied 58 Figure 15: The three spore wall layers of A. monanthes 59 Figure 16: Ontogeny of Asplenium monanthes gametophytes 62 Figure 17: Various thalloid growth forms observed in A. monanthes gametophytes 63 Figure 18: Filamentous gametophytes and eventual thallus initiation 64 Vl Figure 19: Development of multiple sporophytes from a single gametophyte 65 Figure 20: Sporophyte initiation 67 Figure 21: Toothed ridges 68 Figure 22: Variations in sporophytes' first fiddleheads 69 Figure 23: Comparison of select gametophytes from the four regions studied 70 Figure 24: Branching of developing fiddlehead 71 Figure 25: Similar filamentous development in gametophytes of A. resiliens, A. heteroresiliens, and A. monanthes 72 Figure 26: Assignment of each allele or phenotypic pattern of A. monanthes to regions to show patterns of similarity among regions 73 Figure 27: Principle Coordinates Analysis of populations based on allele frequencies. Outgroups included. 81 Figure 28: Principle Coordinates Analysis of populations based on allele frequencies. Outgroups excluded. 82 Figure 29: Neighbor Joining tree of populations based on allele frequencies, utilizing Nei's genetic distance 84 Figure 30: Principle Coordinates Analysis of genotypes based on presence/absence of alleles. Outgroups included. 85 Figure 31: Principle Coordinates Analysis of genotypes based on presence/absence of alleles. Outgroups excluded. 89 Figure 32: Neighbor Joining tree of genotypes based on presence/absence of alleles, utilizing Dice's dissimilarity coefficient. Outgroups included. Distances not to scale. 90 Figure 33: Neighbor Joining tree of genotypes based on presence/absence of alleles, utilizing Dice's dissimilarity coefficient. Outgroups not included. Distances to scale. 91 Figure 34: Generalized diagram of an A. monanthes site in the Carolinas showing locations where microclimate data was recorded 112 Figure 35: Yearly maximum and minimum temperatures at various locations within A. monanthes sites and at corresponding weather stations 128 vii Figure 36: Air temperatures at various locations within A. monanthes populations and corresponding weather stations 131 Figure 37: Substrate temperature at various locations within A. monanthes populations 132 Figure 38: Relative humidity at various locations within A. monanthes populations 133 Figure 39: Substrate moisture at various locations within A. monanthes populations 135 Figure 40: Visible light at various locations within A. monanthes populations 138 Figure 41: Photosynthetically active light in various locations within A. monanthes populations 139 Figure 42: Comparison of papillate to hairless Asplenium gametophytes 146 Figure 43: Young gametophytes of Asplenium platyneuron, A. trichomanes, A. resiliens, A. heteroresiliens, and A. monanthes 147 Figure 44: Mature cordate gametophytes of Asplenium platyneuron, A. trichomanes, A. resiliens, A. heteroresiliens, and A. monanthes 149 Figure 45: Population size over time at well-documented A. monanthes populations 154 viii LIST OF TABLES Table 1: SEUS populations of A. monanthes 14 Table 2: Populations of Asplenium monanthes and related species sampled genetically 47 Table 3: Genetic diversity in Asplenium monanthes in comparison with similar plants 75 Table 4: Genetic differentiation in A. monanthes in comparison with similar plants 76 Table 5: Literature review of genetic diversity and differentiation in apogamous plants 78 Table 6: Literature review of genetic differentiation and diversity in fems 79 Table 7: Alphabetical key to genotype codes used in Principle Coordinates Analysis plots and Neighbor Joining trees 86 Table 8: Multilocus isozyme genotypes encountered in each population 87 Table 9 Derivation of fecundity estimates 119 Table 10: Bryophytes at various locations within SEUS A. monanthes populations 122 Table 11: Identification of rocks hosting A. monanthes plants at each population 125 Table 12: Mineral composition of rocks hosting A. monanthes listed in Table 11 126 Table 13: Soil and bryophyte mat characteristics of select A. monanthes sites 127 Table 14: Rock permeability at various A. monanthes populations in comparison with highly permeable sandstone 136 Table 15: Light intensity at various locations within A. monanthes populations 140 Table 16: r2 values for regressions between population success (measured as number of total plants and number of fertile plants) and various microclimate variables 142 Table 17: Census of SEUS populations 151 Table 18: Average SEUS mature population vector, generalized transition matrix, and resulting demographic projection into the future 153 Table 19: Size of fertile plants and their populations 155 IX ACKNOWLEDGEMENTS I am deeply indebted
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • A Taxonomic Revision of Hymenophyllaceae
    BLUMEA 51: 221–280 Published on 27 July 2006 http://dx.doi.org/10.3767/000651906X622210 A TAXONOMIC REVISION OF HYMENOPHYLLACEAE ATSUSHI EBIHARA1, 2, JEAN-YVES DUBUISSON3, KUNIO IWATSUKI4, SABINE HENNEQUIN3 & MOTOMI ITO1 SUMMARY A new classification of Hymenophyllaceae, consisting of nine genera (Hymenophyllum, Didymoglos- sum, Crepidomanes, Polyphlebium, Vandenboschia, Abrodictyum, Trichomanes, Cephalomanes and Callistopteris) is proposed. Every genus, subgenus and section chiefly corresponds to the mono- phyletic group elucidated in molecular phylogenetic analyses based on chloroplast sequences. Brief descriptions and keys to the higher taxa are given, and their representative members are enumerated, including some new combinations. Key words: filmy ferns, Hymenophyllaceae, Hymenophyllum, Trichomanes. INTRODUCTION The Hymenophyllaceae, or ‘filmy ferns’, is the largest basal family of leptosporangiate ferns and comprises around 600 species (Iwatsuki, 1990). Members are easily distin- guished by their usually single-cell-thick laminae, and the monophyly of the family has not been questioned. The intrafamilial classification of the family, on the other hand, is highly controversial – several fundamentally different classifications are used by indi- vidual researchers and/or areas. Traditionally, only two genera – Hymenophyllum with bivalved involucres and Trichomanes with tubular involucres – have been recognized in this family. This scheme was expanded by Morton (1968) who hierarchically placed many subgenera, sections and subsections under
    [Show full text]
  • From Tenerife, Canary Islands
    FERN GAZ. 18(8):342-350. 2010 342 TWO NOVEL ASPLENIUM HYBRIDS (ASPLENIACEAE: PTERIDOPHYTA) FROM TENERIFE, CANARY ISLANDS F.J. RUMSEY1 & A. LEONARD2 1Dept. of Botany, Natural History Museum, Cromwell Road, London, SW7 5BD, UK, e-mail: [email protected] 237 Lower Bere Wood, Waterlooville, Hants., PO7 7NQ, UK e-mail: [email protected] Keywords: Asplenium hemionitis, A. aureum, A. onopteris, A. × tagananaense, hybridization, Macaronesia ABSTRACT A plant closely resembling Asplenium hemionitis L. but with more dissected, lobed fronds was discovered during a trip to the Anaga mountains, Tenerife, Canary Islands in 2009. This was found to show almost complete spore abortion, indicating a hybrid origin. From the associated species and frond form we suggest the other parent to be A. onopteris L. This represents the first documented hybrid of the rather taxonomically isolated A. hemionitis. The hybrid, A. × tagananaense, is described and its distinguishing features given. A further novel Asplenium hybrid, photographed in 1995 but not subsequently refound, is identified as that between A. onopteris and A. aureum Cav. In the absence of a specimen it is not formally described but its distinctive features are illustrated and its occurrence reported. INTRODUCTION In February 2009 a small group of pteridologists led by the second author and comprising Alison Evans, Michael Hayward, Tim Pyner and Martin Rickard went to Tenerife. During the excursion, an odd looking fern, which several in the group considered to be an aberrant form of Asplenium hemionitis was found. The plant had the palmate frond form unique in the region to this species but closer examination showed the lobes themselves to be more highly dissected, the lobules not apparent as they were largely in the same plane as the frond and closely imbricate.
    [Show full text]
  • A Landscape-Based Assessment of Climate Change Vulnerability for All Native Hawaiian Plants
    Technical Report HCSU-044 A LANDscape-bASED ASSESSMENT OF CLIMatE CHANGE VULNEraBILITY FOR ALL NatIVE HAWAIIAN PLANts Lucas Fortini1,2, Jonathan Price3, James Jacobi2, Adam Vorsino4, Jeff Burgett1,4, Kevin Brinck5, Fred Amidon4, Steve Miller4, Sam `Ohukani`ohi`a Gon III6, Gregory Koob7, and Eben Paxton2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaii National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawai‘i at Hilo, Hilo, HI 96720 4 U.S. Fish & Wildlife Service —Ecological Services, Division of Climate Change and Strategic Habitat Management, Honolulu, HI 96850 5 Hawai‘i Cooperative Studies Unit, Pacific Island Ecosystems Research Center, Hawai‘i National Park, HI 96718 6 The Nature Conservancy, Hawai‘i Chapter, Honolulu, HI 96817 7 USDA Natural Resources Conservation Service, Hawaii/Pacific Islands Area State Office, Honolulu, HI 96850 Hawai‘i Cooperative Studies Unit University of Hawai‘i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 November 2013 This product was prepared under Cooperative Agreement CAG09AC00070 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey. Technical Report HCSU-044 A LANDSCAPE-BASED ASSESSMENT OF CLIMATE CHANGE VULNERABILITY FOR ALL NATIVE HAWAIIAN PLANTS LUCAS FORTINI1,2, JONATHAN PRICE3, JAMES JACOBI2, ADAM VORSINO4, JEFF BURGETT1,4, KEVIN BRINCK5, FRED AMIDON4, STEVE MILLER4, SAM ʽOHUKANIʽOHIʽA GON III 6, GREGORY KOOB7, AND EBEN PAXTON2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaiʽi National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawaiʽi at Hilo, Hilo, HI 96720 4 U.
    [Show full text]
  • A Journal on Taxonomic Botany, Plant Sociology and Ecology Reinwardtia
    A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY REINWARDTIA A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY Vol. 13(4): 317 —389, December 20, 2012 Chief Editor Kartini Kramadibrata (Herbarium Bogoriense, Indonesia) Editors Dedy Darnaedi (Herbarium Bogoriense, Indonesia) Tukirin Partomihardjo (Herbarium Bogoriense, Indonesia) Joeni Setijo Rahajoe (Herbarium Bogoriense, Indonesia) Teguh Triono (Herbarium Bogoriense, Indonesia) Marlina Ardiyani (Herbarium Bogoriense, Indonesia) Eizi Suzuki (Kagoshima University, Japan) Jun Wen (Smithsonian Natural History Museum, USA) Managing editor Himmah Rustiami (Herbarium Bogoriense, Indonesia) Secretary Endang Tri Utami Lay out editor Deden Sumirat Hidayat Illustrators Subari Wahyudi Santoso Anne Kusumawaty Reviewers Ed de Vogel (Netherlands), Henk van der Werff (USA), Irawati (Indonesia), Jan F. Veldkamp (Netherlands), Jens G. Rohwer (Denmark), Lauren M. Gardiner (UK), Masahiro Kato (Japan), Marshall D. Sunberg (USA), Martin Callmander (USA), Rugayah (Indonesia), Paul Forster (Australia), Peter Hovenkamp (Netherlands), Ulrich Meve (Germany). Correspondence on editorial matters and subscriptions for Reinwardtia should be addressed to: HERBARIUM BOGORIENSE, BOTANY DIVISION, RESEARCH CENTER FOR BIOLOGY-LIPI, CIBINONG 16911, INDONESIA E-mail: [email protected] REINWARDTIA Vol 13, No 4, pp: 367 - 377 THE NEW PTERIDOPHYTE CLASSIFICATION AND SEQUENCE EM- PLOYED IN THE HERBARIUM BOGORIENSE (BO) FOR MALESIAN FERNS Received July 19, 2012; accepted September 11, 2012 WITA WARDANI, ARIEF HIDAYAT, DEDY DARNAEDI Herbarium Bogoriense, Botany Division, Research Center for Biology-LIPI, Cibinong Science Center, Jl. Raya Jakarta -Bogor Km. 46, Cibinong 16911, Indonesia. E-mail: [email protected] ABSTRACT. WARD AM, W., HIDAYAT, A. & DARNAEDI D. 2012. The new pteridophyte classification and sequence employed in the Herbarium Bogoriense (BO) for Malesian ferns.
    [Show full text]
  • Epilist 1.0: a Global Checklist of Vascular Epiphytes
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong.
    [Show full text]
  • Reprint Requests, Current Address: Dept
    American Journal of Botany 88(6): 1118±1130. 2001. RBCL DATA REVEAL TWO MONOPHYLETIC GROUPS OF FILMY FERNS (FILICOPSIDA:HYMENOPHYLLACEAE)1 KATHLEEN M. PRYER,2,5 ALAN R. SMITH,3 JEFFREY S. HUNT,2 AND JEAN-YVES DUBUISSON4 2Department of Botany, The Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, Illinois 60605-2496 USA; 3University Herbarium, 1001 Valley Life Sciences Building #2465, University of California, Berkeley, California 94720-2465 USA; and 4Laboratoire de PaleÂobotanique et PaleÂoeÂcologie, FR3-CNRS ``Institut d'E cologie,'' Universite Pierre et Marie Curie, 12 rue Cuvier, F-75005 Paris, France The ``®lmy fern'' family, Hymenophyllaceae, is traditionally partitioned into two principal genera, Trichomanes s.l. (sensu lato) and Hymenophyllum s.l., based upon sorus shape characters. This basic split in the family has been widely debated this past century and hence was evaluated here by using rbcL nucleotide sequence data in a phylogenetic study of 26 ®lmy ferns and nine outgroup taxa. Our results con®rm the monophyly of the family and provide robust support for two monophyletic groups that correspond to the two classical genera. In addition, we show that some taxa of uncertain af®nity, such as the monotypic genera Cardiomanes and Serpyllopsis, and at least one species of Microtrichomanes, are convincingly included within Hymenophyllum s.l. The tubular- or conical-based sorus that typi®es Trichomanes s.l. and Cardiomanes, the most basal member of Hymenophyllum s.l., is a plesiomorphic character state for the family. Tubular-based sori occurring in other members of Hymenophyllum s.l. are most likely derived independently and more than one time.
    [Show full text]
  • Research Paper
    ZANCO Journal of Pure and Applied Sciences The official scientific journal of Salahaddin University-Erbil https://zancojournals.su.edu.krd/index.php/JPAS ISSN (print ):2218-0230, ISSN (online): 2412-3986, DOI: http://dx.doi.org/10.21271/zjpas RESEARCH PAPER Phytochemical study of Asplenium ceterach L. (Aspleniaceae) from Erbil province, Kurdistan of Iraq Ismail, A.M.1, Hamdi, B.A2, Maulood, B.K.3 & Al-Khasrejy, T.O.4 &Maythem AL-Amery1 1-Biology Department, College of Science for Women, University of Baghdad. Baghdad 2- College of Pharmacy, Hawler Medical University- Erbil 3- Biology Department, College of Science, Salahaddin University- Erbil, Kurdistan. 4-Biology Department, College of Education for Pure Science, University of Tikrit. A B S T R A C T Asplenium ceterach L. (Rustyback fern) is a plant species traditionally used in Mediterranean countries and a traditional remedy for several diseases such as kidney stone and spleen complaints. In the current study a phytochemical analysis of the sporophytes focused on the constituents of Asplenium ceterach L. (Rustyback fern). Mature sporophyte of the fern was collected from Malakan in Erbil district during May – July 2016. As the phytochemicals qualitatively was screened had showed three flavonoid compounds: keampferol, keampferol- 3-O- glycoside and leutolin. Kaempferol was the dominant compound 130 µg/ml, while the total flavonoids concentration was only 265 µg/ml.in addition the screening shows that alkaloids, tannins, flavonoids and saponin were presented. KEY WORDS: Phytochemicals Aspleniaceae Rustyback ferm.. DOI: http://dx.doi.org/10.21271/ZJPAS.33.s1.20 ZJPAS (2021) , 33(s1);187-191. 1.
    [Show full text]
  • Fern Classification
    16 Fern classification ALAN R. SMITH, KATHLEEN M. PRYER, ERIC SCHUETTPELZ, PETRA KORALL, HARALD SCHNEIDER, AND PAUL G. WOLF 16.1 Introduction and historical summary / Over the past 70 years, many fern classifications, nearly all based on morphology, most explicitly or implicitly phylogenetic, have been proposed. The most complete and commonly used classifications, some intended primar• ily as herbarium (filing) schemes, are summarized in Table 16.1, and include: Christensen (1938), Copeland (1947), Holttum (1947, 1949), Nayar (1970), Bierhorst (1971), Crabbe et al. (1975), Pichi Sermolli (1977), Ching (1978), Tryon and Tryon (1982), Kramer (in Kubitzki, 1990), Hennipman (1996), and Stevenson and Loconte (1996). Other classifications or trees implying relationships, some with a regional focus, include Bower (1926), Ching (1940), Dickason (1946), Wagner (1969), Tagawa and Iwatsuki (1972), Holttum (1973), and Mickel (1974). Tryon (1952) and Pichi Sermolli (1973) reviewed and reproduced many of these and still earlier classifica• tions, and Pichi Sermolli (1970, 1981, 1982, 1986) also summarized information on family names of ferns. Smith (1996) provided a summary and discussion of recent classifications. With the advent of cladistic methods and molecular sequencing techniques, there has been an increased interest in classifications reflecting evolutionary relationships. Phylogenetic studies robustly support a basal dichotomy within vascular plants, separating the lycophytes (less than 1 % of extant vascular plants) from the euphyllophytes (Figure 16.l; Raubeson and Jansen, 1992, Kenrick and Crane, 1997; Pryer et al., 2001a, 2004a, 2004b; Qiu et al., 2006). Living euphyl• lophytes, in turn, comprise two major clades: spermatophytes (seed plants), which are in excess of 260 000 species (Thorne, 2002; Scotland and Wortley, Biology and Evolution of Ferns and Lycopliytes, ed.
    [Show full text]
  • Studies in the Systematics of Filmy Ferns VIII C 同phalomanes Presl Subgen
    植物研究雑誌 J. J. Jpn. Bo t. 66: 66: 134-146 (1 991) Studies in the Systematics of Filmy Ferns VIII C 同phalomanes Presl subgen. Cephalomanes Kunio IWATSUKI Botanical Botanical Gardens ,Faculty of Science ,University of Tokyo , 3-7-1 ,Hakusan ,Bunkyo ・ku ,Tokyo , 112 JAPAN コケシノブ類の分類に関する研究班 ソテツホラゴケ亜属 岩槻邦男 東京大学理学部附属植物園 112 東京都文京区白山3-7-1 (Received (Received on January 7, 1991) A filmy fern subgenus , Cephalomanes subgen. Cephalomanes , was taxonomically revised. Taxo- nornic nornic characters were surveyed and re-evaluated from systematic viewpoints. Six species including infraspecific infraspecific taxa were recognized and keyed ou t. Enurneration of all taxa was given with notes on distribution distribution and taxonomy. C句phaloman 回 crassum and C. madagascariense are restricted to particular localities localities and are rare with a few collections. C 句phalomanes densinervium and C. singaporianum are also also restricted to narrow areas and are not variable , but C. atrovirens and C. javanicum have wide areas areas of distribution and are variable with many infraspecific taxa. Rheophytic nature , or adaptation to to the habitat along stream , is discussed in relation to habitat and phenetic features. (Continued (Continued from Acta Phytotax. Geobot. 35: 165-179 , 1984.) Cephalomanes was described by Presl in 1843 following to Copeland in its position. Most of the on the basis of C. α trovirens and some ten species species have been ill-defined ,and a revision is have currently been referred to subgen. necessary for this complex group. Cephalomanes (Iwatsuki 1984) from the Old In the present part of this series , subgen. World tropics: East Madagascar , India to con- Cephalomanes will be treated in its strict sense , tinental tinental Southeast Asia ,Hainan ,Taiwan , southern though the generic classification was revised and Ryukyus ,throughout 恥1alesia to Polynesia , south broadly circumscribed leaving Cephalomanes s.
    [Show full text]
  • Phytochemical Characterization and Antioxidant Potential of Rustyback Fern (Asplenium Ceterach L.)
    Research Article Lekovite Sirovine vol. 37 (2017) 15 Phytochemical characterization and antioxidant potential of rustyback fern (Asplenium ceterach L.) SUZANA ŽIVKOVIC´ 1,*,M ARIJANA SKORIC´ 2,B RANISLAV ŠILER1,S LAVICA DMITROVIC´ 1,B ILJANA FILIPOVIC´ 1,T IJANA NIKOLIC´ 2, AND DANIJELA MIŠIC´ 1 1Institute for Biological Research “Siniša Stankovic”,´ University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia 2Faculty of Biology, University of Belgrade, Takovska 43, 11060 Belgrade, Serbia *Corresponding author: [email protected] Received: October 12, 2017 Accepted: October 15, 2017 Published on-line: October 16, 2017 Published: December 25, 2017 Asplenium ceterach L. (syn. Ceterach officinarum Willd.) or rustyback fern is a plant species tradition- ally used in Mediterranean countries as an expectorant, diuretic, against spleen complaints, kidney stones and hemorrhoids. Phytochemical analysis of gametophytes and sporophytes of A. ceterach was performed, followed by comparative analysis of phenolic composition and the antioxidant properties of the extracts (scavenging capacities against ABTS•+ and DPPH•). Totally 16 phenolic compounds belonging to the classes of phenolic acids (hydroxybenzoic and hydroxycynnamic acids), flavonoids (flavan-3-ols, flavonols), and xanthones were identified using UHPLC/DAD/–HESI-MS/MS analysis. Different phenolics’ composition of the two phases of the life cycle of this fern was observed which significantly determined their radical scavenging activities. In sporophytes of A. ceterach considerably high amounts of chlorogenic acid were found (~21 µg 100 mg-1 fresh weight), while xanthones were the most abundant in gametophytes (mangiferin glucoside, reaching 2.54 µg 100 mg-1 fresh weight), recommending this fern species as a valuable source of bioactive compounds.
    [Show full text]
  • 2010 Rare Plant Survey, O'ahu Forest National Wildlife Refuge, Waipi'o, O
    2010 Rare Plant Survey, O‘ahu Forest National Wildlife Refuge, Waipi‘o, O‘ahu Clyde Imada, Patti Clifford, and Joel Q.C. Lau Honolulu, Hawai‘i October 2011 Cover: A vegetative specimen of an endemic species of Lobelia, likely the federally listed Endangered L. koolauensis. Photo by Alex Lau 2010 Rare Plant Survey, O‘ahu Forest National Wildlife Refuge, Waipi‘o, O‘ahu Final Report Prepared by: Clyde Imada 1, Patti Clifford 2,, and Joel Q.C. Lau Hawaii Biological Survey Bishop Museum Honolulu, HI 96817 1. Bishop Museum, Department of Natural Sciences 2. Hawai‘i Invasive Species Council, Weed Risk Assessment Prepared for: U.S. Fish and Wildlife Service O‘ahu Forest National Wildlife Refuge Complex 66-590 Kamehameha Hwy, Room 2C Hale‘iwa, HI 96812 Bishop Musem Technical Report 55 Honolulu, Hawai‘i October 2011 Published by: BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright © 2011 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2011-022 to the Hawaii Biological Survey O‘ahu Forest National Wildlife Refuge Botanical Survey TABLE OF CONTENTS EXECUTIVE SUMMARY ........................................................................................................................................ iii I. INTRODUCTION .................................................................................................................................................... 1 Ia. Setting .............................................................................................................................................................
    [Show full text]