Facial Bones in Domestic Animals Nasal Bones
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Development of the Human Maxilla, Vomer, and Paraseptal Cartilages
THE DEVELOPMENT OF THE HUMAN MAXILLA, VOMER, AND PARASEPTAL CARTILAGES. By Professor FAWCETT, M.D., University of Bristol. THE usually accepted descriptions of the development of the maxilla of man state that it arises by a number of separate centres-the number varying somewhat with the authority, likewise the situation of these centres. No description of the maxilla can be considered complete unless at the same time notice is taken of the manner of development of the premaxilla, which, of course, forms the anterior segment of the adult bone as usually interpreted. But the consideration of the development of the premaxilla may be left until that of the maxilla has been fully dealt with. Before breaking new ground, it may be well to state what are the usual statements with reference to the ossification of the maxilla. These statements are apparently for the most part based on work done by Callender, Toldt, Rambaud and Renault, and Bland Sutton, so far as concerns human anatomy. More recently Franklin Mall has given his views on the subject in the American Jouarnal of Anatomy, views based on observation of specimens treated by the "clearing" method of Schulze. So far as they go, these statements are in harmony with my own notions, which I have for several years now taught. A very precise account is given in Cunningham's Text-book of Anatomy. The maxilla is there stated to be developed in the connective tissue around the oral cavity of the embryo from centres which are not preceded by cartilage, of uncertain number, as early fusion takes place between them. -
MAXILLARY FRACTURES Is Mandatory and May Include Both Plain Films and a Computed Tomographic (CT) the Maxilla Forms the Largest Component of Scan
Radiographic evaluation of the fracture MAXILLARY FRACTURES is mandatory and may include both plain films and a computed tomographic (CT) The maxilla forms the largest component of scan. The CT scan has now essentially the middle third of the facial skeleton. The maxil- replaced plain films as the Ògold standardÓ la is a key bone in the midface that is closely asso- in both evaluation and treatment planning. ciated with adjacent bones providing structural If physical findings and plain films are not support between the cranial base and the occlusal suggestive of a zygomatic fracture, the eval- plane. Fractures of the maxilla occur less fre- uation may end here. However, if they do quently than those of the mandible or nose due to suggest fracture, a coronal and axial CT the strong structural support of this bone. The scan should be obtained. The CT scan will midface consists of alternating thick and thin sec- accurately reveal the extent of orbital tions of bone that are capable of resisting signifi- involvement, as well as degree of displace- cant force. This structurally strong bone provides ment of the fractures. This study is vital for protection for the globes and brain, projection of planning the operative approach. the midface, and support for occlusion. Reestablishing continuity of these buttresses is the Historically, closed reduction was the foundation on which maxillary fracture treatment method of choice for nearly all zygomatic is based. fractures. Multiple methods were employed, but most involved simply exert- Renee LeFort (1901) provided the earliest clas- ing pressure underneath the malar emi- sification system of maxillary fractures. -
The All-On-Four Treatment Concept: Systematic Review
J Clin Exp Dent. 2017;9(3):e474-88. All-on-four: Systematic review Journal section: Prosthetic Dentistry doi:10.4317/jced.53613 Publication Types: Review http://dx.doi.org/10.4317/jced.53613 The all-on-four treatment concept: Systematic review David Soto-Peñaloza 1, Regino Zaragozí-Alonso 2, María Peñarrocha-Diago 3, Miguel Peñarrocha-Diago 4 1 Collaborating Lecturer, Master in Oral Surgery and Implant Dentistry, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Spain Peruvian Army Officer, Stomatology Department, Luis Arias Schreiber-Central Military Hospital, Lima-Perú 2 Dentist, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Spain 3 Assistant Professor of Oral Surgery, Stomatology Department, Faculty of Medicine and Dentistry, University of Valencia, Spain 4 Professor and Chairman of Oral Surgery, Stomatology Department, Faculty of Medicine and Dentistry, University of Valencia, Spain Correspondence: Unidad de Cirugía Bucal Facultat de Medicina i Odontologìa Universitat de València Gascó Oliag 1 46010 - Valencia, Spain [email protected] Soto-Peñaloza D, Zaragozí-Alonso R, Peñarrocha-Diago MA, Peñarro- cha-Diago M. The all-on-four treatment concept: Systematic review. J Clin Exp Dent. 2017;9(3):e474-88. http://www.medicinaoral.com/odo/volumenes/v9i3/jcedv9i3p474.pdf Received: 17/11/2016 Accepted: 16/12/2016 Article Number: 53613 http://www.medicinaoral.com/odo/indice.htm © Medicina Oral S. L. C.I.F. B 96689336 - eISSN: 1989-5488 eMail: [email protected] Indexed in: Pubmed Pubmed Central® (PMC) Scopus DOI® System Abstract Objectives: To systematically review the literature on the “all-on-four” treatment concept regarding its indications, surgical procedures, prosthetic protocols and technical and biological complications after at least three years in function. -
MBB: Head & Neck Anatomy
MBB: Head & Neck Anatomy Skull Osteology • This is a comprehensive guide of all the skull features you must know by the practical exam. • Many of these structures will be presented multiple times during upcoming labs. • This PowerPoint Handout is the resource you will use during lab when you have access to skulls. Mind, Brain & Behavior 2021 Osteology of the Skull Slide Title Slide Number Slide Title Slide Number Ethmoid Slide 3 Paranasal Sinuses Slide 19 Vomer, Nasal Bone, and Inferior Turbinate (Concha) Slide4 Paranasal Sinus Imaging Slide 20 Lacrimal and Palatine Bones Slide 5 Paranasal Sinus Imaging (Sagittal Section) Slide 21 Zygomatic Bone Slide 6 Skull Sutures Slide 22 Frontal Bone Slide 7 Foramen RevieW Slide 23 Mandible Slide 8 Skull Subdivisions Slide 24 Maxilla Slide 9 Sphenoid Bone Slide 10 Skull Subdivisions: Viscerocranium Slide 25 Temporal Bone Slide 11 Skull Subdivisions: Neurocranium Slide 26 Temporal Bone (Continued) Slide 12 Cranial Base: Cranial Fossae Slide 27 Temporal Bone (Middle Ear Cavity and Facial Canal) Slide 13 Skull Development: Intramembranous vs Endochondral Slide 28 Occipital Bone Slide 14 Ossification Structures/Spaces Formed by More Than One Bone Slide 15 Intramembranous Ossification: Fontanelles Slide 29 Structures/Apertures Formed by More Than One Bone Slide 16 Intramembranous Ossification: Craniosynostosis Slide 30 Nasal Septum Slide 17 Endochondral Ossification Slide 31 Infratemporal Fossa & Pterygopalatine Fossa Slide 18 Achondroplasia and Skull Growth Slide 32 Ethmoid • Cribriform plate/foramina -
Three-Dimensional Radiographic Evaluation of the Malar Bone Engagement Available for Ideal Zygomatic Implant Placement
Article Three-Dimensional Radiographic Evaluation of the Malar Bone Engagement Available for Ideal Zygomatic Implant Placement Gerardo Pellegrino 1,* , Francesco Grande 2 , Agnese Ferri 1, Paolo Pisi 3, Maria Giovanna Gandolfi 4 and Claudio Marchetti 1 1 Oral and Maxillofacial Surgery Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; [email protected] (A.F.); [email protected] (C.M.) 2 Oral Surgery Unit, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; [email protected] 3 Dental Radiology Unit, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; [email protected] 4 Medical-technical Science, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; mgiovanna.gandolfi@unibo.it * Correspondence: [email protected]; Tel.: +39-051-208-8157 Received: 11 June 2020; Accepted: 21 July 2020; Published: 22 July 2020 Abstract: Zygomatic implant rehabilitation is a challenging procedure that requires an accurate prosthetic and implant plan. The aim of this study was to evaluate the malar bone available for three-dimensional zygomatic implant placement on the possible trajectories exhibiting optimal occlusal emergence. After a preliminary analysis on 30 computed tomography (CT) scans of dentate patients to identify the ideal implant emergencies, we used 80 CT scans of edentulous patients to create two sagittal planes representing the possible trajectories of the anterior and posterior zygomatic implants. These planes were rotated clockwise on the ideal emergence points and three different hypothetical implant trajectories per zygoma were drawn for each slice. -
NASAL ANATOMY Elena Rizzo Riera R1 ORL HUSE NASAL ANATOMY
NASAL ANATOMY Elena Rizzo Riera R1 ORL HUSE NASAL ANATOMY The nose is a highly contoured pyramidal structure situated centrally in the face and it is composed by: ü Skin ü Mucosa ü Bone ü Cartilage ü Supporting tissue Topographic analysis 1. EXTERNAL NASAL ANATOMY § Skin § Soft tissue § Muscles § Blood vessels § Nerves ² Understanding variations in skin thickness is an essential aspect of reconstructive nasal surgery. ² Familiarity with blood supplyà local flaps. Individuality SKIN Aesthetic regions Thinner Thicker Ø Dorsum Ø Radix Ø Nostril margins Ø Nasal tip Ø Columella Ø Alae Surgical implications Surgical elevation of the nasal skin should be done in the plane just superficial to the underlying bony and cartilaginous nasal skeleton to prevent injury to the blood supply and to the nasal muscles. Excessive damage to the nasal muscles causes unwanted immobility of the nose during facial expression, so called mummified nose. SUBCUTANEOUS LAYER § Superficial fatty panniculus Adipose tissue and vertical fibres between deep dermis and fibromuscular layer. § Fibromuscular layer Nasal musculature and nasal SMAS § Deep fatty layer Contains the major superficial blood vessels and nerves. No fibrous fibres. § Periosteum/ perichondrium Provide nutrient blood flow to the nasal bones and cartilage MUSCLES § Greatest concentration of musclesàjunction of upper lateral and alar cartilages (muscular dilation and stenting of nasal valve). § Innervation: zygomaticotemporal branch of the facial nerve § Elevator muscles § Depressor muscles § Compressor -
Evaluation of Maxillary Bone Dimensions in Specific Areas for Removable Dentures
https://doi.org/10.5272/jimab.2017232.1527 Journal of IMAB Journal of IMAB - Annual Proceeding (Scientific Papers). 2017 Apr-Jun;23(2): ISSN: 1312-773X https://www.journal-imab-bg.org Original article EVALUATION OF MAXILLARY BONE DIMENSIONS IN SPECIFIC AREAS FOR REMOVABLE DENTURES Original Articles Dobromira Shopova1, Tanya Bozhkova1, Dian Slavchev1, Spas Muletarov2, Zdravka Ivanova3, Elena Bozhikova2 1) Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University - Plovdiv, Bulgaria; 2) Department of Anatomy, Histology and Embryology, Medical University - Plovdiv, Bulgaria; 3) Department of Plant Physiology and Molecular Biology, Plovdiv University - Plovdiv, Bulgaria. ABSTRACT similar studies for quantitative evaluation module of elas- Background: Removable prosthetics is a big part of ticity and hardness in different anatomical regions, and Prosthetic Dentistry. Prosthetic field is very important for they were established middle level in frontal area and low successful treatment with partial or complete dentures. in distal zone [3, 4, 5]. The cortical density can be meas- Maxillary bone is covered with soft tissues, but its anatomy ured by Hounsfield units (HU). The investigations proved is essential for retention, chewing stability and comfort of various levels in cortical and cancellous bone densities. the patients. Maxillary tuberosity showed the lowest level [6]. Com- Purpose: The study’s aim was to evaluate the dimen- puted tomography’s study of the edentulous posterior max- sions of maxillary bone in specific zones for removable illae showed porous cortical crest or no cortical bone, al- dentures. though the bone densities varied markedly among indi- Methods: Sixteen craniums were measured in 10 dif- viduals [7]. Micro-computed tomography (microCT) is a ferent zones. -
Splanchnocranium
splanchnocranium - Consists of part of skull that is derived from branchial arches - The facial bones are the bones of the anterior and lower human skull Bones Ethmoid bone Inferior nasal concha Lacrimal bone Maxilla Nasal bone Palatine bone Vomer Zygomatic bone Mandible Ethmoid bone The ethmoid is a single bone, which makes a significant contribution to the middle third of the face. It is located between the lateral wall of the nose and the medial wall of the orbit and forms parts of the nasal septum, roof and lateral wall of the nose, and a considerable part of the medial wall of the orbital cavity. In addition, the ethmoid makes a small contribution to the floor of the anterior cranial fossa. The ethmoid bone can be divided into four parts, the perpendicular plate, the cribriform plate and two ethmoidal labyrinths. Important landmarks include: • Perpendicular plate • Cribriform plate • Crista galli. • Ala. • Ethmoid labyrinths • Medial (nasal) surface. • Orbital plate. • Superior nasal concha. • Middle nasal concha. • Anterior ethmoidal air cells. • Middle ethmoidal air cells. • Posterior ethmoidal air cells. Attachments The falx cerebri (slide) attaches to the posterior border of the crista galli. lamina cribrosa 1 crista galli 2 lamina perpendicularis 3 labyrinthi ethmoidales 4 cellulae ethmoidales anteriores et posteriores 5 lamina orbitalis 6 concha nasalis media 7 processus uncinatus 8 Inferior nasal concha Each inferior nasal concha consists of a curved plate of bone attached to the lateral wall of the nasal cavity. Each consists of inferior and superior borders, medial and lateral surfaces, and anterior and posterior ends. The superior border serves to attach the bone to the lateral wall of the nose, articulating with four different bones. -
Anatomical Variations of the Greater Palatine Nerve in the Greater Palatine Canal
Anatomical Variations of the Greater Palatine Nerve in the Greater Palatine Canal Najmus Sahar Hafeez, MD, MSc; Sugantha Ganapathy, MD, FRCPC; Rakesh Sondekoppam, MD; Marjorie Johnson, PhD; Peter Merrifield, PhD; Khadry A. Galil, DDS, DO&MF Surg, PhD, FAGD, FADI, Cert. Periodontist Posted on July 21, 2015 Tags: diagnosis oral surgery Cite this as: J Can Dent Assoc 2015;81:f14 ABSTRACT The greater palatine nerve and the greater palatine canal are common sites for maxillary anesthesia during dental and maxillo facial procedures. The greater palatine nerve is thought to course as a single trunk through the greater palatine canal, branching after its exit from the greater palatine foramen. We describe intracanalicular branching variations of the greater palatine nerve found in 8 of 20 embalmed dissection specimens. Such variation is previously unreported in the literature. We characterize the variations in branching pattern and discuss the possible implications for clinical practice. The greater palatine nerve (GPN), which is the continuation of the descending palatine nerve, innervates palatal tissues and the palatal gingiva posterior to the canines after passing through the greater palatine foramen. Anesthetising the GPN (i.e., GPN block) at the greater palatine foramen is common during procedures on the maxillary teeth and palate. The greater palatine canal also provides access for maxillary anesthesia in dental practice.1 Studies have suggested that the greater palatine neurovascular bundle is the most critical structure to be identified during subepithelial connective tissue palatal graft procedures.2 Multiple studies in clinical practice have demonstrated that a GPN block produces the most effective, consistent and prolonged analgesia following palatoplasty in children with cleft palate.3 Although a number of studies have shown anatomical variations in greater palatine foramen location, number and morphology,4,5 studies describing anatomical variations in the GPN within and outside the canal are sparse. -
The Vomer Bone Analysis in Relation to Class Iii Malocclusion Using Three Dimenssional Images Analysis
International Journal of Dental and Health Sciences Original Article Volume 04,Issue 05 THE VOMER BONE ANALYSIS IN RELATION TO CLASS III MALOCCLUSION USING THREE DIMENSSIONAL IMAGES ANALYSIS Ammar Mohi 1, Kadir Beycan2, Şebnem Erçalik Yalçinkaya3 1Postgraduate PhD researcher, Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Marmara University, Istanbul, Turkey. 2Assistant professor , Department of Orthodontics, Faculty of Dentistry, Marmara University, Istanbul, Turkey. 3Professor, Chairman and Head of Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Marmara University, Istanbul, Turkey. ABSTRACT: Objective: To evaluate the vomer bone dimenssional outline changes in relation to the midface hypoplasia of a Class III malocclusion by comparing with normal controls using a three dimenssional CBCT images analysis of Mimics 19.0 software. Material and Method: In total of 96 patients images were both Class III malocclusion as study cases and normal occlusion as controls with age between 15 to 30 years old. All patients were classified into three group based on ANB angular value of Steiner’s analysis. The study group were : normal, mild and sever malocclusion type groups. Linear and angular planes were determined by using 13 skeletal points and analysed by using Mimics 19.0 software. All study groups parameters statistically analysed for significant differences and correlation. Results: A high significant differences between the vomer bone anterior variables (P<0.01) followed by vomer posterior variables (P<0.05) in relation to cranial and midfacial measurements with positive correlation. The pattern of vomer bone was shown highly anterior impaction and backward inclination in sever type malocclusion group and male higher than female. -
A New Origin for the Maxillary Jaw
Developmental Biology 276 (2004) 207–224 www.elsevier.com/locate/ydbio A new origin for the maxillary jaw Sang-Hwy Leea, Olivier Be´dardb,1, Marcela Buchtova´b, Katherine Fub, Joy M. Richmanb,* aDepartment of Oral, Maxillofacial Surgery and Oral Science Research Center, Medical Science and Engineering Research Center, BK 21 Project for Medical Science, College of Dentistry Yonsei University, Seoul, Korea bDepartment of Oral Health Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3 Received for publication 7 April 2004, revised 5 August 2004, accepted 31 August 2004 Available online 5 October 2004 Abstract One conserved feature of craniofacial development is that the first pharyngeal arch has two components, the maxillary and mandibular, which then form the upper and lower jaws, respectively. However, until now, there have been no tests of whether the maxillary cells originate entirely within the first pharyngeal arch or whether they originate in a separate condensation, cranial to the first arch. We therefore constructed a fate map of the pharyngeal arches and environs with a series of dye injections into stage 13–17 chicken embryos. We found that from the earliest stage examined, the major contribution to the maxillary bud is from post-optic mesenchyme with a relatively minor contribution from the maxillo-mandibular cleft. Cells labeled within the first pharyngeal arch contributed exclusively to the mandibular prominence. Gene expression data showed that there were different molecular codes for the cranial and caudal maxillary prominence. Two of the genes examined, Rarb (retinoic acid receptor b) and Bmp4 (bone morphogenetic protein) were expressed in the post-optic mesenchyme and epithelium prior to formation of the maxillary prominence and then were restricted to the cranial half of the maxillary prominence. -
Reconstruction of the Pediatric Maxilla and Mandible
ORIGINAL ARTICLE Reconstruction of the Pediatric Maxilla and Mandible Eric M. Genden, MD; Daniel Buchbinder, DMD, MD; John M. Chaplin, MBChB; Edgar Lueg, MD; Gerry F. Funk, MD; Mark L. Urken, MD Background: The creation of osseous defects in the up- Results: Two patients were lost to follow-up, and 1 per and lower jaws in children is an uncommon occur- died secondary to complications related to distant meta- rence. It is therefore likely that a head and neck recon- static disease. Three of 6 patients were observed for 2 structive surgeon will accumulate only limited experience years 6 months, 4 years, and 4 years 2 months, respec- in restoring such defects. We have reviewed 7 pediatric tively. Two of the 3 patients who were observed long bone-containing microvascular free flap reconstruc- term have undergone full dental rehabilitation and cur- tions in 6 patients for reconstruction of the upper or lower rently maintain a regular diet and deny pain with masti- jaws. Three patients were available for long-term fol- cation or deglutition. One patient did not require dental low-up to evaluate the effect of osseous free flap recon- rehabilitation. All 3 patients demonstrate gross facial struction on function and growth and development of symmetry and normal dental occlusion. Assessment of the donor site. the fibular donor site demonstrated normal limb length and circumference. The patients denied pain or restric- Design: Retrospective review. tion to recreational activity. Scapular donor sites demon- strated normal range of motion, strength, and shoulder Setting: Academic tertiary referral center for otolaryn- stability. gology.