Research Report 2 - Tidal Technologies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Scoping Study On: Research Into Changes in Sediment Dynamics Linked to Marine Renewable Energy Installations
A Scoping Study on: Research into Changes in Sediment Dynamics Linked to Marine Renewable Energy Installations Laurent Amoudry3, Paul S. Bell3, Kevin S. Black2, Robert W. Gatliff1 Rachel Helsby2, Alejandro J. Souza3, Peter D. Thorne3, Judith Wolf3 April 2009 1British Geological Survey Murchison House West Mains Road Edinburgh EH9 3LA [email protected] www.bgs.ac.uk 2Partrac Ltd 141 St James Rd Glasgow G4 0LT [email protected] www.partrac.com 3Proudman Oceanographic Laboratory Joseph Proudman Building 6 Brownlow Street Liverpool L3 5DA, www.pol.ac.uk 2 EXECUTIVE SUMMARY This study scopes research into the impacts and benefits of large-scale coastal and offshore marine renewable energy projects in order to allow NERC to develop detailed plans for research activities in the 2009 Theme Action Plans. Specifically this study focuses on understanding changes in sediment dynamics due to renewable energy structures. Three overarching science ideas have emerged where NERC could provide a significant contribution to the knowledge base. Research into these key areas has the potential to help the UK with planning, regulation and monitoring of marine renewable installations in a sustainable way for both stakeholders and the environment. A wide ranging consultation with stakeholders was carried out encompassing regulators, developers, researchers and other marine users with a relevance to marine renewable energy and/or sediment dynamics. Based on this consultation a review of the present state of knowledge has been produced, and a relevant selection of recent and current research projects underway within the UK identified to which future NERC funded research could add value. A great deal of research has already been done by other organisations in relation to the wind sector although significant gaps remain, particularly in long term and far-field effects. -
Nuclear Power
No.59 z iii "Ill ~ 2 er0 Ill Ill 0 Nuclear Family Pia nning p3 Chernobyl Broadsheet ·, _ I. _ . ~~~~ George Pritchar d speaks CONTENTS COMMENT The important nuclear development since the Nuclear Family Planning 3 last SCRAM Journal was the Government's The CEGB's plans, and the growing opposition, after Sizewell B by go ahead for Sizewell B: the world's first HUGH RICHARDS. reactor order since Chernobyl, and Britain's News 4-6 first since the go ahead was given to Torness Accidents Will Happen 1 and Heysham 2 in 1978. Of great concern is Hinkley Seismic Shocker 8-9 the CEGB's announced intention to build "a A major article on seismic safety of nuclear plants in which JAMES small fanilty• of PWRs, starting with Hinkley GARRETT reveals that Hinkley Point C. At the time of the campaign In the Point sits on a geological fault. south west to close the Hinkley A Magnox Trouble at Trawsfynydd 10-11 station, and .a concerted push in Scotland to A summary of FoE's recent report on increasing radiation levels from prevent the opening of Torness, another Trawsfynydd's by PATRICK GREEN. nuclear announcement is designed to divide Pandora's POX 12 and demoralise the opposition. But, it should The debate over plutonium transport make us more determined. The article on the to and from Dounreay continues by facing page gives us hope: the local PETE MUTTON. authorities on Severnside are joining forces CHERNOBYL BROADSHEET to oppose Hinkley C, and hopefully they will Cock-ups and Cover-ups work closely with local authorities in other "Sacrificed to • • • Nuclear Power" threatened areas - Lothian Region, The Soviet Experience Northumberland, the County Council Coalition "An Agonising Decision• 13 against waste dumping and the Nuclear Free GEORGE PRITCHARD explains why Zones - to formulate a national anti-nuclear he left Greenpeoce and took a job strategy. -
Tidal Turbine Array Optimization Based on the Discrete Particle
China Ocean Eng., 2018, Vol. 32, No. 3, P. 358–364 DOI: https://doi.org/10.1007/s13344-018-0037-6, ISSN 0890-5487 http://www.chinaoceanengin.cn/ E-mail: [email protected] Tidal Turbine Array Optimization Based on the Discrete Particle Swarm Algorithm WU Guo-weia, WU Hea, *, WANG Xiao-yonga, ZHOU Qing-weia, LIU Xiao-manb aNational Ocean Technology Center, Tianjin 300112, China bSatellite Environment Center, Ministry of Environmental Protection, Beijing 100094, China Received May 18, 2017; revised February 11, 2018; accepted March 23, 2018 ©2018 Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature Abstract In consideration of the resource wasted by unreasonable layout scheme of tidal current turbines, which would influence the ratio of cost and power output, particle swarm optimization algorithm is introduced and improved in the paper. In order to solve the problem of optimal array of tidal turbines, the discrete particle swarm optimization (DPSO) algorithm has been performed by re-defining the updating strategies of particles’ velocity and position. This paper analyzes the optimization problem of micrositing of tidal current turbines by adjusting each turbine’s position, where the maximum value of total electric power is obtained at the maximum speed in the flood tide and ebb tide. Firstly, the best installed turbine number is generated by maximizing the output energy in the given tidal farm by the Farm/Flux and empirical method. Secondly, considering the wake effect, the reasonable distance between turbines, and the tidal velocities influencing factors in the tidal farm, Jensen wake model and elliptic distribution model are selected for the turbines’ total generating capacity calculation at the maximum speed in the flood tide and ebb tide. -
The Energy River: Realising Energy Potential from the River Mersey
The Energy River: Realising Energy Potential from the River Mersey June 2017 Amani Becker, Andy Plater Department of Geography and Planning, University of Liverpool, Liverpool L69 7ZT Judith Wolf National Oceanography Centre, Liverpool L3 5DA This page has been intentionally left blank ii Acknowledgements The work herein has been funded jointly by the University of Liverpool’s Knowledge Exchange and Impact Voucher Scheme and Liverpool City Council. The contribution of those involved in the project through Liverpool City Council, Christine Darbyshire, and Liverpool City Region LEP, James Johnson and Mark Knowles, is gratefully acknowledged. The contribution of Michela de Dominicis of the National Oceanography Centre, Liverpool, for her work producing a tidal array scenario for the Mersey Estuary is also acknowledged. Thanks also to the following individuals approached during the timeframe of the project: John Eldridge (Cammell Laird), Jack Hardisty (University of Hull), Neil Johnson (Liverpool City Council) and Sue Kidd (University of Liverpool). iii This page has been intentionally left blank iv Executive summary This report has been commissioned by Liverpool City Council (LCC) and joint-funded through the University of Liverpool’s Knowledge Exchange and Impact Voucher Scheme to explore the potential to obtain renewable energy from the River Mersey using established and emerging technologies. The report presents an assessment of current academic literature and the latest industry reports to identify suitable technologies for generation of renewable energy from the Mersey Estuary, its surrounding docks and Liverpool Bay. It also contains a review of energy storage technologies that enable cost-effective use of renewable energy. The review is supplemented with case studies where technologies have been implemented elsewhere. -
Before the Flood Greenhouse Effect Plutonium Flights of Fancy Ministry
., Th~ Safe Energy ,J - Journal - July I August 19 88 75p Before the Flood Greenhouse Effect Plutonium Fl ights of Fancy Ministry of Truth - Chernobyl Lies CONTENTS COMMENT Flights of Fancy? 3 In the words of Or Tom Wheldon, at the Fourth STEVE MARTIN reviews the regulatory Annual Low Level Radiation and Health Conference log-jam in the US over planned held in Stirling, to say that radiation has existed in plutonium flights from Europe to Japan. the environment since the dawn of humankind and News 4-7 is therefore not a problem is just as daft as saying Ministry of Truth 8-9 that crocodiles have been around since the begin PATRICK GREEN accuses MAFF of ning with no perceived adverse effects - they will trying to rewrite history in their evidence to the Agriculture Com still bite your leg off, given half a chance. mittee. The Irresistible Force 10-11 The second report on the incidence of childhood meets the Immovable Object leukaemia near Dounreay from COMARE, of which ANDREW HOLMES asks what will Or Wheldon is a member, is a valuable contribution happen to nuclear research after privatisation. to the debate; but don't forget what happened to Snug as a Bug ••• 12 the 1976 Flowers Report. For the uninitiated, DON ARNOTT assesses the evidence Flowers recommended, among other things, that no that bacteria have been found in the large scale nuclear power ordering programme be burned-out core of the Three Mile Is land reactor. embarked on until the nuclear waste problem had Milk of Human Kindness? 14-15 been solved. -
Cost Assessment Methodology and Economic Viability of Tidal Energy Projects
energies Article Cost Assessment Methodology and Economic Viability of Tidal Energy Projects Eva Segura 1, Rafael Morales 1,* and José A. Somolinos 2 1 Escuela de Ingenieros Industriales de Albacete, Universidad de Castilla-La Mancha, 02071 Albacete, Spain; [email protected] 2 Escuela Técnica Superior de Ingenieros Navales, Universidad Politécnica de Madrid, 28040 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-967-599-200 (ext. 2542); Fax: +34-967-599-224 Received: 15 September 2017; Accepted: 6 November 2017; Published: 9 November 2017 Abstract: The exploitation of technologies with which to harness the energy from ocean currents will have considerable possibilities in the future thanks to their enormous potential for electricity production and their high predictability. In this respect, the development of methodologies for the economic viability of these technologies is fundamental to the attainment of a consistent quantification of their costs and the discovery of their economic viability, while simultaneously attracting investment in these technologies. This paper presents a methodology with which to determine the economic viability of tidal energy projects, which includes a technical study of the life-cycle costs into which the development of a tidal farm can be decomposed: concept and definition, design and development, manufacturing, installation, operation and maintenance and dismantling. These cost structures are additionally subdivided by considering their sub-costs and bearing in mind the main components of the tidal farm: the nacelle, the supporting tidal energy converter structure and the export power system. Furthermore, a technical study is developed in order to obtain an estimation of the annual energy produced (and, consequently, the incomes generated if the electric tariff is known) by considering its principal attributes: the characteristics of the current, the ability of the device to capture energy and its ability to convert and export the energy. -
Collision Risk of Fish with Wave and Tidal Devices
Commissioned by RPS Group plc on behalf of the Welsh Assembly Government Collision Risk of Fish with Wave and Tidal Devices Date: July 2010 Project Ref: R/3836/01 Report No: R.1516 Commissioned by RPS Group plc on behalf of the Welsh Assembly Government Collision Risk of Fish with Wave and Tidal Devices Date: July 2010 Project Ref: R/3836/01 Report No: R.1516 © ABP Marine Environmental Research Ltd Version Details of Change Authorised By Date 1 Pre-Draft A J Pearson 06.03.09 2 Draft A J Pearson 01.05.09 3 Final C A Roberts 28.08.09 4 Final A J Pearson 17.12.09 5 Final C A Roberts 27.07.10 Document Authorisation Signature Date Project Manager: A J Pearson Quality Manager: C R Scott Project Director: S C Hull ABP Marine Environmental Research Ltd Suite B, Waterside House Town Quay Tel: +44(0)23 8071 1840 SOUTHAMPTON Fax: +44(0)23 8071 1841 Hampshire Web: www.abpmer.co.uk SO14 2AQ Email: [email protected] Collision Risk of Fish with Wave and Tidal Devices Summary The Marine Renewable Energy Strategic Framework for Wales (MRESF) is seeking to provide for the sustainable development of marine renewable energy in Welsh waters. As one of the recommendations from the Stage 1 study, a requirement for further evaluation of fish collision risk with wave and tidal stream energy devices was identified. This report seeks to provide an objective assessment of the potential for fish to collide with wave or tidal devices, including a review of existing impact prediction and monitoring data where available. -
Analysis of a Severn Barrage a REPORT PREPARED for the NGO STEERING GROUP
Analysis of a Severn Barrage A REPORT PREPARED FOR THE NGO STEERING GROUP June 2008 © Frontier Economics Ltd, London. i Frontier Economics | June 2008 Analysis of a Severn Barrage Executive summary......................................................................................iv 1 Introduction .........................................................................................7 1.1 Background...................................................................................................7 1.2 Overview.......................................................................................................8 Part 1: What is the role of Government? 2 Approach ..............................................................................................9 3 The role of Government ..................................................................... 11 3.1 Rationale..................................................................................................... 11 3.2 Objectives .................................................................................................. 16 Part 2: How does a barrage compare? 4 Approach ............................................................................................ 19 4.1 General background ................................................................................. 19 4.2 Overview of approach to modelling ...................................................... 21 5 Analysis and discussion .....................................................................26 5.1 Sensitivity -
Analysis of the Optimal Deployment Location for Tidal Energy Converters
EGY9197_grabs ■ 24 August 2016 ■ 1/1 Energy xxx (2016) 1 5 Contents lists available at ScienceDirect 6 7 Energy 8 9 10 journal homepage: www.elsevier.com/locate/energy 11 12 13 14 15 1 16 2 17 3 Highlights 4 Two areas of high tidal stream exergy are identified in the Ria de Vigo region. The energy output of two TEC farms, based on different turbines, is estimated. 15% of the 22.5 MW hourly extractable power per site can be tapped by the farms. The estimated power output is between. Q3 Depending on the used TEC, the farms can feed between 4411 and 6638 Spanish homes. http://dx.doi.org/10.1016/j.energy.2016.06.055 0360-5442/© 2016 Elsevier Ltd. All rights reserved. Please cite this article in press as: Mestres M, et al., Analysis of the optimal deployment location for tidal energy converters in the mesotidal Ria de Vigo (NW Spain), Energy (2016), http://dx.doi.org/10.1016/j.energy.2016.06.055 EGY9197_proof ■ 24 August 2016 ■ 1/9 Energy xxx (2016) 1e9 55 Contents lists available at ScienceDirect 56 57 Energy 58 59 60 journal homepage: www.elsevier.com/locate/energy 61 62 63 64 65 1 Analysis of the optimal deployment location for tidal energy 66 2 67 3 converters in the mesotidal Ria de Vigo (NW Spain) 68 4 69 a, b, * b a, b a, b 5 Q5 Marc Mestres , Maria Grin~o , Joan Pau Sierra , Cesar Mosso€ 70 6 a 71 7 International Centre for Coastal Resources Research (CIIRC), c/Jordi Girona 1-3, Modul D1, 08034 Barcelona, Spain b Laboratori d’Enginyeria Marítima (LIM-UPC), Universitat Politecnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Modul D1, 08034 Barcelona, Spain 72 8 73 9 74 10 article info abstract 75 11 76 12 Article history: The potential power output expected from the installation of a tidal farm near the mesotidal Ria de Vigo 77 13 Received 23 February 2016 (NW Spain) is assessed using two different tidal stream energy converters (TEC). -
Marine Renewables
January 2009 Number 324 MARINE RENEWABLES Britain has an EU mandated target to meet 15% of its account for less than 0.1% of the energy produced energy requirements from renewable sources by 2020. worldwide. The UK has the largest wave and tidal resources in Europe, so marine renewables are a candidate for Figure 1: Wave and Tidal Resources in contributing to this target. Around 15-20% of the UK’s the UK: 2 Coloured bands show wave electricity could potentially be produced from marine resources, with purple denoting the 1 renewable sources, but the technology is not mature. greatest resource. Red circles show This POSTnote considers the technologies available and some of the most significant tidal the environmental, economic and technological power sites. Tidal resources are closer challenges involved in their deployment. to shore than wave. Background Tidal Power • ‘Tidal stream’ devices use the flow of water due to tides to generate electricity. • ‘Tidal range’ devices use the change in height of water Government Support due to tides, using principles similar to a hydroelectric The Renewables Advisory Board (RAB), a government dam. There are only a few tidal ‘barrages’ (see Box 1). advisory body, suggests that to meet the EU target, 32% Tidal lagoons (structures built at sea to capture water of UK electricity must come from renewables by 2020. at high tides) are also possible. The government has set a further target to cut carbon Wave Power emissions by 80% by 2050. This has increased interest Wave devices use the motion of water caused by winds in all low carbon energy sources, including marine. -
SOUTH WEST ENGLAND and the WAVE HUB 10 July 2009 NICK HARRINGTON – HEAD of MARINE ENERGY SOUTH WEST RDA WAVE & TIDAL RESOURCE
SOUTH WEST ENGLAND AND THE WAVE HUB 10 July 2009 NICK HARRINGTON – HEAD OF MARINE ENERGY SOUTH WEST RDA WAVE & TIDAL RESOURCE • Could provide 15% - 20% of UK demand • European resource 290GW • Worldwide annual revenues of €65 - €200 billion WAVE POWER LEVELS IN kW/m OF CREST LENGTH IN EUROPEAN WATERS Source: Wave Energy Utilization in Europe (European Thematic Network on Marine Energy) TIDAL RESOURCE IN SW ENGLAND DECC TIDAL RESOURCE IN SW ENGLAND Marine “Shoots” Barrage Current 1GW Turbines “SeaGEN” * “Severn” Barrage 8GW “Outer” Barrage 15GW SOUTH WEST WAVE RESOURCE DECC WAVE HUB Source: JP Kenny WAVE HUB WAVE HUB PROVIDES • Consented sea area • Grid connected 5MW per berth at 11kV • Monitoring and testing • Opportunities to collaborate • Access to suppliers and research base • Experience of operations • Can be upgraded to 50MW with 33kV operation UK ROUTE TO COMMERCIALISATION R&D NaREC Demonstration Initial prototype EMEC Refined prototype Wave Hub Pre- commercial device Market entry with commercial product Market penetration TIMETABLE • Landowner agreements signed- June 2009 • Funding unconditional - June 2009 • Developer commitments - June 2009 • Operating and capital budgets confirmed - July 2009 • Decision to proceed - July 2009 • Order sub-sea cable - July 2009 • Set up operating company - Summer 2009 • Onshore works - Autumn 2009 • Tender installation contracts - Autumn/Winter 2009 • Cable and equipment delivery - Spring 2010 • Installation and commissioning - Summer 2010 CHALLENGES Devices • Demonstrate and improve performance -
Hybrid Neural Fuzzy Design-Based Rotational Speed Control of a Tidal Stream Generator Plant
sustainability Article Hybrid Neural Fuzzy Design-Based Rotational Speed Control of a Tidal Stream Generator Plant Khaoula Ghefiri 1,2,* , Izaskun Garrido 2 , Soufiene Bouallègue 1, Joseph Haggège 1 and Aitor J. Garrido 2 1 Laboratory of Research in Automatic Control—LA.R.A, National Engineering School of Tunis (ENIT), University of Tunis El Manar, BP 37, Le Belvédère, 1002 Tunis, Tunisia; soufi[email protected] (S.B.); [email protected] (J.H.) 2 Automatic Control Group—ACG, Department of Automatic Control and Systems Engineering, Engineering School of Bilbao, University of the Basque Country, 48012 Bilbao, Spain; [email protected] (I.G.); [email protected] (A.J.G.) * Correspondence: kghefi[email protected]; Tel.: +34-94-601-4443 Received: 20 August 2018; Accepted: 12 October 2018; Published: 17 October 2018 Abstract: Artificial Intelligence techniques have shown outstanding results for solving many tasks in a wide variety of research areas. Its excellent capabilities for the purpose of robust pattern recognition which make them suitable for many complex renewable energy systems. In this context, the Simulation of Tidal Turbine in a Digital Environment seeks to make the tidal turbines competitive by driving up the extracted power associated with an adequate control. An increment in power extraction can only be archived by improved understanding of the behaviors of key components of the turbine power-train (blades, pitch-control, bearings, seals, gearboxes, generators and power-electronics). Whilst many of these components are used in wind turbines, the loading regime for a tidal turbine is quite different. This article presents a novel hybrid Neural Fuzzy design to control turbine power-trains with the objective of accurately deriving and improving the generated power.