Feasibility Study on Tidal Power Barrages Including General Plant Design and Site Selection

Total Page:16

File Type:pdf, Size:1020Kb

Feasibility Study on Tidal Power Barrages Including General Plant Design and Site Selection Feasibility Study on Tidal Power Barrages Including general plant design and site selection Final report Jerome van Harn 26 January 2007 Feasibility study on tidal power barrages ii Feasibility Study on Tidal Power Barrages Including general plant design and site selection Final report: 26 January 2007 Graduation student: Jerome van Harn, 1040693 06-41307183 [email protected] Graduation committee: Prof.dr.ir. M.J.F. Stive TU Delft Department of Hydraulic Engineering Ir. J. van Duivendijk TU Delft Department of Hydraulic Engineering Ir. H.J. Verhagen TU Delft Department of Hydraulic Engineering Dr. Ir. P.J. van Overloop TU Delft Department of Watermanagement Ir. E. ten Oever Delta Marine Consultants iii Feasibility study on tidal power barrages iv Preface This master thesis is the result of a months-long study at Delta Marina Consultants (DMC). At the same time, the report is the final part of my study Civil Engineering at the Technical University Delft, with a specialisation in Coastal Engineering. This report was not possible without the help of many people. I would like to thank my commission for their important contributions: Prof.dr.ir. M.J.F. Stive, ir. J. van Duivendijk, ir. H.J. Verhagen, dr. Ir. P.J. van Overloop and ir. E. ten Oever in particular. In addition, I would like to thank Markus Muttray (DMC) for his support and Pierre Marin (Alstom Power France) for his contribution on turbines. Jerome van Harn Gouda, January 2007 v Feasibility study on tidal power barrages List of Content Preface...................................................................................................................................................... v Nomenclature ........................................................................................................................................ viii Abstract ................................................................................................................................................... xi Chapter 1 Problem Analysis.............................................................................................................. 1 1.1 Introduction........................................................................................................................... 1 1.2 Problem definition................................................................................................................. 2 1.3 Study objectives and study approach .................................................................................... 2 Chapter 2 Plant concepts................................................................................................................... 4 2.1 Plant layouts.......................................................................................................................... 4 2.1.1 Single basin ...................................................................................................................... 5 2.1.2 Multiple basins ................................................................................................................. 5 2.2 Generation modes.................................................................................................................. 6 2.2.1 One-way generation.......................................................................................................... 7 2.2.2 Two-way generation......................................................................................................... 7 2.2.3 Additional pumping.......................................................................................................... 8 2.3 Conclusions ........................................................................................................................... 9 Chapter 3 General plant design ........................................................................................................10 3.1 Powerhouse ..........................................................................................................................10 3.1.1 Existing method...............................................................................................................10 3.1.2 New method ....................................................................................................................11 3.2 Sluice gates...........................................................................................................................15 3.2.1 Existing method...............................................................................................................15 3.2.2 New method ....................................................................................................................15 3.3 Barrage dam .........................................................................................................................17 3.3.1 Existing method...............................................................................................................17 3.3.2 New method ....................................................................................................................17 3.4 Bed protection ......................................................................................................................18 3.5 Transmission lines................................................................................................................21 3.6 Resulting plant design parameters........................................................................................21 Chapter 4 General turbine design.....................................................................................................23 4.1 Turbine design parameters ...................................................................................................23 4.2 Turbines and generator.........................................................................................................24 4.2.1 Tidal power turbines types ..............................................................................................24 4.2.2 Efficiencies and losses.....................................................................................................24 4.2.3 Total turbine surface area ................................................................................................28 4.2.4 Design power output........................................................................................................31 4.2.5 Required head difference.................................................................................................33 4.3 Pumps...................................................................................................................................34 4.4 Suggested turbine type per generation mode........................................................................37 4.5 Operational interaction between turbines, sluice gates and pumps ......................................39 4.5.1 One-way generation.........................................................................................................39 4.5.2 Two-way generation........................................................................................................41 Chapter 5 Site selection aspects .......................................................................................................43 5.1 Essential site selection aspects .............................................................................................44 5.1.1 Technical aspects.............................................................................................................44 5.1.2 Economical aspects .........................................................................................................45 5.1.3 Site selection parameters and criteria ..............................................................................45 5.2 Potential power.....................................................................................................................46 5.2.1 Potential power derivation...............................................................................................46 5.2.2 Rectangular basin ............................................................................................................47 vi 5.2.3 Application for varying basin shapes and various generation modes..............................48 5.2.4 Results .............................................................................................................................50 5.3 Electricity supply..................................................................................................................52 5.3.1 Customer load in combination with tidal energy.............................................................52 5.3.2 Storage, additional electricity sources and delivery ........................................................52 5.3.3 Conclusion.......................................................................................................................53 5.4 Soil properties and flow velocities during closure ...............................................................54 5.5 Additional site selection parameters.....................................................................................54 5.5.1 Depth ratio rd ...................................................................................................................54 5.5.2 Barrage length ratio rl ......................................................................................................55
Recommended publications
  • A Scoping Study On: Research Into Changes in Sediment Dynamics Linked to Marine Renewable Energy Installations
    A Scoping Study on: Research into Changes in Sediment Dynamics Linked to Marine Renewable Energy Installations Laurent Amoudry3, Paul S. Bell3, Kevin S. Black2, Robert W. Gatliff1 Rachel Helsby2, Alejandro J. Souza3, Peter D. Thorne3, Judith Wolf3 April 2009 1British Geological Survey Murchison House West Mains Road Edinburgh EH9 3LA [email protected] www.bgs.ac.uk 2Partrac Ltd 141 St James Rd Glasgow G4 0LT [email protected] www.partrac.com 3Proudman Oceanographic Laboratory Joseph Proudman Building 6 Brownlow Street Liverpool L3 5DA, www.pol.ac.uk 2 EXECUTIVE SUMMARY This study scopes research into the impacts and benefits of large-scale coastal and offshore marine renewable energy projects in order to allow NERC to develop detailed plans for research activities in the 2009 Theme Action Plans. Specifically this study focuses on understanding changes in sediment dynamics due to renewable energy structures. Three overarching science ideas have emerged where NERC could provide a significant contribution to the knowledge base. Research into these key areas has the potential to help the UK with planning, regulation and monitoring of marine renewable installations in a sustainable way for both stakeholders and the environment. A wide ranging consultation with stakeholders was carried out encompassing regulators, developers, researchers and other marine users with a relevance to marine renewable energy and/or sediment dynamics. Based on this consultation a review of the present state of knowledge has been produced, and a relevant selection of recent and current research projects underway within the UK identified to which future NERC funded research could add value. A great deal of research has already been done by other organisations in relation to the wind sector although significant gaps remain, particularly in long term and far-field effects.
    [Show full text]
  • OCCASION This Publication Has Been Made Available to the Public on The
    OCCASION This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation. DISCLAIMER This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as “developed”, “industrialized” and “developing” are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO. FAIR USE POLICY Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO. CONTACT Please contact [email protected] for further information concerning UNIDO publications. For more information about UNIDO, please visit us at www.unido.org UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria Tel: (+43-1) 26026-0 · www.unido.org · [email protected] UNIDO INVESTMENT AND TECHNOLOGY PROMOTION OFFICE For China in Beijing The Work Report 2012 December , 2012 1 TABLE OF CONTENTS Forward by Hu Yuandong, Head of the Office Yearly Special Programs under Implementation I.
    [Show full text]
  • The Energy River: Realising Energy Potential from the River Mersey
    The Energy River: Realising Energy Potential from the River Mersey June 2017 Amani Becker, Andy Plater Department of Geography and Planning, University of Liverpool, Liverpool L69 7ZT Judith Wolf National Oceanography Centre, Liverpool L3 5DA This page has been intentionally left blank ii Acknowledgements The work herein has been funded jointly by the University of Liverpool’s Knowledge Exchange and Impact Voucher Scheme and Liverpool City Council. The contribution of those involved in the project through Liverpool City Council, Christine Darbyshire, and Liverpool City Region LEP, James Johnson and Mark Knowles, is gratefully acknowledged. The contribution of Michela de Dominicis of the National Oceanography Centre, Liverpool, for her work producing a tidal array scenario for the Mersey Estuary is also acknowledged. Thanks also to the following individuals approached during the timeframe of the project: John Eldridge (Cammell Laird), Jack Hardisty (University of Hull), Neil Johnson (Liverpool City Council) and Sue Kidd (University of Liverpool). iii This page has been intentionally left blank iv Executive summary This report has been commissioned by Liverpool City Council (LCC) and joint-funded through the University of Liverpool’s Knowledge Exchange and Impact Voucher Scheme to explore the potential to obtain renewable energy from the River Mersey using established and emerging technologies. The report presents an assessment of current academic literature and the latest industry reports to identify suitable technologies for generation of renewable energy from the Mersey Estuary, its surrounding docks and Liverpool Bay. It also contains a review of energy storage technologies that enable cost-effective use of renewable energy. The review is supplemented with case studies where technologies have been implemented elsewhere.
    [Show full text]
  • Before the Flood Greenhouse Effect Plutonium Flights of Fancy Ministry
    ., Th~ Safe Energy ,J - Journal - July I August 19 88 75p Before the Flood Greenhouse Effect Plutonium Fl ights of Fancy Ministry of Truth - Chernobyl Lies CONTENTS COMMENT Flights of Fancy? 3 In the words of Or Tom Wheldon, at the Fourth STEVE MARTIN reviews the regulatory Annual Low Level Radiation and Health Conference log-jam in the US over planned held in Stirling, to say that radiation has existed in plutonium flights from Europe to Japan. the environment since the dawn of humankind and News 4-7 is therefore not a problem is just as daft as saying Ministry of Truth 8-9 that crocodiles have been around since the begin­ PATRICK GREEN accuses MAFF of ning with no perceived adverse effects - they will trying to rewrite history in their evidence to the Agriculture Com­ still bite your leg off, given half a chance. mittee. The Irresistible Force 10-11 The second report on the incidence of childhood meets the Immovable Object leukaemia near Dounreay from COMARE, of which ANDREW HOLMES asks what will Or Wheldon is a member, is a valuable contribution happen to nuclear research after privatisation. to the debate; but don't forget what happened to Snug as a Bug ••• 12 the 1976 Flowers Report. For the uninitiated, DON ARNOTT assesses the evidence Flowers recommended, among other things, that no that bacteria have been found in the large scale nuclear power ordering programme be burned-out core of the Three Mile Is­ land reactor. embarked on until the nuclear waste problem had Milk of Human Kindness? 14-15 been solved.
    [Show full text]
  • Action Points to Advance Commercialisation of the Dutch Tidal Energy Sector
    Action points to advance commercialisation of the Dutch tidal energy sector An analysis of the tidal energy Technological Innovation System in combination with lessons learned from the development of the wind energy industry Master thesis J.P. van Zuijlen Figure 1. Eastern Scheldt storm surge barrier. Source: http://dutchmarineenergy.com/ Name: Johannes Petrus (Jan) van Zuijlen Student nr: 5610494 Email: [email protected] Utrecht University University supervisors: 1st: Prof. dr. Gert Jan Kramer 2nd: Dr. Paul Schot University innovation supervisor: Dr. Maryse M.H. Chappin ECTS: 30 Company: Dutch Marine Energy Centre Supervisor: Britta Schaffmeister MSc Date: 19/01/2018 2 Abstract Water management has traditionally been focused on water safety, hygiene and agricultural problems, however, given the current need for sustainability in order to combat climate change, the possible production of sustainable energy is a desirable extension of integral water management. Tidal energy is a form of ocean energy which harnesses energy from the tides and has the potential to contribute significantly to sustainable energy solutions in certain coastal regions, thereby reducing carbon emissions and fighting climate change worldwide. Activities surrounding tidal energy have grown substantially over the last 10 years in Europe as well as in the Netherlands, however the technology is diffusing slowly. The aim of this thesis is finding action points that will advance commercialisation of the Dutch tidal energy sector. The method consists of a desk study on the evolution of wind energy in combination with a Technological Innovation System analysis of the Dutch tidal energy sector for which 12 professionals have been interviewed. This study showed that the following three aspects of the tidal energy TIS performance poorly and need attention: Market formation, the creation of legitimacy and knowledge development.
    [Show full text]
  • An Overview of the Best Suitable Locations for Marine Renewable
    An overview of the best suitable locations for marine renewable energy (MRE) development in the PECC economies given local constraints and opportunities: ‘The best locations worldwide’ Marc Le Boulluec Energy Transition 2013-2014 Transition Energy [email protected] June 24-25, 2014 | Santiago, Chile | 2014 June24-25, Ifremer, Centre de Bretagne Laboratoire Comportement des Structures en Mer PECC International Project: Project: PECCInternational From Prototype to Market: Development of marine renewable energy policies and regional cooperation 1 What are : ‘The best locations worldwide’ ? Energy Transition 2013-2014 Transition Energy June 24-25, 2014 | Santiago, Chile | 2014 June24-25, No definite answer but a combination of items to address PECC International Project: Project: PECCInternational and some possible tracks From Prototype to Market: Development of marine renewable energy policies and regional cooperation 2 Best locations = Combination of Resource availability versus Loads on structures Energy use at short distance or Energy transport on long distance Grid connection and energy storage Industry and transport infrastructures : shipyards, harbours,… Energy Transition 2013-2014 Transition Energy June 24-25, 2014 | Santiago, Chile | 2014 June24-25, Facilities and associated manpower (training and education) Installation Operation and maintenance Dismantling PECC International Project: Project: PECCInternational Monitoring Environmental and Social acceptability From Prototype to Market: Development of marine renewable energy policies and regional cooperation 3 Resource and loads addressed during PECC Seminar 2 on Marine Resources: Oceans as a Source of Renewable Energy Wind Currents Waves Energy Transition 2013-2014 Transition Energy June 24-25, 2014 | Santiago, Chile | 2014 June24-25, Thermal + Biomass + Salinity gradient PECC International Project: Project: PECCInternational From Prototype to Market: Development of marine renewable energy policies and regional cooperation 4 Wind energy Wind energy is an intermittent resource.
    [Show full text]
  • Dynamic Tidal Power (Dtp): a Review of a Promising Technique for Harvesting Sustainable Energy at Sea
    DYNAMIC TIDAL POWER (DTP): A REVIEW OF A PROMISING TECHNIQUE FOR HARVESTING SUSTAINABLE ENERGY AT SEA From : Harmen Talstra, Tom Pak (Svašek Hydraulics) To : ir. W.L. Walraven (Stichting DTP Netherlands) Date : 29 July 2020 Reference : 2037/U20232/A/HTAL Checked by : A.J. Bliek Status : Draft on behalf of whitepaper 1 INTRODUCTION This memorandum describes the technique of Dynamic Tidal Power (DTP), a conceptually new way of harvesting large-scale tidal energy at open sea; in particular we focus upon the hydrodynamic aspects of it. At present, most existing installations exploiting tidal energy encompass a structure at the mouth of a river, estuary or tidal basin. This rather small scale limits the amount of sustainable energy that can be extracted, whereas these type of exploitations may cause conflicts with other (e.g. economical or ecological) functions of vulnerable coastal or estuarine waters. The concept of DTP includes a truly large-scale sustainable energy production by utilizing the tidal wave propagation at open sea. This can be done by creating a water head difference over a (very) long dike, roughly perpendicular to the local tidal flow direction, taking advantage of the oscillatory dynamic behaviour of tidal waves. These dikes can be considered as long sequences of pre-fab solid dike modules, containing a large concentration of energy turbines. Dikes can be either attached to an existing coast line, or be constructed at a detached “stand-alone” location at open sea (for instance in combination with an offshore wind farm). The presence of such long dikes at open sea can possibly be utilized for additional economical and environmental functionalities as well.
    [Show full text]
  • Tidal Power: an Effective Method of Generating Power
    International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 1 ISSN 2229-5518 Tidal Power: An Effective Method of Generating Power Shaikh Md. Rubayiat Tousif, Shaiyek Md. Buland Taslim Abstract—This article is about tidal power. It describes tidal power and the various methods of utilizing tidal power to generate electricity. It briefly discusses each method and provides details of calculating tidal power generation and energy most effectively. The paper also focuses on the potential this method of generating electricity has and why this could be a common way of producing electricity in the near future. Index Terms — dynamic tidal power, tidal power, tidal barrage, tidal steam generator. —————————— —————————— 1 INTRODUCTION IDAL power, also called tidal energy, is a form of ly or indirectly from the Sun, including fossil fuels, con- Thydropower that converts the energy of tides into ventional hydroelectric, wind, biofuels, wave power and electricity or other useful forms of power. The first solar. Nuclear energy makes use of Earth's mineral depo- large-scale tidal power plant (the Rance Tidal Power Sta- sits of fissile elements, while geothermal power uses the tion) started operation in 1966. Earth's internal heat which comes from a combination of Although not yet widely used, tidal power has poten- residual heat from planetary accretion (about 20%) and tial for future electricity generation. Tides are more pre- heat produced through radioactive decay (80%). dictable than wind energy and solar power. Among Tidal energy is extracted from the relative motion of sources of renewable energy, tidal power has traditionally large bodies of water.
    [Show full text]
  • Energy from Water Factsheet
    FACTSHEET ENERGY FROM WATER TECHNOLOGY DESCRIPTION Name technology Dynamic Tidal Power Date of factsheet 11-12-2020 Author Ruud van den Brink and Sam Lamboo Description Dynamic Tidal Power (DTP) is a technique which generates energy from the interaction between a tidal wave running along the coast and a dam that is tens of kilometers long at a right angle to the tidal wave. Two new tidal waves are created along the entire length of the dam, which are exactly in opposite phase to each other. So whenever a new crest appears on the left along the dam, there is a new valley on the right, and 6 hours later the other way around. As a result, along the total dam length, the head changes in size and direction over time. By creating openings (approx. 10% is considered optimum) for turbines in the dam, electricity can be generated (Hulsbergen, 2008, May, 2012). There are several variations of DTP, of which the two most important are: (1) a dam of 30 to 50 km from the coast with a perpendicular dam (T-profile) of several tens of kilometers at the end. (2) a dam of 30 to 50 km not connected to the coast with a so-called whale tail at both ends (Walraven, 2020). The yield of a DTP system increases with the length of the dam by a power of 2.5 (Hulsbergen, 2008). A 50 km dam therefore provides considerably more energy per kilometer at a lower cost than a 30 km dam. Mei (2020) applies an analytical model in which almost the same drop over a straight dam of 20, 30, 40 and 50 km is found as according to the approach of Kolkman and Hulsbergen (2005, 2008).
    [Show full text]
  • An Agenda for the Liverpool City Region 2 | an AGENDA for the LIVERPOOL CITY REGION
    An Agenda for the Liverpool City Region 2 | AN AGENDA FOR THE LIVERPOOL CITY REGION Contents Introduction ....................................................................................................................................................................................................................page 3 Chapter 1. Re-industrialisation: the re-birth of the Liverpool City Region’s original agglomeration economy? ....................................page 5 Chapter 2: Deprivation in the Liverpool City Region .......................................................................................................................................... page 15 Chapter 3. Where next? Graduate mobility in the Liverpool City Region ..................................................................................................... page 21 Chapter 4. A river runs through it. Harnessing the potential of the Mersey .............................................................................................. page 29 Chapter 5: Exploring the geography of retail decline in the Liverpool City Region ..................................................................................page 37 Chapter 6: Conclusions and Recommendations ................................................................................................................................................ page 44 Acknowledgements ....................................................................................................................................................................................................page
    [Show full text]
  • Review of Present UK Marine Energy Policy and Developments
    International Conference on Renewable Energies and Power Quality European Association for the Development of Renewable Energies, (ICREPQ’10) Environment and Power Quality (EA4EPQ) Granada (Spain), 23rd to 25th March, 2010 Review of Present UK Marine Energy Policy and Developments M.R. Willis1, A. Cook1, A.J. Williams1, I. Masters1, T.N. Croft1 1 Marine Energy Research Group School of Engineering Swansea University, Singleton Park, Swansea, UK, SA2 8PP Phone/Fax number:+0044 792 295541, e-mail: [email protected], Abstract. it is highly predictable making it an invaluable asset to a Marine renewable energy can meet the challenges of renewable energy portfolio. The UK, being surrounded climate change and energy security. It is highly by oceans, is well positioned to exploit the abundant predictable making it invaluable to an energy portfolio. marine renewable energy resource. The UK, being surrounded by oceans, is well positioned to exploit the marine renewable energy resource of The technology necessary to convert the ocean’s energy approximately 89 TWh/year. Between 1-2.5 GW could into a usable power commodity already exists. However, be deployed by 2020, providing 3% of UK electricity. the industry is currently restrained by its infancy and the venture risks associated long cash-burn periods with an This paper looks at the UK Government policies to uncertain return using unproven technology. encourage growth in marine renewables, focusing specifically on Wales and the Welsh Assembly Currently the UK is considered to be the furthest along Government’s ambitous objectives. The Welsh Assembly the road to the commercialisation of marine renewable Government Renewable Energy Route Map for Wales energy devices, however the rest of the world are includes an ambition to produce more electricity from increasingly closing the lead.
    [Show full text]
  • Development of Tidal Energy Generation Modelling Using Morecambe Bay As a Case Study Under Different Environmental, Storage and Demand Scenarios
    Development of tidal energy generation modelling using Morecambe Bay as a case study under different environmental, storage and demand scenarios. By Simon Baker Supervisors: Prof George Aggidis Dr David Howard In collaboration with Northern Tidal Power Gateways This project was supported by the Centre for Global Eco-Innovation and is part financed by the European Regional Development Fund. Signed Declaration Lancaster University Faculty of Science and Technology Engineering Department Signed Declaration on the submission of a dissertation “I declare that this dissertation is my own work and has not been submitted in substantially the same form towards the award of a degree or other qualification. Acknowledgement is made in the text of assistance received and all major sources of information have been appropriately referenced. I confirm that I have read and understood the publication Guidance on Writing Technical Reports published by the Department.” Signed ……………………………………………………… 9th October 2020 Date ………………………………………………………… ii Abstract Electricity generation is a major source of greenhouse gas emissions. Renewable energy mitigates those emissions but poses different problems for the use of the power. This project examines the potential of using a barrage across Morecambe Bay to capture tidal range energy. The tidal system for a specific location is complex and requires multiple levels of robust detailed modelling. The optimum barrage operational parameter values (e.g. generating starting head and turbine speed) vary with the height of the tide. They are also influenced by the design and should be adjusted whenever the design changes. Using 0-D modelling, the energy from real tides can be modelled effectively by applying a set of linear functions to relate the operational parameters to the tidal range.
    [Show full text]