Branches of the Maxillary Artery of the Domestic

Total Page:16

File Type:pdf, Size:1020Kb

Branches of the Maxillary Artery of the Domestic Table 4.2: Branches of the Maxillary Artery of the Domestic Pig, Sus scrofa Artery Origin Course Distribution Departs superficial aspect of MA immediately distal to the caudal auricular. Course is typical, with a conserved branching pattern for major distributing tributaries: the Facial and masseteric regions via Superficial masseteric and transverse facial arteries originate low in the the masseteric and transverse facial MA Temporal Artery course of the STA. The remainder of the vessel is straight and arteries; temporalis muscle; largely unbranching-- most of the smaller rami are anterior auricle. concentrated in the proximal portion of the vessel. The STA terminates in the anterior wall of the auricle. Originates from the lateral surface of the proximal STA posterior to the condylar process. Hooks around mandibular Transverse Facial Parotid gland, caudal border of the STA ramus and parotid gland to distribute across the masseter Artery masseter muscle. muscle. Relative to the TFA of Camelids, the suid TFA has a truncated distribution. From ventral surface of MA, numerous pterygoid branches Pterygoid Branches MA Pterygoideus muscles. supply medial and lateral pterygoideus muscles. Caudal Deep MA Arises from superior surface of MA; gives off masseteric a. Deep surface of temporalis muscle. Temporal Artery Short course deep to zygomatic arch. Contacts the deep Caudal Deep Deep surface of the masseteric Masseteric Artery surface of the masseter between the coronoid and condylar Temporal Artery muscle. processes of the mandible. Artery Origin Course Distribution Compensates for distribution of facial artery. It should be noted that One of the larger tributaries of the MA. Originates in the this vessel does not terminate as sphenopalatine fossa as almost a terminal bifurcation of the mandibular and maxillary labial MA; lateral branch continuing as buccal and medial branch arteries. Instead, the upper and contributing the palatine, septal, and infraorbital vessels. lower lip are largely supplied by Buccal MA Buccal a. passes between maxillary tuberosity and anterior the infraorbital and mental arteries border of the dentary. Courses rostrally superficial to the respectively. The Buccal is highly maxillary cheek teeth. Substantial caliber and branching dendritic at its termination, pattern compensate for truncation of the facial and transverse forming an anastomotic plexus facial arteries. with the aforementionned vessels; this plexus approximally correlates with the location of the diastema. Originates on dorsal surface of buccal artery, immediately distal to the origin of the parent vessel (proximal to passage Rostral Deep Buccal Artery between malar and coronoid process). Extensive course Temporalis m. Temporal posterolaterally to periorbita and deep to zygomatic to reach anterior border of temporalis muscle. Second dorsal branch of the buccal. Extends cranially from the superior face of the buccal, departing immediately Medial angle of the eye; inferior Angularis oculi Buccal Artery anterior to the zygomatic arch. Parallels the zygomatic arch eyelid. before terminating near the medial orbit as the medial inferior palpebral vessel. Next vessel downstream from the buccal, from superficial surface of MA, coursing in parallel with posterolateral margin of pterygoid crest. At F'OR passes branch to CR. Receives int. ophth. Near this intersection arise the ciliary External vessels. Supplies eye, periorbital fat, and named branches to MA Eye, orbit, and adnexa. Ophthalmic extraocular muscles. Medial branch = external ethmoidal; enters nasal cavity thru ethmoidal foramina. Dorsal branch continues as supraorbital a., which enters frontal sinus cells but does not continue superficially. Rostrodorsal branches supply eyelid from medial aspect. Artery Origin Course Distribution Medial palpebral; frontal region One of the terminal branches of the MA; course is as typical Malar MA between the orbits; dorsal nasal in other artiodactyls. region. Lateral nasal region, including Numerous branches arise from the dorsal surface of the malar Lateral Nasal Malar ramifying extensive nasal arterial artery. mat. Rostral termination of the MA. Departs from the IO deep to the malar, within the pterygopalatine fossa. Descends through the pterygopalatine canal and emarges through the greater palatine foramen. courses rostrally intimately associated and Greater Palatine MA Hard palate, nose. partially embedded within the hard palate. Its anterior termination is a remarkably dense vascular bed supplying the ultra-sensitive rostrum. It supplies the rostrum from the ventromedial aspect. Departs the greater palatine @ rostral portion of pterygopalatine fossa; enters nasal cavity through Sphenopalatine MA Nasal floor and septum. sphenopalatine foramen. Highly branching across nasal floor and septum; anastomoses freely with greater palatine. Ventral termination of the treater palatine artery. Splits from the GP deep to the malar, within the pterygopalatine fossa. Descending (lesser) Soft palate; lateral wall of Greater Palatine Enters and descends through to the hard palate where it Palatine oropharynx. immediately distributes across the soft palate and caudal hard palate..
Recommended publications
  • The Facial Artery of the Dog
    Oka jimas Folia Anat. Jpn., 57(1) : 55-78, May 1980 The Facial Artery of the Dog By MOTOTSUNA IRIFUNE Department of Anatomy, Osaka Dental University, Osaka (Director: Prof. Y. Ohta) (with one textfigure and thirty-one figures in five plates) -Received for Publication, November 10, 1979- Key words: Facial artery, Dog, Plastic injection, Floor of the mouth. Summary. The course, branching and distribution territories of the facial artery of the dog were studied by the acryl plastic injection method. In general, the facial artery was found to arise from the external carotid between the points of origin of the lingual and posterior auricular arteries. It ran anteriorly above the digastric muscle and gave rise to the styloglossal, the submandibular glandular and the ptery- goid branches. The artery continued anterolaterally giving off the digastric, the inferior masseteric and the cutaneous branches. It came to the face after sending off the submental artery, which passed anteromedially, giving off the digastric and mylohyoid branches, on the medial surface of the mandible, and gave rise to the sublingual artery. The gingival, the genioglossal and sublingual plical branches arose from the vessel, while the submental artery gave off the geniohyoid branches. Posterior to the mandibular symphysis, various communications termed the sublingual arterial loop, were formed between the submental and the sublingual of both sides. They could be grouped into ten types. In the face, the facial artery gave rise to the mandibular marginal, the anterior masseteric, the inferior labial and the buccal branches, as well as the branch to the superior, and turned to the superior labial artery.
    [Show full text]
  • Ortho Part II
    Ortho Part II Paul K. Chu, DDS St. Barnabas Hospital November 21, 2010 REVIEW FROM LAST LECTURE 1 What kinds of steps are the following? Distal Mesial Distal Mesial Moyer’s Analysis Review 1) Take an impression of a child’s MANDIBULAR arch 2) Measure the mesial distal widths of ALL permanent incisors 3) Take the number you get and look at the black row 4) The corresponding number is the mesial distal width you need for the permanent canine- 1st premolar- 2nd premolar i .e . the 3 - 4 -5 ***(Black row) ----this is the distance you measure**** 2 Moyer’s Analysis Review #1) measure the mesial distal incisal edge width of EACH permanent incisor and add them up **Let’s say in this case we measured 21mm.** Step 1 Moyer’s Analysis Review Maxilla Look at the chart Mandibular Since The resulting number measured should give you needed 21mm we look widths of the maxilla or here. mandibular space needed for permanent canines and 1st and 2nd premolars. Step 2 3 Moyer’s Analysis Review Maxilla You also use the added Mandibular measurements of the mandibular incisors to get predicted MAXILLARY measurements as well! Step 2 The Dreaded Measurements Lecture 4 What Are We Trying to Accomplish? (In other words) Is the patient Class I, II, III skeletal? Does the patient have a skeletal open bite growth pattern, or a deep bite growth pattern, or a normal growth pattern? Are the maxillary/mandibular incisors proclined, retroclined or normal? Is the facial profile protrusive, retrusive, or straight? Why? Why? Why? Why does this patient have increased
    [Show full text]
  • Macroscopic Anatomy of the Nasal Cavity and Paranasal Sinuses of the Domestic Pig (Sus Scrofa Domestica) Daniel John Hillmann Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1971 Macroscopic anatomy of the nasal cavity and paranasal sinuses of the domestic pig (Sus scrofa domestica) Daniel John Hillmann Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Animal Structures Commons, and the Veterinary Anatomy Commons Recommended Citation Hillmann, Daniel John, "Macroscopic anatomy of the nasal cavity and paranasal sinuses of the domestic pig (Sus scrofa domestica)" (1971). Retrospective Theses and Dissertations. 4460. https://lib.dr.iastate.edu/rtd/4460 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 72-5208 HILLMANN, Daniel John, 1938- MACROSCOPIC ANATOMY OF THE NASAL CAVITY AND PARANASAL SINUSES OF THE DOMESTIC PIG (SUS SCROFA DOMESTICA). Iowa State University, Ph.D., 1971 Anatomy I University Microfilms, A XEROX Company, Ann Arbor. Michigan I , THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED Macroscopic anatomy of the nasal cavity and paranasal sinuses of the domestic pig (Sus scrofa domestica) by Daniel John Hillmann A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Veterinary Anatomy Approved: Signature was redacted for privacy. h Charge of -^lajoï^ Wor Signature was redacted for privacy. For/the Major Department For the Graduate College Iowa State University Ames/ Iowa 19 71 PLEASE NOTE: Some Pages have indistinct print.
    [Show full text]
  • Atlas of the Facial Nerve and Related Structures
    Rhoton Yoshioka Atlas of the Facial Nerve Unique Atlas Opens Window and Related Structures Into Facial Nerve Anatomy… Atlas of the Facial Nerve and Related Structures and Related Nerve Facial of the Atlas “His meticulous methods of anatomical dissection and microsurgical techniques helped transform the primitive specialty of neurosurgery into the magnificent surgical discipline that it is today.”— Nobutaka Yoshioka American Association of Neurological Surgeons. Albert L. Rhoton, Jr. Nobutaka Yoshioka, MD, PhD and Albert L. Rhoton, Jr., MD have created an anatomical atlas of astounding precision. An unparalleled teaching tool, this atlas opens a unique window into the anatomical intricacies of complex facial nerves and related structures. An internationally renowned author, educator, brain anatomist, and neurosurgeon, Dr. Rhoton is regarded by colleagues as one of the fathers of modern microscopic neurosurgery. Dr. Yoshioka, an esteemed craniofacial reconstructive surgeon in Japan, mastered this precise dissection technique while undertaking a fellowship at Dr. Rhoton’s microanatomy lab, writing in the preface that within such precision images lies potential for surgical innovation. Special Features • Exquisite color photographs, prepared from carefully dissected latex injected cadavers, reveal anatomy layer by layer with remarkable detail and clarity • An added highlight, 3-D versions of these extraordinary images, are available online in the Thieme MediaCenter • Major sections include intracranial region and skull, upper facial and midfacial region, and lower facial and posterolateral neck region Organized by region, each layered dissection elucidates specific nerves and structures with pinpoint accuracy, providing the clinician with in-depth anatomical insights. Precise clinical explanations accompany each photograph. In tandem, the images and text provide an excellent foundation for understanding the nerves and structures impacted by neurosurgical-related pathologies as well as other conditions and injuries.
    [Show full text]
  • The Muscles of the Jaw Are Some of the Strongest in the Human Body
    MUSCLES OF MASTICATION The muscles of the jaw are some of the strongest in the human body. They aid in chewing and speech by allowing us to open and close our mouths. Ready to unlock the mysteries of mastication? Then read on! OF MASSETERS AND MANDIBLES The deep and superficial masseter muscles enable mastication (chewing by pulling the mandible (jawbone) up towards the maxillae. Factoid! Humans’ jaws are able to bite with DEEP a force of about 150-200 psi (890 MASSETER Newtons). In contrast, a saltwater crocodile can bite with a force of 3,700 SUPERFICIAL psi (16, 400 Newtons)! MASSETER MAXILLA (R) 2 MANDIBLE MORE MASSETER FACTS The deep masseter’s origin is the zygomatic arch and the superficial masseter’s origin is the zygomatic bone. Both masseters insert into the ramus of the mandible, though the deep masseter’s insertion point is closer to the temporomandibular joint. The mandible is the only bone in the skull that we can consciously move (with the help of muscles, of course). 3 TEMPORALIS The temporalis muscles sit on either side of the head. Their job is to elevate and retract the mandible against the maxillae. They originate at the temporal fossa and temporal fascia and insert at the coronoid process and ramus of the mandible. 4 LATERAL SUPERIOR PTERYGOIDS HEAD The lateral pterygoids draw the mandibular condyle and articular disc of the temporomandibular joint forward. Each lateral pterygoid has two heads. The superior head originates at the sphenoid and infratemporal crest and the inferior head originates at the lateral pterygoid plate.
    [Show full text]
  • Panthera Leo
    Okajimas Folia Anat. Jpn.. 69(4): 157-168, October, 1992 Arterial Supply of the Masseter Muscle in the Lion (Panthera leo) By Jun-ichi MATSUSHITA and Akimichi TAKEMURA Department of Anatomy, Osaka Dental University, 5-31, Otemae 1-chome, Chuo-ku, Osaka 540, Japan -Received for Publication, May 11, 1992- Key Words: Masseter muscle, Blood supply, Carotid artery, Plastic injection, Lion Summary: There are few reports on the vascular system of the lion or Panthera leo except for that on the facial artery investigated by Lin and Takemura (1990). Morphological analysis of the masseter muscle of the lion according to the muscle-tendon theory has been performed only by Takemura et al. (1991). The present authors attempted to elucidate the blood supply of the masseter, using 3 lion heads injected with acryl plastic into the carotid system by the plastic vascular injection method. This description is based on examination of the detailed laminar formation of the masseter. The findings are discussed in comparison with those of the felid family in carnivorae. Masseteric branches of the superficial temporal, buccal and facial arteries were distributed to the primary sublayer of the superficial layer, those of the above arteries and the masseteric artery to its secondary sublayer, the intermediate layer and the anterior and posterior portions of the deep layer, and those of the superficial temporal and masseteric arteries to the primary sublayer of the posterior portion of the deep layer. The maxillomandibularis muscle was supplied by the buccal and masseteric arteries and the zygomaticomandibularis by the superficial temporal and posterior auricular arteries as well.
    [Show full text]
  • Clinical Anatomy of the Maxillary Artery
    Okajimas CnlinicalFolia Anat. Anatomy Jpn., 87 of(4): the 155–164, Maxillary February, Artery 2011155 Clinical Anatomy of the Maxillary Artery By Ippei OTAKE1, Ikuo KAGEYAMA2 and Izumi MATAGA3 1 Department of Oral and Maxilofacial Surgery, Osaka General Medical Center (Chief: ISHIHARA Osamu) 2 Department of Anatomy I, School of Life Dentistry at Niigata, Nippon Dental University (Chief: Prof. KAGEYAMA Ikuo) 3 Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Niigata, Nippon Dental University (Chief: Prof. MATAGA Izumi) –Received for Publication, August 26, 2010– Key Words: Maxillary artery, running pattern of maxillary artery, intraarterial chemotherapy, inner diameter of vessels Summary: The Maxillary artery is a component of the terminal branch of external carotid artery and distributes the blood flow to upper and lower jawbones and to the deep facial portions. It is thus considered to be a blood vessel which supports both hard and soft tissues in the maxillofacial region. The maxillary artery is important for bleeding control during operation or superselective intra-arterial chemotherapy for head and neck cancers. The diagnosis and treatment for diseases appearing in the maxillary artery-dominating region are routinely performed based on image findings such as CT, MRI and angiography. However, validations of anatomical knowledge regarding the Maxillary artery to be used as a basis of image diagnosis are not yet adequate. In the present study, therefore, the running pattern of maxillary artery as well as the type of each branching pattern was observed by using 28 sides from 15 Japanese cadavers. In addition, we also took measurements of the distance between the bifurcation and the origin of the maxillary artery and the inner diameter of vessels.
    [Show full text]
  • The Use of Autogenous Bone Mixed with a Biphasic Calcium Phosphate
    coatings Article The Use of Autogenous Bone Mixed with a Biphasic Calcium Phosphate in a Maxillary Sinus Floor Elevation Procedure with a 6-Month Healing Time: A Clinical, Radiological, Histological and Histomorphometric Evaluation Wilhelmus F. Bouwman 1,2, Nathalie Bravenboer 3, Christiaan M. ten Bruggenkate 1,4 and Engelbert A. J. M. Schulten 1,* 1 Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; [email protected] (W.F.B.); [email protected] (C.M.t.B.) 2 Department of Oral and Maxillofacial Surgery, The Tergooi Hospital, Rijksstraatweg 1, 1261 AN Blaricum, The Netherlands 3 Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; [email protected] 4 Department of Oral and Maxillofacial Surgery, Alrijne Hospital, Simon Smitweg 1, 2353 GA Leiderdorp, The Netherlands * Correspondence: [email protected]; Tel.: +31-(0)20-4441023 Received: 8 April 2020; Accepted: 6 May 2020; Published: 9 May 2020 Abstract: Background: In this study it is evaluated whether autogenous bone mixed with biphasic calcium phosphate (BCP) used in a maxillary sinus floor elevation (MSFE) leads to improved bone formation. Materials and methods: In five patients a unilateral MSFE was performed. Histological and histomorphometric analyses were performed on bone biopsies that were obtained 6 months after MSFE during dental implant surgery. Results: The average vital bone volume was 29.9% of the total biopsy (BV/TV, SD 10.1) of which 7.1% was osteoid (OV/BV, SD 4.8).
    [Show full text]
  • Cranial Arteries of the Adult Giraffe
    Cranial Arteries of the Adult Giraffe Branches of the External Carotid Artery Artery Origin Course Distribution Arbitrarily begins at occipital artery; as in most artiodactyls, the Common Carotid @ Carries entirety of oxygenated External Carotid giraffe does not have an internal carotid artery to demarcate the occipital blood to the head. termination of the common carotid artery. Throughout its course, the First branch of the external carotid. Branches from the dorsal occipital artery gives off few surface distal to the alar artery. Ascends toward the occipital bone, muscular branches. These perfuse following a pathway that is largely obscured by the jugular the musculature in close Occipital External Carotid process. A caudal meningeal branch enters the mastoid foramen, proximity to the occipital bone. within mastoid fossa. At the external occipital protuberance, Collateral muscular perfusion is unifies with contralateral occipital artery. This single vessel accommodated by the alar artery. courses caudally, paralleling the nuchal ligament. Additional distribution is to the caudal meninges. Short extracranial course to reach condylar canal. On internal surface of occipital condyle, a small caudal meningeal artery Distributes only to caudal Condylar External Carotid departs. The condylar then immediately courses caudally to meninges and vertebral artery. anastomose with the vertebral artery. Does not contact cerebral arterial circle. Originates anterior to the jugular process, following the condylar artery in succession. Courses obliquely across and superficial to jugular and mastoid, does not contact the mastoid, although dorsal Majority of auricle supplied Caudal Auricular External Carotid continuation grooves the nuchal crest. Bifurcates into caudal and through caudal auricular. medial auricular arteries posteriorly; anastomoses with superficial temporal and deep auricular vessels anteriorly.
    [Show full text]
  • Failure Rates of Miniscrews Inserted in the Maxillary Tuberosity
    original article Failure rates of miniscrews inserted in the maxillary tuberosity Muhammad Azeem1, Arfan Ul Haq2, Zubair Hassan Awaisi3, Muhammad Mudassar Saleem4, Muhammad Waheed Tahir5, Ahmad Liaquat6 DOI: https://doi.org/10.1590/2177-6709.24.5.046-051.oar Introduction: Anchorage conservation in orthodontics has always been a challenge. Objective: The aim of this current study was to find out the failure rate of miniscrews inserted in the maxillary tuberosity (MT) region. Methods: This pilot study con- sisted of 40 patients (23 female, 17 male; mean age = 20.1±8.9 years) that had received 60 MT miniscrews for orthodontic treat- ment. Clinical notes and pictures were used to find out the primary outcome of miniscrew failure. Independent failure factors were also investigated. Logistic regression analysis was done for predictor’s relation with MT miniscrews failure. Results: There was no significant correlation in failure rate according to various predictor variables, except for miniscrews installed by lesser experienced operators, which showed significantly more failure. The odds ratio for miniscrew failure placed by inexperienced operators was 4.16. Conclusion: A 26.3% failure rate of mini-implants inserted in the MT region was observed. Keywords: Tuberosity. Miniscrews. Failure. Introdução: a manutenção da ancoragem sempre foi um desafio na Ortodontia. Objetivo: o objetivo do presente estudo foi descobrir a taxa de falhas dos mini-implantes instalados na região da tuberosidade maxilar (TM). Métodos: o presente estudo piloto avaliou 40 pacientes (23 mulheres, 17 homens; idade média = 20,1 ± 8,9 anos) que receberam 60 mini-implantes na TM durante o tratamento ortodôntico.
    [Show full text]
  • Arteries Study Online at Quizlet.Com/ 12Ikeb
    Anatomy - Arteries Study online at quizlet.com/_12ikeb 1. At which vertebral level does L4 = bifurcation of aorta into 9. What are the 5 branches Branches of subclavian artery the aorta bifurcate into the common iliacs of the subclavian artery? VIT C and D common iliac arteries? Vertebral 2. Between which two muscles Lingual artery found Infernal thoracic is the lingual artery usually between the hyoglossus Thyrocervical (suprascapular + found? and the genioglossus transverse cervical) 3. The descending palatine Descending palatine artery artery travels through which travels through the Costocervical canal? pterygopalatine canal Dorsal scapular 4. The greatest drop in blood The greatest drop in blood 10. What are the 7 branches TAS-ISLA pressure in the vessels is pressure in the vessels is of the facial artery? seen: seen from ARTERIES to Tonsillar ARTERIOLES Ascending palatine Submental - Submandibular Arterioles control the blood gland pressure though. 5. If the hard palate is bleeding Greater palatine artery is Inferior labial adjacent to the max 1st probably cut. Superior labial molar, which artery is Lateral nasal probably cut? Angular - medial of eye, anastomose with dorsal nasal of 6. What are the 4 branches of Lingual artery opthalmic artery. the lingual artery? 1. Dorsal lingual (base and body of tongue) 11. What are the branches SALFOP St. Max 2. Suprahyoid (supgrahyoid of the external carotid muscles) artery Superior thyroid 3. Sublingual (sublingual Ascending pharyngeal gland) Lingual 4. Deep lingual (terminal) Facial Occipital 7. What are the 4 branches of 1. Anterior superior alveolar Posterior auricular the Maxillary artery that (infraorbital) supply all the teeth? 2.
    [Show full text]
  • Alternative Intraoral Donor Sites to the Chin and Mandibular Body-Ramus
    J Clin Exp Dent. 2017;9(12):e1474-81. The effect of social geographic factors on children’s decays Journal section: Oral Surgery doi:10.4317/jced.54372 Publication Types: Review http://dx.doi.org/10.4317/jced.54372 Alternative intraoral donor sites to the chin and mandibular body-ramus David Reininger 1, Carlos Cobo-Vázquez 2, Benjamin Rosenberg 3, Juan López-Quiles 4 1 DDS, Master in Oral Surgery and Implantology. Instructor Professor, Departament of Oral and Maxillofacial Surgery, Universidad de los Andes 2 PhD, DDS, Master in Oral Surgery and Implantology, Universidad Complutense de Madrid 3 DDS 4 DDS, MD, PhD, Maxillofacial Surgeon, Associate Professor, Department of Oral Surgery and Maxillofacial Surgery, Universidad Complutense de Madrid Correspondence: Robles 12729 depto 305c Santiago de Chile [email protected] Reininger D, Cobo-Vázquez C, Rosenberg B, López-Quiles J.���������� Alterna- tive intraoral donor sites to the chin and mandibular body-ramus. J Clin Exp Dent. 2017;9(12):e1474-81. Received: 27/09/2017 Accepted: 23/10/2017 http://www.medicinaoral.com/odo/volumenes/v9i12/jcedv9i12p1474.pdf Article Number: 54372 http://www.medicinaoral.com/odo/indice.htm © Medicina Oral S. L. C.I.F. B 96689336 - eISSN: 1989-5488 eMail: [email protected] Indexed in: Pubmed Pubmed Central® (PMC) Scopus DOI® System Abstract Background: Provide a review of alternative intraoral donor sites to the chin and body-ramus of the mandible that bring fewer complications and that may be used to regenerate small and medium defects. Material and Methods: A review was conducted using the search engine PUBMED and looking manually into scientific journals.
    [Show full text]