Evaluation of Maxillary Bone Dimensions in Specific Areas for Removable Dentures

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Maxillary Bone Dimensions in Specific Areas for Removable Dentures https://doi.org/10.5272/jimab.2017232.1527 Journal of IMAB Journal of IMAB - Annual Proceeding (Scientific Papers). 2017 Apr-Jun;23(2): ISSN: 1312-773X https://www.journal-imab-bg.org Original article EVALUATION OF MAXILLARY BONE DIMENSIONS IN SPECIFIC AREAS FOR REMOVABLE DENTURES Original Articles Dobromira Shopova1, Tanya Bozhkova1, Dian Slavchev1, Spas Muletarov2, Zdravka Ivanova3, Elena Bozhikova2 1) Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University - Plovdiv, Bulgaria; 2) Department of Anatomy, Histology and Embryology, Medical University - Plovdiv, Bulgaria; 3) Department of Plant Physiology and Molecular Biology, Plovdiv University - Plovdiv, Bulgaria. ABSTRACT similar studies for quantitative evaluation module of elas- Background: Removable prosthetics is a big part of ticity and hardness in different anatomical regions, and Prosthetic Dentistry. Prosthetic field is very important for they were established middle level in frontal area and low successful treatment with partial or complete dentures. in distal zone [3, 4, 5]. The cortical density can be meas- Maxillary bone is covered with soft tissues, but its anatomy ured by Hounsfield units (HU). The investigations proved is essential for retention, chewing stability and comfort of various levels in cortical and cancellous bone densities. the patients. Maxillary tuberosity showed the lowest level [6]. Com- Purpose: The study’s aim was to evaluate the dimen- puted tomography’s study of the edentulous posterior max- sions of maxillary bone in specific zones for removable illae showed porous cortical crest or no cortical bone, al- dentures. though the bone densities varied markedly among indi- Methods: Sixteen craniums were measured in 10 dif- viduals [7]. Micro-computed tomography (microCT) is a ferent zones. It was used an Electronic Digital Caliper 0- method to image and quantify bone with very high resolu- 150 mm. tion [8]. Another investigation for determining the cortical Results: Consistently were applied F-test and Welch thickness, density and elastic properties, proved a big vari- t-test for equality of variance and group’s comparison mean, ability in different areas of the upper jaw [9]. respectively. The spread of the data was described by cal- Physical properties of the bone are related to culating range and standard deviation. The estimated value resorption. The marginal bone level was, on average, 1.0 of range was highest in the FI-A1P, followed by FI-AC and mm less from the implant/abutment junction after 1 year FI-A2P. The smallest amplitude was established in the TM- [10]. Resorptive process can be considered from the length PP and SNA. The estimated value of standard deviation was of incisive canal, which is different value in dentulous and 2,57/2,51 in FI-AC zone, 2,46/2,59 in FI-A1P zone and a edentulous maxillary bone [11]. It is established gender dif- few smaller 2,08/2,13 in FI-A2P zone. The lowest values ference in anatomic features of incisive canal [12]. Monje were in TM-PP and SNA areas. proved a statistically significant positive correlation be- Conclusion: Tuber maxillae and Spina nasalis ante- tween bone volumetric fraction and ridge height and a sta- rior have stable dimensions. The areas of canine and tistically significant negative correlation between trabecu- premolars are varied, because the zone is tasked by chew- lar pattern factor and ridge height [13]. ing function. There are different investigations for evaluation the thickness of facial alveolar bone in frontal area, most of Key words: maxilla, removable prosthesis, bone them with a cone- beam computed tomography [14, 15, 16, anatomy. 17, 18]. Cortical bone thickness of the alveolar wall in dif- ferent facial type patients (low-angle, normal, and high-an- INTRODUCTION: gle) was the same [19]. Essential for the successful treat- Physiological range of prosthetic field was deter- ment with complete dentures is proper planning, the type mined by the following anatomical structures- spina nasa- of prosthesis and prosthetic design [20]. lis anterior, crista zygomaticoalveolaris, m. buccinators, m. orbicularis oris, m. incisivus labii superioris. In the distal PURPOSE: area this range is placed behind Tuber maxillae to facies The aim of the study was to evaluate the dimensions infratemporalis maxillae [1]. The maxilla contained less la- of maxilla bone in specific removable prosthetics areas. mellar bone compared with the mandible [2]. There are J of IMAB. 2017 Apr-Jun;23(2) https://www.journal-imab-bg.org 1527 MATERIAL AND METHODS: 2- the distance from lower edge of Foramen infraorbitale The current study was conducted in the Department to the canine’s alveolus (FI-AC); 3- the distance from lower ‘’Anatomy, Histology and Embryology’’, Medical University edge of Foramen infraorbitale to the first premolar’s alveo- of Plovdiv. It was made 160 measurements on sixteen crani- lus (FI-A1P); 4- the distance from lower edge of Foramen ums, and the results were written in individual work cards. infraorbitale to the second premolar’s alveolus (FI-A2P); 5- It was recorded symmetrical dimensions in right and horizontal gap between Tuber maxillae and (Lamina lat- left half: 1- horizontal depth of Spina nasalis anterior (SNA); eralis) Processus pterygoideus (TM-PP) (fig. 1). Fig. 1. Lateral view of the upper jaw Legend: 1 – Spina nasalis anterior (SNA), 2 – Foramen infraorbitale – alveola dens caninus (FI-AC), 3 – Foramen infraorbitale – alveola dens premolaris primus (FI-A1P), 4 – Foramen infraorbitale – alveola dens premolaris secundus (FI-A2P), 5 – Tuber maxillae - Processus pterygoideus (TM- PP) It was used Electronic digital caliper 0-150 mm. The results were written in a table (table 1), statistical analysis was made by F-test and Welch t-test, and the study was visu- alized by Microsoft Office Excel 2010. Table 1. Measurement values on the upper jaw Ref. marks SNA FI-AC FI-A1P FI-A2P TM-PP No. cranium dex. sin. dex. sin. dex. sin. dex. sin. dex. sin. cranium 1 3,16 3,31 14,78 18,16 17,25 17,75 14,24 16,42 2,07 1,68 cranium 2 4,26 4,15 20,08 20,6 20,3 19,01 20,49 18,22 2,54 2,15 cranium 3 2,38 2,6 21,53 22,05 23,27 24,18 19,93 21,48 1,74 1,98 cranium 4 1,95 1,88 16,35 16,58 16,05 16,64 17,15 15,43 2,15 1,61 cranium 5 2,61 2,8 17,57 17,52 18,69 16,5 19,94 16,73 1,89 1,38 cranium 6 2,59 2,31 17,44 17,31 17,66 15,61 18,53 15,27 1,59 1,18 cranium 7 2,79 1,9 13,3 14,62 15,27 14,77 18,8 16,34 1,63 2,03 cranium 8 2,72 3,04 16,67 15,66 17,58 17,98 19,45 19,38 1,83 1,72 cranium 9 3,77 3,94 13,55 15,19 14,76 15,29 15,3 15,74 1,72 2,03 cranium10 3,99 3,83 12,54 13,33 13,8 14,79 15,39 14,9 1,68 2,02 cranium11 3,03 3,08 14,43 14,89 14,86 15,03 16,34 16,97 1,56 1,7 cranium12 4,75 4,6 16,02 16,77 17,65 18,01 19,8 19,97 2,03 2,16 cranium13 3,75 3,34 16,78 18,2 17,88 17,84 19,62 19,82 2,34 2,46 cranium14 2,06 2,67 19,95 20,94 19,9 21,83 20,46 21,2 1,87 1,98 cranium15 2,42 3,02 16 18,75 15,5 16,05 17,65 18,34 1,24 1,37 cranium16 2,38 2,4 14,26 14,49 15,54 16,18 15,84 17,09 1,67 1,93 RESULTS: language and software environment for statistical comput- Initial data from the symmetrical areas were gathered ing. The purpose of the analysis was to detect statistically in pairs– (SNA dex. - SNA sin), (FI-AC dex.– FI-AC sin.), significant differences between the group means. Consist- (FI-A1P dex.– FI-A1P sin), (FI-A2P dex.– FI-A2P sin.), (TM- ently were applied F-test for equality of variance and PP dex.– TM-PP sin.) and analyzed by “R” programming Welch t-test for comparison group means (Table 2). 1528 https://www.journal-imab-bg.org J of IMAB. 2017 Apr-Jun;23(2) Table 2. Results from F-test and Welch t-test F-test Welch t-test SNA dex.-SNA sin. F = 1.1175, p-value = 0.8324 t = -0.0569, p-value = 0.955 FI-AC dex.–FI-AC sin. F = 1.045, p-value = 0.9332 t = -0.9603, p-value = 0.3446 FI-A1P dex.–FI-A1P sin. F = 0.8987, p-value = 0.8388 t = -0.105, p-value = 0.9171 FI-A2P dex.–FI-A2P sin. F = 0.9604, p-value = 0.9387 t = 0.473, p-value = 0.6397 TM-PP dex.–TM-PP sin. F = 0.9047,p-value = 0.8488 t = 0.0911, p-value = 0.928 The Range is defined as the difference between the ard deviation is a measure of the spread of the data around maximum and minimum observations, and gives an esti- the mean.The estimated value of standard deviation (sd) mate of the spread of the data. It was highest in FI-A1P, was 2,57/2,51 in FI-AC zone, 2,46/2,59 in FI-A1P zone and followed by FI-AC and FI-A2P. The smallest amplitude was a few smaller 2,08/2,13 in FI-A2P zone.
Recommended publications
  • Branches of the Maxillary Artery of the Domestic
    Table 4.2: Branches of the Maxillary Artery of the Domestic Pig, Sus scrofa Artery Origin Course Distribution Departs superficial aspect of MA immediately distal to the caudal auricular. Course is typical, with a conserved branching pattern for major distributing tributaries: the Facial and masseteric regions via Superficial masseteric and transverse facial arteries originate low in the the masseteric and transverse facial MA Temporal Artery course of the STA. The remainder of the vessel is straight and arteries; temporalis muscle; largely unbranching-- most of the smaller rami are anterior auricle. concentrated in the proximal portion of the vessel. The STA terminates in the anterior wall of the auricle. Originates from the lateral surface of the proximal STA posterior to the condylar process. Hooks around mandibular Transverse Facial Parotid gland, caudal border of the STA ramus and parotid gland to distribute across the masseter Artery masseter muscle. muscle. Relative to the TFA of Camelids, the suid TFA has a truncated distribution. From ventral surface of MA, numerous pterygoid branches Pterygoid Branches MA Pterygoideus muscles. supply medial and lateral pterygoideus muscles. Caudal Deep MA Arises from superior surface of MA; gives off masseteric a. Deep surface of temporalis muscle. Temporal Artery Short course deep to zygomatic arch. Contacts the deep Caudal Deep Deep surface of the masseteric Masseteric Artery surface of the masseter between the coronoid and condylar Temporal Artery muscle. processes of the mandible. Artery Origin Course Distribution Compensates for distribution of facial artery. It should be noted that One of the larger tributaries of the MA. Originates in the this vessel does not terminate as sphenopalatine fossa as almost a terminal bifurcation of the mandibular and maxillary labial MA; lateral branch continuing as buccal and medial branch arteries.
    [Show full text]
  • The Development of the Human Maxilla, Vomer, and Paraseptal Cartilages
    THE DEVELOPMENT OF THE HUMAN MAXILLA, VOMER, AND PARASEPTAL CARTILAGES. By Professor FAWCETT, M.D., University of Bristol. THE usually accepted descriptions of the development of the maxilla of man state that it arises by a number of separate centres-the number varying somewhat with the authority, likewise the situation of these centres. No description of the maxilla can be considered complete unless at the same time notice is taken of the manner of development of the premaxilla, which, of course, forms the anterior segment of the adult bone as usually interpreted. But the consideration of the development of the premaxilla may be left until that of the maxilla has been fully dealt with. Before breaking new ground, it may be well to state what are the usual statements with reference to the ossification of the maxilla. These statements are apparently for the most part based on work done by Callender, Toldt, Rambaud and Renault, and Bland Sutton, so far as concerns human anatomy. More recently Franklin Mall has given his views on the subject in the American Jouarnal of Anatomy, views based on observation of specimens treated by the "clearing" method of Schulze. So far as they go, these statements are in harmony with my own notions, which I have for several years now taught. A very precise account is given in Cunningham's Text-book of Anatomy. The maxilla is there stated to be developed in the connective tissue around the oral cavity of the embryo from centres which are not preceded by cartilage, of uncertain number, as early fusion takes place between them.
    [Show full text]
  • MAXILLARY FRACTURES Is Mandatory and May Include Both Plain Films and a Computed Tomographic (CT) the Maxilla Forms the Largest Component of Scan
    Radiographic evaluation of the fracture MAXILLARY FRACTURES is mandatory and may include both plain films and a computed tomographic (CT) The maxilla forms the largest component of scan. The CT scan has now essentially the middle third of the facial skeleton. The maxil- replaced plain films as the Ògold standardÓ la is a key bone in the midface that is closely asso- in both evaluation and treatment planning. ciated with adjacent bones providing structural If physical findings and plain films are not support between the cranial base and the occlusal suggestive of a zygomatic fracture, the eval- plane. Fractures of the maxilla occur less fre- uation may end here. However, if they do quently than those of the mandible or nose due to suggest fracture, a coronal and axial CT the strong structural support of this bone. The scan should be obtained. The CT scan will midface consists of alternating thick and thin sec- accurately reveal the extent of orbital tions of bone that are capable of resisting signifi- involvement, as well as degree of displace- cant force. This structurally strong bone provides ment of the fractures. This study is vital for protection for the globes and brain, projection of planning the operative approach. the midface, and support for occlusion. Reestablishing continuity of these buttresses is the Historically, closed reduction was the foundation on which maxillary fracture treatment method of choice for nearly all zygomatic is based. fractures. Multiple methods were employed, but most involved simply exert- Renee LeFort (1901) provided the earliest clas- ing pressure underneath the malar emi- sification system of maxillary fractures.
    [Show full text]
  • Ortho Part II
    Ortho Part II Paul K. Chu, DDS St. Barnabas Hospital November 21, 2010 REVIEW FROM LAST LECTURE 1 What kinds of steps are the following? Distal Mesial Distal Mesial Moyer’s Analysis Review 1) Take an impression of a child’s MANDIBULAR arch 2) Measure the mesial distal widths of ALL permanent incisors 3) Take the number you get and look at the black row 4) The corresponding number is the mesial distal width you need for the permanent canine- 1st premolar- 2nd premolar i .e . the 3 - 4 -5 ***(Black row) ----this is the distance you measure**** 2 Moyer’s Analysis Review #1) measure the mesial distal incisal edge width of EACH permanent incisor and add them up **Let’s say in this case we measured 21mm.** Step 1 Moyer’s Analysis Review Maxilla Look at the chart Mandibular Since The resulting number measured should give you needed 21mm we look widths of the maxilla or here. mandibular space needed for permanent canines and 1st and 2nd premolars. Step 2 3 Moyer’s Analysis Review Maxilla You also use the added Mandibular measurements of the mandibular incisors to get predicted MAXILLARY measurements as well! Step 2 The Dreaded Measurements Lecture 4 What Are We Trying to Accomplish? (In other words) Is the patient Class I, II, III skeletal? Does the patient have a skeletal open bite growth pattern, or a deep bite growth pattern, or a normal growth pattern? Are the maxillary/mandibular incisors proclined, retroclined or normal? Is the facial profile protrusive, retrusive, or straight? Why? Why? Why? Why does this patient have increased
    [Show full text]
  • Macroscopic Anatomy of the Nasal Cavity and Paranasal Sinuses of the Domestic Pig (Sus Scrofa Domestica) Daniel John Hillmann Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1971 Macroscopic anatomy of the nasal cavity and paranasal sinuses of the domestic pig (Sus scrofa domestica) Daniel John Hillmann Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Animal Structures Commons, and the Veterinary Anatomy Commons Recommended Citation Hillmann, Daniel John, "Macroscopic anatomy of the nasal cavity and paranasal sinuses of the domestic pig (Sus scrofa domestica)" (1971). Retrospective Theses and Dissertations. 4460. https://lib.dr.iastate.edu/rtd/4460 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 72-5208 HILLMANN, Daniel John, 1938- MACROSCOPIC ANATOMY OF THE NASAL CAVITY AND PARANASAL SINUSES OF THE DOMESTIC PIG (SUS SCROFA DOMESTICA). Iowa State University, Ph.D., 1971 Anatomy I University Microfilms, A XEROX Company, Ann Arbor. Michigan I , THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED Macroscopic anatomy of the nasal cavity and paranasal sinuses of the domestic pig (Sus scrofa domestica) by Daniel John Hillmann A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Veterinary Anatomy Approved: Signature was redacted for privacy. h Charge of -^lajoï^ Wor Signature was redacted for privacy. For/the Major Department For the Graduate College Iowa State University Ames/ Iowa 19 71 PLEASE NOTE: Some Pages have indistinct print.
    [Show full text]
  • Three-Dimensional Radiographic Evaluation of the Malar Bone Engagement Available for Ideal Zygomatic Implant Placement
    Article Three-Dimensional Radiographic Evaluation of the Malar Bone Engagement Available for Ideal Zygomatic Implant Placement Gerardo Pellegrino 1,* , Francesco Grande 2 , Agnese Ferri 1, Paolo Pisi 3, Maria Giovanna Gandolfi 4 and Claudio Marchetti 1 1 Oral and Maxillofacial Surgery Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; [email protected] (A.F.); [email protected] (C.M.) 2 Oral Surgery Unit, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; [email protected] 3 Dental Radiology Unit, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; [email protected] 4 Medical-technical Science, Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; mgiovanna.gandolfi@unibo.it * Correspondence: [email protected]; Tel.: +39-051-208-8157 Received: 11 June 2020; Accepted: 21 July 2020; Published: 22 July 2020 Abstract: Zygomatic implant rehabilitation is a challenging procedure that requires an accurate prosthetic and implant plan. The aim of this study was to evaluate the malar bone available for three-dimensional zygomatic implant placement on the possible trajectories exhibiting optimal occlusal emergence. After a preliminary analysis on 30 computed tomography (CT) scans of dentate patients to identify the ideal implant emergencies, we used 80 CT scans of edentulous patients to create two sagittal planes representing the possible trajectories of the anterior and posterior zygomatic implants. These planes were rotated clockwise on the ideal emergence points and three different hypothetical implant trajectories per zygoma were drawn for each slice.
    [Show full text]
  • The Use of Autogenous Bone Mixed with a Biphasic Calcium Phosphate
    coatings Article The Use of Autogenous Bone Mixed with a Biphasic Calcium Phosphate in a Maxillary Sinus Floor Elevation Procedure with a 6-Month Healing Time: A Clinical, Radiological, Histological and Histomorphometric Evaluation Wilhelmus F. Bouwman 1,2, Nathalie Bravenboer 3, Christiaan M. ten Bruggenkate 1,4 and Engelbert A. J. M. Schulten 1,* 1 Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; [email protected] (W.F.B.); [email protected] (C.M.t.B.) 2 Department of Oral and Maxillofacial Surgery, The Tergooi Hospital, Rijksstraatweg 1, 1261 AN Blaricum, The Netherlands 3 Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; [email protected] 4 Department of Oral and Maxillofacial Surgery, Alrijne Hospital, Simon Smitweg 1, 2353 GA Leiderdorp, The Netherlands * Correspondence: [email protected]; Tel.: +31-(0)20-4441023 Received: 8 April 2020; Accepted: 6 May 2020; Published: 9 May 2020 Abstract: Background: In this study it is evaluated whether autogenous bone mixed with biphasic calcium phosphate (BCP) used in a maxillary sinus floor elevation (MSFE) leads to improved bone formation. Materials and methods: In five patients a unilateral MSFE was performed. Histological and histomorphometric analyses were performed on bone biopsies that were obtained 6 months after MSFE during dental implant surgery. Results: The average vital bone volume was 29.9% of the total biopsy (BV/TV, SD 10.1) of which 7.1% was osteoid (OV/BV, SD 4.8).
    [Show full text]
  • Failure Rates of Miniscrews Inserted in the Maxillary Tuberosity
    original article Failure rates of miniscrews inserted in the maxillary tuberosity Muhammad Azeem1, Arfan Ul Haq2, Zubair Hassan Awaisi3, Muhammad Mudassar Saleem4, Muhammad Waheed Tahir5, Ahmad Liaquat6 DOI: https://doi.org/10.1590/2177-6709.24.5.046-051.oar Introduction: Anchorage conservation in orthodontics has always been a challenge. Objective: The aim of this current study was to find out the failure rate of miniscrews inserted in the maxillary tuberosity (MT) region. Methods: This pilot study con- sisted of 40 patients (23 female, 17 male; mean age = 20.1±8.9 years) that had received 60 MT miniscrews for orthodontic treat- ment. Clinical notes and pictures were used to find out the primary outcome of miniscrew failure. Independent failure factors were also investigated. Logistic regression analysis was done for predictor’s relation with MT miniscrews failure. Results: There was no significant correlation in failure rate according to various predictor variables, except for miniscrews installed by lesser experienced operators, which showed significantly more failure. The odds ratio for miniscrew failure placed by inexperienced operators was 4.16. Conclusion: A 26.3% failure rate of mini-implants inserted in the MT region was observed. Keywords: Tuberosity. Miniscrews. Failure. Introdução: a manutenção da ancoragem sempre foi um desafio na Ortodontia. Objetivo: o objetivo do presente estudo foi descobrir a taxa de falhas dos mini-implantes instalados na região da tuberosidade maxilar (TM). Métodos: o presente estudo piloto avaliou 40 pacientes (23 mulheres, 17 homens; idade média = 20,1 ± 8,9 anos) que receberam 60 mini-implantes na TM durante o tratamento ortodôntico.
    [Show full text]
  • Alternative Intraoral Donor Sites to the Chin and Mandibular Body-Ramus
    J Clin Exp Dent. 2017;9(12):e1474-81. The effect of social geographic factors on children’s decays Journal section: Oral Surgery doi:10.4317/jced.54372 Publication Types: Review http://dx.doi.org/10.4317/jced.54372 Alternative intraoral donor sites to the chin and mandibular body-ramus David Reininger 1, Carlos Cobo-Vázquez 2, Benjamin Rosenberg 3, Juan López-Quiles 4 1 DDS, Master in Oral Surgery and Implantology. Instructor Professor, Departament of Oral and Maxillofacial Surgery, Universidad de los Andes 2 PhD, DDS, Master in Oral Surgery and Implantology, Universidad Complutense de Madrid 3 DDS 4 DDS, MD, PhD, Maxillofacial Surgeon, Associate Professor, Department of Oral Surgery and Maxillofacial Surgery, Universidad Complutense de Madrid Correspondence: Robles 12729 depto 305c Santiago de Chile [email protected] Reininger D, Cobo-Vázquez C, Rosenberg B, López-Quiles J.���������� Alterna- tive intraoral donor sites to the chin and mandibular body-ramus. J Clin Exp Dent. 2017;9(12):e1474-81. Received: 27/09/2017 Accepted: 23/10/2017 http://www.medicinaoral.com/odo/volumenes/v9i12/jcedv9i12p1474.pdf Article Number: 54372 http://www.medicinaoral.com/odo/indice.htm © Medicina Oral S. L. C.I.F. B 96689336 - eISSN: 1989-5488 eMail: [email protected] Indexed in: Pubmed Pubmed Central® (PMC) Scopus DOI® System Abstract Background: Provide a review of alternative intraoral donor sites to the chin and body-ramus of the mandible that bring fewer complications and that may be used to regenerate small and medium defects. Material and Methods: A review was conducted using the search engine PUBMED and looking manually into scientific journals.
    [Show full text]
  • Unilateral Upper and Lower Subtotal Maxillectomy Approaches to The
    NEUROSURGERY 46:6 | JUNE 2000 | 1416-1453 DOI: 10.1097/00006123-200006000-00025 Anatomic Report Unilateral Upper and Lower Subtotal Maxillectomy Approaches to the Cranial Base: Downloaded from https://academic.oup.com/neurosurgery/article-abstract/46/6/1416/2925972 by Universidad de Zaragoza user on 02 January 2020 Microsurgical Anatomy Tsutomu Hitotsumatsu, M.D., Ph.D.1, Albert L. Rhoton, Jr., M.D.1 1Department of Neurological Surgery, University of Florida, Gainesville, Florida ABSTRACT OBJECTIVE The relationship of the maxilla, with its thin walls, to the nasal and oral cavities, the orbit, and the infratemporal and pterygopalatine fossae makes it a suitable route for accessing lesions involving both the central and lateral cranial base. In this study, we compared the surgical anatomy and exposure obtained by two unilateral transmaxillary approaches, one directed through an upper subtotal maxillectomy, and the other through a lower subtotal maxillectomy. METHODS Cadaveric specimens examined, with 3 to 40× magnification, provided the material for this study. RESULTS Both upper and lower maxillectomy approaches open a surgical field extending from the ipsilateral internal carotid artery to the contralateral Eustachian tube; however, they differ in the direction of the access and the areas exposed. The lower maxillectomy opens a combination of the transmaxillary, transnasal, and transoral routes to extra- and intradural lesions of the central cranial base. Performing additional osteotomies of the mandibular coronoid process and the sphenoid pterygoid process provides anterolateral access to the lateral cranial base, including the pterygopalatine and infratemporal fossae, and the parapharyngeal space. The upper maxillectomy opens the transmaxillary and transnasal routes to the central cranial base but not the transoral route.
    [Show full text]
  • The Vomer Bone Analysis in Relation to Class Iii Malocclusion Using Three Dimenssional Images Analysis
    International Journal of Dental and Health Sciences Original Article Volume 04,Issue 05 THE VOMER BONE ANALYSIS IN RELATION TO CLASS III MALOCCLUSION USING THREE DIMENSSIONAL IMAGES ANALYSIS Ammar Mohi 1, Kadir Beycan2, Şebnem Erçalik Yalçinkaya3 1Postgraduate PhD researcher, Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Marmara University, Istanbul, Turkey. 2Assistant professor , Department of Orthodontics, Faculty of Dentistry, Marmara University, Istanbul, Turkey. 3Professor, Chairman and Head of Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Marmara University, Istanbul, Turkey. ABSTRACT: Objective: To evaluate the vomer bone dimenssional outline changes in relation to the midface hypoplasia of a Class III malocclusion by comparing with normal controls using a three dimenssional CBCT images analysis of Mimics 19.0 software. Material and Method: In total of 96 patients images were both Class III malocclusion as study cases and normal occlusion as controls with age between 15 to 30 years old. All patients were classified into three group based on ANB angular value of Steiner’s analysis. The study group were : normal, mild and sever malocclusion type groups. Linear and angular planes were determined by using 13 skeletal points and analysed by using Mimics 19.0 software. All study groups parameters statistically analysed for significant differences and correlation. Results: A high significant differences between the vomer bone anterior variables (P<0.01) followed by vomer posterior variables (P<0.05) in relation to cranial and midfacial measurements with positive correlation. The pattern of vomer bone was shown highly anterior impaction and backward inclination in sever type malocclusion group and male higher than female.
    [Show full text]
  • Reconstruction of the Pediatric Maxilla and Mandible
    ORIGINAL ARTICLE Reconstruction of the Pediatric Maxilla and Mandible Eric M. Genden, MD; Daniel Buchbinder, DMD, MD; John M. Chaplin, MBChB; Edgar Lueg, MD; Gerry F. Funk, MD; Mark L. Urken, MD Background: The creation of osseous defects in the up- Results: Two patients were lost to follow-up, and 1 per and lower jaws in children is an uncommon occur- died secondary to complications related to distant meta- rence. It is therefore likely that a head and neck recon- static disease. Three of 6 patients were observed for 2 structive surgeon will accumulate only limited experience years 6 months, 4 years, and 4 years 2 months, respec- in restoring such defects. We have reviewed 7 pediatric tively. Two of the 3 patients who were observed long bone-containing microvascular free flap reconstruc- term have undergone full dental rehabilitation and cur- tions in 6 patients for reconstruction of the upper or lower rently maintain a regular diet and deny pain with masti- jaws. Three patients were available for long-term fol- cation or deglutition. One patient did not require dental low-up to evaluate the effect of osseous free flap recon- rehabilitation. All 3 patients demonstrate gross facial struction on function and growth and development of symmetry and normal dental occlusion. Assessment of the donor site. the fibular donor site demonstrated normal limb length and circumference. The patients denied pain or restric- Design: Retrospective review. tion to recreational activity. Scapular donor sites demon- strated normal range of motion, strength, and shoulder Setting: Academic tertiary referral center for otolaryn- stability. gology.
    [Show full text]