Origin of the Hawaiian Rainforest and Its Transition States in Long-Term

Total Page:16

File Type:pdf, Size:1020Kb

Origin of the Hawaiian Rainforest and Its Transition States in Long-Term EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Biogeosciences, 10, 5171–5182, 2013 Open Access www.biogeosciences.net/10/5171/2013/ Biogeosciences doi:10.5194/bg-10-5171-2013 Biogeosciences Discussions © Author(s) 2013. CC Attribution 3.0 License. Open Access Open Access Climate Climate of the Past of the Past Discussions Origin of the Hawaiian rainforest and its transition states in Open Access Open Access long-term primary succession Earth System Earth System Dynamics 1 2 Dynamics D. Mueller-Dombois and H. J. Boehmer Discussions 1University of Hawaii at Manoa, Department of Botany, 3190 Maile Way, Honolulu, HI 96822, USA 2Technical University of Munich, Department of Ecology and Ecosystem Management, Chair for Strategic Landscape Open Access Open Access Planning and Management, Emil-Ramann-Strasse 6, 85350 Freising-Weihenstephan, GermanyGeoscientific Geoscientific Instrumentation Instrumentation Correspondence to: D. Mueller-Dombois ([email protected]) Methods and Methods and Received: 31 December 2012 – Published in Biogeosciences Discuss.: 11 February 2013 Data Systems Data Systems Revised: 3 June 2013 – Accepted: 21 June 2013 – Published: 30 July 2013 Discussions Open Access Open Access Geoscientific Geoscientific Abstract. This paper addresses the question of transition redeveloping in the more dissected landscapes of the older is- Model Development states in the Hawaiian rainforest ecosystem with emphasis lands loses stature,Model often Development forming large gaps that are invaded on their initial developments. Born among volcanoes in the by the aluminum tolerant uluhe fern. The ’ohi’a¯ trees still Discussions north central Pacific about 4 million years ago, the Hawai- thrive on soils rejuvenated from landslides and from Asian Open Access ian rainforest became assembled from spores of algae, fungi, dust on the oldest (5 million years old) island Kaua’iOpen Access but their lichens, bryophytes, ferns and from seeds of about 275 flow- stature and living biomassHydrology is greatly diminished. and Hydrology and ering plants that over the millennia evolved into ca. 1000 en- Earth System Earth System demic species. Outstanding among the forest builders were the tree ferns (Cibotium spp.) and the ’ohi’a¯ lehua trees (Met- Sciences Sciences rosideros spp.), which still dominate the Hawaiian rainfor- 1 Introduction: origin and evolution of Hawaii’s Discussions Open Access est ecosystem today. The structure of this forest is simple. rainforest Open Access The canopy in closed mature rainforests is dominated by co- Ocean Science horts of Metrosideros polymorpha and the undergrowth by The Hawaiian rainforestOcean was born Science among volcanoes in the tree fern species of Cibotium. When a new lava flow cuts north central Pacific in complete isolation. Its origin is an- Discussions through this forest, kipuka are formed, i.e., islands of rem- cient, probably pre-Pleistocene. The latest information gives nant vegetation. On the new volcanic substrate, the assem- the date of colonization of its dominant tree taxon Met- Open Access blage of plant life forms is similar to the assemblage dur- rosideros (’ohi’a¯ lehua) as 3.9 (to 6.3) Myr (PercyOpen Access et al., ing the evolution of this system. In open juvenile forests, 2008). This date range, obtained from phylogenetic meth- Solid Earth a mat-forming fern, the uluhe fern (Dicranopteris linearis), ods, puts its island origin intoSolid the Pliocene, Earth coinciding with Discussions becomes established. It inhibits further regeneration of the the emergence of the oldest high island Kaua’i. The arrival dominant ’ohi’a¯ tree, thereby reinforcing the cohort struc- date of the second main structural component of the Hawai- ture of the canopy guild. In the later part of its life cycle, the ian rainforest, the tree fern Cibotium (hapu’u), has not yet Open Access Open Access canopy guild breaks down often in synchrony. The trigger is been established, but is believed to be of equally ancient ori- hypothesized to be a climatic perturbation. After the distur- gin (Ranker, personal communciation, 2012). Even today, The Cryosphere the early communityThe assemblage Cryosphere on new volcanic surfaces bance, the forest becomes reestablished in about 30–40 yr. As Discussions the volcanic surfaces age, they go from a mesotrophic to a eu- follows the evolution of plant life from algae and fungi via trophic phase, reaching a biophilic nutrient climax by about lichens, mosses, and ferns (Smathers and Mueller-Dombois, 1–25 K yr. Thereafter, a regressive oligotrophic phase fol- 2007). However, seed plants now arrive early, commonly lows; the soils become exhausted of nutrients. The shield vol- after 4 yr, with the endemic Metrosideros polymorpha tree canoes break down. Marginally, forest habitats change into among the first. bogs and stream ecosystems. The broader ’ohi’a¯ rainforest The Hawaiian flora of seed-bearing plants consists of about 275 successfully established indigenous populations Published by Copernicus Publications on behalf of the European Geosciences Union. Figures 5172 D. Mueller-Dombois and H. J. Boehmer: Origin of the Hawaiian rainforest and its transition states (Fosberg, 1948; Wagner et al., 1999). They arrived by long- distance transfer either by wind in the jet streams (small seeds only, such as those of Metrosideros, as did the fern spores and lower plant forms) or attached to the feet, feath- ers or in the guts of storm tossed birds (Carlquist, 1980). A minor number of plant propagules arrived within ocean cur- rents. Most of the latter form Hawaii’s native coastal vegeta- tion, which is rather impoverished compared to those of the islands in Micronesia and Melanesia (Mueller-Dombois and Fosberg, 1998). This process of natural invasion took many millennia. In that period new species evolved as endemics from only about 10 % of the original colonizers. Together they now form a native Hawaiian flora of about 1000 species (Wagner et al., 1999). 575 Fig. 1. 1. TheThe 1955 1955 Kamā`ili Kam `a`āa’ili¯ flow ’a’witha¯ kipuka flow in with background kipuka (photo in background by D. Mueller- 2 Early primary succession Dombois,(photo by 1971). D. Mueller-Dombois, 1971). Three distinct stages in early rainforest succession can be recognized. 2.1 Stereocaulon lichen stage When a lava flow cuts through a Hawaiian rainforest, patches of rainforest often survive as so-called kipuka, i.e., islands of remnant vegetation (Fig. 1). These vegetation islands and nearby intact vegetation provide most of the propagules for plant invasion on the new volcanic surfaces (e.g., Drake, 1992; Drake and Mueller-Dombois, 1993; Kitayama et al., 1995). Typically, such invasion starts with blue-green al- gae, such as Anacystis montana, Scytonema myochrous, Stigonema panniforme, among others. Early mosses include 26 species of Campylopus and Rhacomitrium lanuginosum. These settle in lava fissures together with low-growing fern species of Nephrolepis and Pityrogramma. A lichen, Stereo-580 Fig. 2. 2. TheThe same same Kam Kamā`ili `a`a’ili¯ ā flow ’a’ fourteena¯ flow fourteenyears later yearswith cohort later of with Metrosideros cohort caulon vulcani, becomes obvious in four years, often grow- ofsaplingsMetrosideros (photo by D.saplings Mueller-Dombois, (photo by1985). D. Mueller-Dombois, 1985). ing as continuous cover on lava rock surfaces. Together with the invasion of this white-grey dendroid lichen, invasion of seed plants are noted. They include typical native pioneer 2.2 Dicranopteris fern stage shrubs such as Dubautia scabra, Vaccinium reticulatum, and species of endemic Rumex. Simultaneously, tree seedlings of After about 50–100 yr, the new Metrosideros seedlings have Metrosideros polymorpha appear in the lava cracks, soon de- grown into a juvenile tree stand. Typically at this ad- veloping into saplings (Fig. 2). Early successional shrubs, vanced stage, the native uluhe fern (Dicranopteris linearis) such as the native Coprosma ernodeoides, Leptecophylla has moved onto the new volcanic substrate beneath the tameiameiae, and Dodonaea viscosa soon begin to supple- trees (Fig. 3). Juvenile Metrosideros trees have rather short ment the first group. branches along their entire stems, and the trees thus form In the lichen stage, rock fissures become filled with min- open stands, which allows for much direct sunlight to pen- eral dust and organic matter and the Stereocaulon itself is etrate to the ground. This light environment is ideal for known to work on the breakdown of the rock surfaces (Jack- the heliophytic fern Dicranopteris linearis, a stoloniferous son, 1969) by producing carbonic acid and thus releasing iron mat-former, which covers the open bedrock surface, thereby chelates, an essential plant nutrient. Potassium is another soil preventing further Metrosideros seedlings to develop into nutrient dissolved early from glass-coated basalt fragments. saplings. Metrosideros seedlings are relatively shade toler- Limited amounts of atmospheric nitrogen become available ant but they only grow into the sapling stage in well lighted 27 from fixation by blue-green algae. situations (Burton and
Recommended publications
  • Metrosideros Polymorpha Gaudich
    Metrosideros polymorpha Gaudich. JAMES A. ALLEN Paul Smiths College, Paul Smiths, NY MYRTACEAE (MYRTLE FAMILY) Metrosideros collina (J.R. and G. Forst.) A. Gray subsp. polymorpha (Gaud.) Rock. (Little and Skolmen 1989). See also the extensive list of synonyms in Wagner and others (1990) Lehua, ‘ohi’a Metrosideros is a genus of about 50 species. With the excep- hybridization and genetic polymorphism is unknown (Wagner tion of one species found in South Africa, all grow in the and others 1990). Pacific from the Philippines, through Papua New Guinea, to The heartwood is reddish brown, heavy (specific gravity New Zealand and on high volcanic islands (Wagner and oth- of about 0.70), of fine and even texture, very hard, and strong. ers 1990). Five species occur in the Hawaiian Islands (Wag- Native Hawaiians used the wood extensively for construction, ner and others 1990). Metrosideros polymorpha is native to household implements, and carvings. Principal modern uses Hawaii, where it grows on all the main islands except Niihau include flooring, marine construction, pallets, fenceposts, and and Kahoolawe. It is the most abundant and widespread fuelwood. The wood’s limitations include excessive shrinkage M native tree in Hawaii (Adee and Conrad 1990) and grows in in drying, density, and the difficulty and expense of harvesting association with numerous species in both wet and relatively in low-volume stands (Adee and Conrad 1990, Little and Skol- dry forests. men 1989). Today, M. polymorpha is perhaps most highly val- Metrosideros polymorpha is a slow-growing, evergreen ued in Hawaii for uses in watershed protection, aesthetics, and species capable of reaching 24 to 30 m in height and about 1 m habitat for native birds, including several endangered species.
    [Show full text]
  • Keauhou Bird Conservation Center
    KEAUHOU BIRD CONSERVATION CENTER Discovery Forest Restoration Project PO Box 2037 Kamuela, HI 96743 Tel +1 808 776 9900 Fax +1 808 776 9901 Responsible Forester: Nicholas Koch [email protected] +1 808 319 2372 (direct) Table of Contents 1. CLIENT AND PROPERTY INFORMATION .................................................................... 4 1.1. Client ................................................................................................................................................ 4 1.2. Consultant ....................................................................................................................................... 4 2. Executive Summary .................................................................................................. 5 3. Introduction ............................................................................................................. 6 3.1. Site description ............................................................................................................................... 6 3.1.1. Parcel and location .................................................................................................................. 6 3.1.2. Site History ................................................................................................................................ 6 3.2. Plant ecosystems ............................................................................................................................ 6 3.2.1. Hydrology ................................................................................................................................
    [Show full text]
  • Apapane (Himatione Sanguinea)
    The Birds of North America, No. 296, 1997 STEVEN G. FANCY AND C. JOHN RALPH 'Apapane Himatione sanguinea he 'Apapane is the most abundant species of Hawaiian honeycreeper and is perhaps best known for its wide- ranging flights in search of localized blooms of ō'hi'a (Metrosideros polymorpha) flowers, its primary food source. 'Apapane are common in mesic and wet forests above 1,000 m elevation on the islands of Hawai'i, Maui, and Kaua'i; locally common at higher elevations on O'ahu; and rare or absent on Lāna'i and Moloka'i. density may exceed 3,000 birds/km2 The 'Apapane and the 'I'iwi (Vestiaria at times of 'ōhi'a flowering, among coccinea) are the only two species of Hawaiian the highest for a noncolonial honeycreeper in which the same subspecies species. Birds in breeding condition occurs on more than one island, although may be found in any month of the historically this is also true of the now very rare year, but peak breeding occurs 'Ō'ū (Psittirostra psittacea). The highest densities February through June. Pairs of 'Apapane are found in forests dominated by remain together during the breeding 'ōhi'a and above the distribution of mosquitoes, season and defend a small area which transmit avian malaria and avian pox to around the nest, but most 'Apapane native birds. The widespread movements of the 'Apapane in response to the seasonal and patchy distribution of ' ōhi'a The flowering have important implications for disease Birds of transmission, since the North 'Apapane is a primary carrier of avian malaria and America avian pox in Hawai'i.
    [Show full text]
  • The Following Tree Seedlings Are Available to Order from the State of Hawaii Division of Forestry and Wildlife, State Tree Nursery
    The following tree seedlings are available to order from the State of Hawaii Division of Forestry and Wildlife, State Tree Nursery: Scientific Name: Common Name: Dibble/ Pot size: Acacia koa……………………… Koa……………………………….. Small Acacia koaia……………………... Koai’a……………………………. Small Araucaria columnaris…………….. Norfolk-island Pine……………… Small Cryptomeria japonica……………. Sugi Pine………………………… Small Cupressus lusitanica……………... Mexican Cypress………………… Small Cupressus macrocarpa…………… Monterey Cypress……………….. Small Cupressus simpervirens………….. Italian Cypress…………………… Medium Eucalyptus deglupta……………… Rainbow Bark……………………. Small Eucalyptus robusta……………….. Swamp Mahogany……………….. Small Metrosideros polymorpha……….. Ohia……………………………… Medium or 3” pot Pinus elliotii……………………… Slash Pine………………………... Small Pinus radiata……………………... Monterey Pine…………………… Small Podocarpus sp……………………. Podocarpus………………………. 3” pot Santalum sp……………………… Sandalwood……………………… Medium or 3” pot Tristania conferta………………… Brush Box………………………... Small Acacia koa (Koa): This large hardwood tree is endemic to the Hawaiian Islands. The tree has exceeded 100 ft in height with basal diameter far beyond 50 inches in old growth stands. The wood is prized for furniture and canoe works. This legume has pods with black seeds for reproduction. The wood has similar properties to that of black walnut. The yellow flowers are borne in dense round heads about 2@ in diameter. Tree growth is best above 800 ft; seems to grow best in the ‘Koa belt’ which is situated at an elevation range between 3,500 - 6,000 ft. It is often found in areas where there is fog in the late afternoons. It should be planted in well- drained fertile soils. Grazing animals relish the Koa foliage, so young seedlings should be protected Acacia koaia (Koaia): Related to the Koa, Koaia is native to Hawaii. The leaves and flowers are much the same as Koa.
    [Show full text]
  • Achatinella Abbreviata (O`Ahu Tree Snail) 5-Year Review Summary And
    Achatinella abbreviata (O`ahu Tree Snail) 5-Year Review Summary and Evaluation U.S. Fish and Wildlife Service Pacific Islands Fish and Wildlife Office Honolulu, Hawai`i 5-YEAR REVIEW Species reviewed: Achatinella abbreviata (O`ahu tree snail) TABLE OF CONTENTS 1.0 GENERAL INFORMATION.......................................................................................... 3 1.1 Reviewers....................................................................................................................... 3 1.2 Methodology used to complete the review:................................................................. 3 1.3 Background: .................................................................................................................. 3 2.0 REVIEW ANALYSIS....................................................................................................... 4 2.1 Application of the 1996 Distinct Population Segment (DPS) policy......................... 4 2.2 Recovery Criteria.......................................................................................................... 5 2.3 Updated Information and Current Species Status .................................................... 6 2.4 Synthesis......................................................................................................................... 9 3.0 RESULTS ........................................................................................................................ 10 3.1 Recommended Classification:...................................................................................
    [Show full text]
  • The Threat of the Non-Native Neotropical Rust Puccinia Psidii to Hawaiian Biodiversity and Native Ecosystems: a Case Example of the Need for Prevention
    The Threat of the Non-native Neotropical Rust Puccinia psidii to Hawaiian Biodiversity and Native Ecosystems: A Case Example of the Need for Prevention Lloyd Loope, U.S. Geological Survey,Pacific Island Ecosystems Research Center, Haleaka- la Field Station, P.O. Box 369, Makawao, HI 96768; [email protected] Janice Uchida, Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, 3190 Maile Way, Honolulu, HI 96822; [email protected] Loyal Mehrhoff, U.S. Geological Survey, Pacific Island Ecosystems Research Center, 677 Ala Moana Boulevard, Suite 615, Honolulu, HI 96813; [email protected] Introduction The threat of invasive species to natural areas presents enormous challenges, but there are opportunities for working toward solutions, often in conjunction with agricultural and forestry perspectives. There is a growing awareness of the danger to botanical biodiversity and conservation from “emerging infectious diseases” that have increased in incidence, geo- graphical distribution, or host range/pathogenicity; have newly evolved characteristics; and/or have been newly discovered (Anderson et al. 2004). There is a heightened concern for forest health due to accelerating worldwide movement of plant pathogens (e.g., with inef- fective quarantine measures) that negatively affect both biodiversity and commercial forestry (Wingfield 2003). An important related concept is that of the ability of fungi to jump to new hosts following anthropogenic introduction. Native hosts are exposed to pathogens with no coevolved recognition or defense mechanism, and microevolution toward increased viru- lence of introduced pathogens can result (Wingfield 2003; Slippers et al. 2005). The rust fungus Puccinia psidii (Basidiomycota, Uredinales: Pucciniaceae), a species first document- ed to have jumped from native guava (Psidium guajava, Myrtaceae) to introduced Eucalyp- tus spp.
    [Show full text]
  • Hawaiian Hoary Bat Inventory in National Parks on Hawaii, Maui and Molokai
    PACIFIC COOPERATIVE STUDIES UNIT UNIVERSITY OF HAWAI`I AT MĀNOA Dr. David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 140 HAWAIIAN HOARY BAT INVENTORY IN NATIONAL PARKS ON HAWAI`I, MAUI AND MOLOKA`I April 2007 Heather R. Fraser1 Vanessa Parker-Geisman1 George R. Parish, IV1 1. Pacific Cooperative Studies Unit (University of Hawai`i at Mānoa), NPS Inventory and Monitoring Program, Pacific Island Network, PO Box 52, Hawai`i National Park, HI 96718 TABLE OF CONTENTS List of Tables......................................................................................................iii List of Figures ....................................................................................................iii Abstract ...............................................................................................................1 Introduction.........................................................................................................2 Methods ...............................................................................................................3 Study Area .....................................................................................................3 Selection of Survey Points and Transects .....................................................5 Survey Methods.............................................................................................8 Results...............................................................................................................10
    [Show full text]
  • Inventorying the Tree Fern Genus Cibotium of Sumatra: Ecology, Population Size and Distribution in North Sumatra
    BIODIVERSITAS ISSN: 1412-033X (printed edition) Volume 12, Number 4, October 2011 ISSN: 2085-4722 (electronic) Pages: 204-211 DOI: 10.13057/biodiv/d120404 Inventorying the tree fern Genus Cibotium of Sumatra: Ecology, population size and distribution in North Sumatra TITIEN NGATINEM PRAPTOSUWIRYO♥, DIDIT OKTA PRIBADI, DWI MURTI PUSPITANINGTYAS, SRI HARTINI Center for Plant Conservation-Bogor Botanical Gardens, Indonesian Institute of Sciences. Jl. Ir. H.Juanda No. 13, P.O. Box 309 Bogor 16003, Indonesia. Tel. +62-251-8322187. Fax. +62-251- 8322187. ♥e-mail: [email protected] Manuscript received: 26 June 2011. Revision accepted: 18 August 2011. ABSTRACT Praptosuwiryo TNg, Pribadi DO, Puspitaningtyas DM, Hartini S (2011) Inventorying the tree fern Genus Cibotium of Sumatra: Ecology, population size and distribution in North Sumatra. Biodiversitas 12: 204-211. Cibotium is one tree fern belongs to the family Cibotiaceae which is easily differentiated from the other genus by the long slender golden yellowish-brown smooth hairs covered its rhizome and basal stipe with marginal sori at the ends of veins protected by two indusia forming a small cup round the receptacle of the sorus. It has been recognized as material for both traditional and modern medicines in China, Europe, Japan and Southeast Asia. Population of Cibotium species in several countries has decreased rapidly because of over exploitation and there is no artificial cultivation until now. The aims of this study were: (i) To re-inventory the species of Cibotiun in North Sumatra, (ii) to record the ecology and distribution of each species, and (iii) to assess the population size of each species.
    [Show full text]
  • Tree Ferns: Monophyletic Groups and Their Relationships As Revealed by Four Protein-Coding Plastid Loci
    Molecular Phylogenetics and Evolution 39 (2006) 830–845 www.elsevier.com/locate/ympev Tree ferns: Monophyletic groups and their relationships as revealed by four protein-coding plastid loci Petra Korall a,b,¤, Kathleen M. Pryer a, Jordan S. Metzgar a, Harald Schneider c, David S. Conant d a Department of Biology, Duke University, Durham, NC 27708, USA b Department of Phanerogamic Botany, Swedish Museum of Natural History, Stockholm, Sweden c Albrecht-von-Haller Institute für PXanzenwissenschaften, Georg-August-Universität, Göttingen, Germany d Natural Science Department, Lyndon State College, Lyndonville, VT 05851, USA Received 3 October 2005; revised 22 December 2005; accepted 2 January 2006 Available online 14 February 2006 Abstract Tree ferns are a well-established clade within leptosporangiate ferns. Most of the 600 species (in seven families and 13 genera) are arbo- rescent, but considerable morphological variability exists, spanning the giant scaly tree ferns (Cyatheaceae), the low, erect plants (Plagiogy- riaceae), and the diminutive endemics of the Guayana Highlands (Hymenophyllopsidaceae). In this study, we investigate phylogenetic relationships within tree ferns based on analyses of four protein-coding, plastid loci (atpA, atpB, rbcL, and rps4). Our results reveal four well-supported clades, with genera of Dicksoniaceae (sensu Kubitzki, 1990) interspersed among them: (A) (Loxomataceae, (Culcita, Pla- giogyriaceae)), (B) (Calochlaena, (Dicksonia, Lophosoriaceae)), (C) Cibotium, and (D) Cyatheaceae, with Hymenophyllopsidaceae nested within. How these four groups are related to one other, to Thyrsopteris, or to Metaxyaceae is weakly supported. Our results show that Dicksoniaceae and Cyatheaceae, as currently recognised, are not monophyletic and new circumscriptions for these families are needed. © 2006 Elsevier Inc.
    [Show full text]
  • Contrasting Structure and Function of Pubescent and Glabrous Varieties of Hawaiian Metrosideros Polymorpha (Myrtaceae) at High Elevation
    BIOTROPICA 40(1): 113–118 2008 10.1111/j.1744-7429.2007.00325.x SHORT COMMUNICATIONS Contrasting Structure and Function of Pubescent and Glabrous Varieties of Hawaiian Metrosideros polymorpha (Myrtaceae) at High Elevation Jennifer Hoof1,LawrenSack1,3,DavidT.Webb1, and Erik T. Nilsen1,2 1Department of Botany, University of Hawaii at Manoa,¯ 3190 Maile Way, Honolulu, Hawaii, 96822, U.S.A. 2Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, U.S.A. ABSTRACT Hawaiian dominant tree species Metrosideros polymorpha varieties glaberrima and polymorpha have glabrous and pubescent leaves, respectively. Sympatric populations at 2040 m elevation showed major differentiation beyond the pubescence itself. The varieties differed substantially in stomatal traits and in leaf composition, leaf water status, and instantaneous gas exchange rates, despite similarity in leaf and wood cross-sectional anatomy. Functional differentiation among varieties represents a possible mechanism facilitating the occupation of an exceptional ecological range. Key words: Hawaii; leaf mass per area; model species; population-level differences; specific leaf area; trichomes. UNDERSTANDING POPULATION-LEVEL DIFFERENCES IN FUNCTIONAL and var. polymorpha only 3–25 percent; at 2000 m var. glaberrima TRAITS OF SPECIES across their natural ranges is increasing in im- represents < 2 percent of vegetation biomass, and var. polymorpha portance in plant biogeography, evolution, and physiology (e.g., up to over 80 percent (Aplet & Vitousek 1994). These varieties Sparks & Black 1999, Maherali et al. 2002, Cavender-Bares et al. coexist most commonly at low and mid-elevations, where water is 2004b). Metrosideros polymorpha Gaud. (Myrtaceae) has clear ad- abundant. Leaf pubescence itself has been considered adaptive for vantages as a model species.
    [Show full text]
  • Review of Cibotium Barometz and Flickingeria Fimbrata from Vietnam
    Review of Cibotium barometz and Flickingeria fimbriata from Viet Nam (Version edited for public release) Prepared for the European Commission Directorate General Environment ENV.E.2. – Environmental Agreements and Trade by the United Nations Environment Programme World Conservation Monitoring Centre November, 2010 PREPARED FOR The European Commission, Brussels, Belgium UNEP World Conservation Monitoring Centre 219 Huntingdon Road Cambridge DISCLAIMER CB3 0DL The contents of this report do not necessarily reflect United Kingdom Tel: +44 (0) 1223 277314 the views or policies of UNEP or contributory Fax: +44 (0) 1223 277136 organisations. The designations employed and the Email: [email protected] presentations do not imply the expressions of any Website: www.unep-wcmc.org opinion whatsoever on the part of UNEP, the European Commission or contributory ABOUT UNEP-WORLD CONSERVATION organisations concerning the legal status of any MONITORING CENTRE country, territory, city or area or its authority, or The UNEP World Conservation Monitoring Centre concerning the delimitation of its frontiers or (UNEP-WCMC), based in Cambridge, UK, is the boundaries. specialist biodiversity information and assessment centre of the United Nations Environment Programme (UNEP), run cooperatively with © Copyright: 2010, European Commission WCMC, a UK charity. The Centre's mission is to evaluate and highlight the many values of biodiversity and put authoritative biodiversity knowledge at the centre of decision-making. Through the analysis and synthesis of global biodiversity knowledge the Centre provides authoritative, strategic and timely information for conventions, countries and organisations to use in the development and implementation of their policies and decisions. The UNEP-WCMC provides objective and scientifically rigorous procedures and services.
    [Show full text]
  • Conservation and Restoration Program
    conservation and restoration program PACIFIC ISLANDS FISH & WILDLIFE OFFICE ANNUAL REPORT FY2016 Conservation and Restoration Program The Conservation and Restoration We work closely with the island teams Program of the Pacific Islands Fish and to achieve the office goals to recover Wildlife Office (PIFWO) is composed of our nearly 600 species of listed plants the following: and animals; prevent the extinction or extirpation of the rarest of the rare; enlist • Candidate Conservation Program the assistance of partners around the • Recovery Programs (Plants and Pacific Islands (from private landowners, Animals) not-for-profit organizations, state, • Partners for Fish and Wildlife territorial and local governments and their Program agencies); and ensure the needed research • Coastal Program and recovery actions are permitted and • Fish Habitat Program follow the guidelines of the Endangered • Recovery Permits Program Species Act (ESA). This report shares our on-the- • ESA Section 6 Program ground recovery and partnering efforts during the 2016 fiscal year and offers a small window into all that is being done for the flora and fauna of the Pacific Islands. We include feature stories to illustrate our accomplishments as well as summaries of the expenditures and obligations for ongoing or new projects. But our success is defined by more than just money – it is the dedicated efforts of our staff, our partners and the people of the Pacific Islands. candidate conservation To prevent the need to list species as threatened or endangered under the
    [Show full text]