Development of Tidal Energy Generation Modelling Using Morecambe Bay As a Case Study Under Different Environmental, Storage and Demand Scenarios
Total Page:16
File Type:pdf, Size:1020Kb
Development of tidal energy generation modelling using Morecambe Bay as a case study under different environmental, storage and demand scenarios. By Simon Baker Supervisors: Prof George Aggidis Dr David Howard In collaboration with Northern Tidal Power Gateways This project was supported by the Centre for Global Eco-Innovation and is part financed by the European Regional Development Fund. Signed Declaration Lancaster University Faculty of Science and Technology Engineering Department Signed Declaration on the submission of a dissertation “I declare that this dissertation is my own work and has not been submitted in substantially the same form towards the award of a degree or other qualification. Acknowledgement is made in the text of assistance received and all major sources of information have been appropriately referenced. I confirm that I have read and understood the publication Guidance on Writing Technical Reports published by the Department.” Signed ……………………………………………………… 9th October 2020 Date ………………………………………………………… ii Abstract Electricity generation is a major source of greenhouse gas emissions. Renewable energy mitigates those emissions but poses different problems for the use of the power. This project examines the potential of using a barrage across Morecambe Bay to capture tidal range energy. The tidal system for a specific location is complex and requires multiple levels of robust detailed modelling. The optimum barrage operational parameter values (e.g. generating starting head and turbine speed) vary with the height of the tide. They are also influenced by the design and should be adjusted whenever the design changes. Using 0-D modelling, the energy from real tides can be modelled effectively by applying a set of linear functions to relate the operational parameters to the tidal range. The function coefficients were determined via an optimisation process, specific to each new design, to maximise the generated energy. The timing of electricity generation is dictated by the tide with little scope for adjustment. Electricity cannot be stored and is effectively lost if not needed. To store all the surplus energy from the barrage would require a dedicated facility on a similar scale to the barrage itself and is deemed impractical. With electricity usage patterns expected to change as the UK transitions to a low carbon economy, the solution is perhaps one of energy balancing in combination with storage and conversion to different energy carriers. At a global level the barrage addresses sea-level rise by generating large amounts of green energy. At a local level the barrage can mitigate the threat of increased flooding and can preserve the tidal range to help protect the inter-tidal zone. It is difficult to value all the aspects of a barrage with confidence and to reliably balance the costs of building a barrage against not building it. The environment plays a crucial part in this assessment and must be incorporated into the performance estimates of the barrage at all stages of the design. iii Table of Contents List of figures .............................................................................................................................. vi List of tables ............................................................................................................................... ix 1 Introduction ......................................................................................................................... 1 1.1 Modelling methods ................................................................................................................. 2 1.2 Literature review ..................................................................................................................... 4 1.3 Barrage operation and 0-D modelling theory ......................................................................... 4 1.4 Cyclic intermittency and power balancing .............................................................................. 7 1.5 The environment and sea-level rise ........................................................................................ 8 1.6 Report structure ...................................................................................................................... 9 2 Data and model .................................................................................................................. 11 2.1 Bathymetry and reservoir modelling .................................................................................... 11 2.2 Tide modelling and datums .................................................................................................. 14 2.3 Turbine and pump models .................................................................................................... 15 2.3.1 Turbine model ............................................................................................................... 15 2.3.2 Pump model .................................................................................................................. 19 2.4 Sequenced-based modelling vs broad range scanning ......................................................... 21 2.5 Operational parameterisation .............................................................................................. 23 2.6 Operational parameter optimisation .................................................................................... 25 2.6.1 Scan-based function optimisation ................................................................................ 25 2.6.2 Design-by-design optimisation ..................................................................................... 28 2.7 Program implementation and parameterisation .................................................................. 31 2.8 Tide cycle plots ...................................................................................................................... 33 3 Scenario modelling ............................................................................................................. 35 3.1 Ecology and the environment ............................................................................................... 35 3.1.1 Flood prevention ........................................................................................................... 36 3.1.2 Preserving the intertidal zone ....................................................................................... 40 3.1.3 Sea-level rise and tidal matching .................................................................................. 43 3.2 Barrage design ...................................................................................................................... 45 3.2.1 Number of turbines and sluice gates ............................................................................ 45 3.2.2 Barrage route / reservoir volume ................................................................................. 46 4 Energy balancing ................................................................................................................ 48 4.1 UK electricity supply and demand ........................................................................................ 48 4.2 Maximising supply value ....................................................................................................... 51 4.3 Barrage energy and power generation characteristics ......................................................... 52 4.4 Storage options ..................................................................................................................... 56 iv 4.5 Energy balancing ................................................................................................................... 59 5 Discussion .......................................................................................................................... 62 5.1 Modelling and operational parameter optimisation ............................................................ 62 5.2 Power balancing vs energy storage ...................................................................................... 64 5.3 Environmental considerations and sea-level rise ................................................................. 65 5.4 Recommendations ................................................................................................................ 66 6 Conclusion .......................................................................................................................... 67 6.1 Optimisation ......................................................................................................................... 67 6.2 Turbine regulation ................................................................................................................ 67 6.3 Operational model parameters ............................................................................................ 67 6.4 Energy storage ...................................................................................................................... 68 6.5 Protecting the environment from change ............................................................................ 68 6.6 Decision making .................................................................................................................... 68 References ................................................................................................................................. 69 Appendix A Optimisation functions ........................................................................................