A Phylogenetic Assessment of Lycaste and Anguloa (Orchidaceae)

Total Page:16

File Type:pdf, Size:1020Kb

A Phylogenetic Assessment of Lycaste and Anguloa (Orchidaceae) A PHYLOGENETIC ASSESSMENT OF LYCASTE AMD ANGULOA (ORCHIDACEAE) By ANGELA RYAN A thesis submitted for the degree of Doctor of Philosophy in the University of London DEPARTMENT OF CHEMISTRY UNIVERSITY COLLEGE LONDON 2001 ProQuest Number: U642610 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U642610 Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT Parsimony analysis has been used to examine the phylogenetic relationships of two genera of Neotropical orchids, Lycaste and Angulos. Within these genera, difficulties occur when assigning names to plants using traditional morphological techniques. Many herbarium specimens are in bad condition and some descriptions are incomplete. To date, infrageneric classifications have been based on very few diagnostic characters. Here, three approaches have been evaluated: A systematic analysis of the morphology, an examination of two regions of DMA sequence and an analysis of the chemical composition of the floral fragrances. Morphological analysis showed that Lycaste is not monophyletic. There was a clear division between species currently ascribed to sect. Fimbriatae and the other species of the genus. Selection of characters introduced an element of subjectivity into the analysis and it was shown that exclusion of a single character could significantly affect the topology of relationships. Parsimony analysis of the sequences of both ITS and matK placed Lycaste sect. Fimbriatae closer to Angulos than to the other species of Lycaste. Neomoorea was identified as nearest neighbour to Lycaste and Angulos. A combined analysis of ITS and morphological data gave congruent results. Morphological and sequence analyses also indicated that the single pendent species, L. dyeriana, should remain within sect. Fimbriatae and that the taxonomic status of the subspecies of L. macrophylla should be revised. None of the analyses provided sufficient resolution to address the sectional treatment of the remaining Lycaste species. To answer this question, comparison of sequence data from a faster evolving region of DNA will be required. The floral fragrance composition of 28 species and subspecies of Lycaste and Angulos was determined. In its current form, the data was found to be unsuitable for addressing phylogenetic relationships at species level and above but may prove useful for population studies. CONTENTS Acknowledgements 12 Glossary 14 1 Introduction 16 1.1 General Introduction 16 1.2 The Orchidaceae and their classification 19 1.2.1 Infrageneric Classification of Lycaste 24 1.2.2 Infrageneric Classification of Angulos 28 1.3 Morphology 33 1.3.1 The Morphology of Lycaste 33 1.3.2 The Morphology of Angulos 40 1.4 DNA and Plant Phylogeny 44 1.5 The role of floral fragrance in Orchid Pollination 47 2 Morphological Analysis 53 2.1 Introduction 53 2.1.1 Orchid Seed Morphology 56 2.1.2 Parsimony Analysis 59 2.2 Materials and Methods 62 2.3 Results 63 2.3.1 Character selection and coding 63 2.3.1.1 Vegetative Characters 64 2.3.1.2 Floral Characters 66 2.3.1.3 Seed Characters 74 2.3.2 Data Analysis 89 2.3.3 Seed morphology 92 2.4 Discussion 93 Molecular and Cytogenetic Analysis 101 3.1 Introduction 101 3.2 Materials and Methods 105 3.2.1 Cytology 105 3.2.2 Extraction of DNA 105 3.2.3 PGR 107 3 3.2.4 Sequencing 108 3.2.5 Data Analysis 110 3.3 Results 110 3.3.1 Cytology 110 3.3.2 Analysis of the ITS Region 110 3.3.3 Analysis of matK 111 3.3.4 Combined sequence analysis 115 3.3.5 Combined sequence and morphological analysis 118 3.4 Discussion 119 Osmophores 122 4.1 Introduction 122 4.2 Materials and Methods 126 4.3 Results 127 4.3.1 Staining with neutral red 127 4.3.2 SEM 134 4.4 Discussion 139 Floral Fragrance Analysis 141 5.1 Introduction 141 5.1.1 The Origins of Floral Fragrance 143 5.1.2 Fragrance Composition and Pollination Strategy 153 5.1.3 Floral Fragrance and Phylogeny 157 5.1.4 Sample Preparation Techniques 158 5.2 Materials and Methods 164 5.2.1 Sample Collection 164 5.2.2 Sample Analysis 167 5.2.3 Phylogenetic Analysis 170 5.3 Results and Discussion 170 5.3.1 Variation of Fragrance With Time 172 5.3.2 Infra-species Fragrance Variation 177 5.3.3 Inter-species Fragrance Variation 180 5.3.4 Phylogenetic analysis 188 5.3.5 The Fragrance Composition of Hybrids 190 Conclusions 205 References 208 Appendices Appendix 1 The classification of Lycaste and Anguloa species 232 Appendix 2 Voucher Information 253 Appendix 3 Morphological character states 263 Appendix 4 ITS and matK sequences 267 Appendix 5 The floral fragrance composition of Lycaste and 276 Anguloa species Appendix 6 Chromatograms of the fragrances of Lycaste and 300 Anguloa species List of Figures Figure 1.1 The geographical range of Lycaste and Anguloa. 17 Figure 1.2 Sectional treatment of Lycaste species, after Fowlie 29 (1970) and Oakeley (1993). Figure 1.3 Lycaste aromatica (Graham ex Flooker) Lindl., drawn by 35 Judi Stone. Figure 1.4 Lycaste cinnabarina Lindl., drawn by Judi Stone. 37 Figure 1.5 Anguloa clowesii Lindl., drawn by Judi Stone. 42 Figure 1.6 Schematic representation of the location of matK, from 46 Soltis and Soltis (1998). Figure 1.7 Schematic diagram of the rDNA repeat unit in plants, 47 from Soltis and Soltis (1998). Figure 2.1 Subtribe Lycastinae Schltr., after Dressier (1981,1993). 54 Figure 2.2 One of 226 successively weighted most parsimonious 90 trees showing cladistic relationships within subtribe Lycastinae based on 47 morphological characters. Figure 2.3 One of 4164 successively weighted most parsimonious 91 trees showing cladistic relationships within subtribe Lycastinae based on 46 morphological characters. Figure 3.1 One of more than 6000 successively weighted most 112 parsimonious trees showing cladistic relationships within Lycastinae based on ITS sequence data. Figure 3.2 One of the nine successively weighted most 113 parsimonious trees showing relationships within Lycastinae based on matK sequence data. 5 Figure 3.3 One of the six successively weighted most 114 parsimonious trees showing relationships within Lycastinae based on \TS/matK sequence data. Figure 3.4 One of the three successively weighted most 116 parsimonious trees showing cladistic relationships within subtribe Lycastinae, based on 47 morphological characters and ITS sequence data. Figure 3.5 One of the two successively weighted most 117 parsimonious trees showing cladistic relationships within subtribe Lycastinae, based on 46 morphological characters and ITS sequence data. Figure 5.1 The biosynthesis of fragrance chemicals by plants, after 144 Mann (1994). Figure 5.2 The biosynthesis of terpenoids, from Banthorpe and 145 Charlwood (1980). Figure 5.3 The biosynthesis of monoterpenoid skeletons, after 146 Banthorpe (1994) and Croteau and Karp (1991). Figure 5.4 Biosynthetic routes to the formation of cyclic 147 sesquiterpenoids, after Banthorpe (1994). Figure 5.5 The biosynthesis of sesquiterpenoid skeletons, after 148 Banthorpe (1994). Figure 5.6 The biosynthesis of longibornanes, from Banthorpe and 149 Charlwood (1980). Figure 5.7 The formation of ionones, from Croteau and Karp 149 (1991). Figure 5.8 Biosynthesis of malonyl coenzyme A, from Luckner 150 (1990). Figure 5.9 A mechanism for the biosynthesis of aliphatic 150 compounds, after Luckner (1990). Figure 5.10 The biosynthesis of phenylpropanoids, from Croteau 152 and Karp (1991). Figure 5.11 The biosynthesis of phenylacetic and 4-hydroxyphenyl- 153 acetic acids, from Luckner (1990). Figure 5.12 The Analysis of Floral Fragrances. 165 Figure 5.13 The daytime fragrance cycle of Lycaste aromatica (raw 173 area counts). Figure 5.14 The daytime fragrance cycle of Lycaste aromatica (area 174 counts relative to toluene). Figure 5.15 Lycaste aromatica'. Variation in fragrance composition 176 during the first seven days of anthesis. Figure 5.16 Lycaste aromatica'. Variation in fragrance composition 179 of seven different specimens. Figure 5.17 Lycaste depper. Variation in fragrance composition of 181 seven different specimens. Figure 5.18 Monoterpenoids from the floral fragrances of Lycaste 184 and Anguloa. Figure 5.19 Sesquiterpenoids from the floral fragrances of Lycaste 185 and Anguloa. Figure 5.20 One of the 45 successively weighted most 186 parsimonious trees showing cladistic relationships in Lycaste and Anguloa, based on individual floral fragrance compounds. Figure 5.21 One of the three successively weighted most 187 parsimonious trees showing cladistic relationships within Lycaste, based on individual floral fragrance compounds. List of Tables Table 1.1 Early classification of orchids, after Lindley (1830-1840). 21 Table 1.2 A morphological key to Anguloa species, from Schlechter 32 (1916). Table 3.1 Chromosome counts for Lycastinae and related 103 subtribes. Table 3.2 ITS and matK primer sequences. 107 Table 3.3 PGR cycle sequence conditions for ITS and matK. 108 Table 4.1 Fixation and dehydration protocol for SEM examination 127 of osmophores. Table 5.1 The headspace composition of Stephanotis floribunda 166 (Apocynaceae) when sampled from a glass flask and Rilsan bag. Table 5.2 Analytical conditions for floral fragrance analysis. 169 Table 5.3 Biosynthetic groups used for phylogenetic analysis. 172 Table 5.4 Lycaste aromatica'. Variation in fragrance composition 175 over a seven day period.
Recommended publications
  • Leonardo Ramos Seixas Guimarães Flora Da Serra Do Cipó
    LEONARDO RAMOS SEIXAS GUIMARÃES FLORA DA SERRA DO CIPÓ (MINAS GERAIS, BRASIL): ORCHIDACEAE – SUBFAMÍLIA VANILLOIDEAE E SUBTRIBOS DENDROBIINAE, ONCIDIINAE, MAXILLARIINAE (SUBFAMÍLIA EPIDENDROIDEAE), GOODYERINAE, SPIRANTHINAE E CRANICHIDINAE (SUBFAMÍLIA ORCHIDOIDEAE) Dissertação apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente, como parte dos requisitos exigidos para obtenção do título de MESTRE em Biodiversidade Vegetal e Meio Ambiente, na área de concentração de Plantas Vasculares. SÃO PAULO 2010 LEONARDO RAMOS SEIXAS GUIMARÃES FLORA DA SERRA DO CIPÓ (MINAS GERAIS, BRASIL): ORCHIDACEAE – SUBFAMÍLIA VANILLOIDEAE E SUBTRIBOS DENDROBIINAE, ONCIDIINAE, MAXILLARIINAE (SUBFAMÍLIA EPIDENDROIDEAE), GOODYERINAE, SPIRANTHINAE E CRANICHIDINAE (SUBFAMÍLIA ORCHIDOIDEAE) Dissertação apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente, como parte dos requisitos exigidos para obtenção do título de MESTRE em Biodiversidade Vegetal e Meio Ambiente, na área de concentração de Plantas Vasculares. Orientador: Dr. Fábio de Barros Ficha Catalográfica elaborada pelo Núcleo de Biblioteca e Memória do Instituto de Botânica Guimarães, Leonardo Ramos Seixas G963f Flora da Serra do Cipó (Minas Gerais, Brasil): Orchidaceae – subfamília Vanilloideae e subtribos Dendrobiinae, Oncidiinae, Maxillariinae (subfamília Epidendroideae), Goodyerinae, Spiranthinae e Cranichidinae (subfamília Orchidoideae) / Leonardo Ramos Seixas Guimarães -- São Paulo, 2010. 150 p. il. Dissertação (Mestrado) -- Instituto de Botânica da Secretaria de Estado do Meio Ambiente, 2010 Bibliografia. 1. Orchidaceae. 2. Campo rupestre. 3. Serra do Cipó. I. Título CDU: 582.594.2 Alegres campos, verdes arvoredos, claras e frescas águas de cristal, que em vós os debuxais ao natural, discorrendo da altura dos rochedos; silvestres montes, ásperos penedos, compostos de concerto desigual, sabei que, sem licença de meu mal, já não podeis fazer meus olhos ledos. E, pois me já não vedes como vistes, não me alegrem verduras deleitosas, nem águas que correndo alegres vêm.
    [Show full text]
  • Guia De Plantas – Flores No Campo Rupestre, Traz Algumas Espécies Dessa Rica Flora Encontrada Nas Reservas Particulares Do Patrimônio Natural (RPPN´S) Da Vale
    GUIA DE PLANTAS FLORES NO CAMPO RUPESTRE GUIA DE PLANTAS FLORES NO CAMPO RUPESTRE COORDENAÇÃO Lídia Maria dos Santos ORGANIZAÇÃO Ana Cristina Silva Amoroso Anastacio Morena Tomich Santos LEVANTAMENTOS DE DADOS E ELABORAÇÃO DE TEXTOS Sérgio Antônio Tomich Santos Coord. de Campo Marco Otávio Dias Pivari Taxonomia Júlia Andrada Bióloga COLABORAÇÃO Sara da Costa Dias Sérgio José Leite Dias PROJETO GRÁFICO E DIAGRAMAÇÃO Morena Tomich Santos ILUSTRAÇÕES Maria Clara Göbbel TRATAMENTO DE IMAGENS Pedro André Tomich Mitre Ficha catalográfica elaborada pela Bibliotecária Priscila O. da Mata CRB/6-2706 Bioma Meio Ambiente. Consultoria Ambiental. Guia de plantas: flores no campo rupestre / Bioma Meio Ambiente, Vale S.A.; [Coordenação: B615g Lídia Maria dos Santos; Organização: Ana Cristina Silva Amoroso Anastacio, Morena Tomich Santos ; Ilustrações: Maria Clara Göbbel]. – Nova Lima (MG) : CVRD, 2018. 128.: il., fots (color) Inclui bibliografia. ISBN: 978-85-85377-19-9 1. Bioma Meio Ambiente. Consultoria Ambiental. 2. Vale S.A.. 3. Reserva Particular do Patrimônio Natural – Quadrilátero Ferrífero (MG). 4. Áreas de conservação de recursos naturais – Quadrilátero Ferrífero (MG). 5. Biodiversidade – Conservação – Quadrilátero Ferrífero (MG). 6. Botânica – Quadrilátero Ferrífero (MG). I. Vale S. A.. II. Santos, Lídia Maria dos. III. Anastácio, Ana Cristina Amoroso. IV. Santos, Morena S. Tomich. V. Título. CDD : 581 Vale S.A. Diretoria de Planejamento e Desenvolvimento de Ferrosos e Carvão Mina de Águas Claras - Prédio 1 - 1º andar 34.000-000, Nova Lima, MG - Brasil BIOMA MEIO AMBIENTE LTDA Alameda do Ingá, 840/1001, Vale do Sereno 34.000-000, Nova Lima, MG - Brasil Copyright©2018 Organizadores As fotos e os textos deste livro podem ser reproduzidos desde que solicitada autorização aos autores/organizadores ou seu representante legal.
    [Show full text]
  • Phylogenetic Placement of the Enigmatic Orchid Genera Thaia and Tangtsinia: Evidence from Molecular and Morphological Characters
    TAXON 61 (1) • February 2012: 45–54 Xiang & al. • Phylogenetic placement of Thaia and Tangtsinia Phylogenetic placement of the enigmatic orchid genera Thaia and Tangtsinia: Evidence from molecular and morphological characters Xiao-Guo Xiang,1 De-Zhu Li,2 Wei-Tao Jin,1 Hai-Lang Zhou,1 Jian-Wu Li3 & Xiao-Hua Jin1 1 Herbarium & State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China 2 Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, P.R. China 3 Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Township, Mengla County, Yunnan province 666303, P.R. China Author for correspondence: Xiao-Hua Jin, [email protected] Abstract The phylogenetic position of two enigmatic Asian orchid genera, Thaia and Tangtsinia, were inferred from molecular data and morphological evidence. An analysis of combined plastid data (rbcL + matK + psaB) using Bayesian and parsimony methods revealed that Thaia is a sister group to the higher epidendroids, and tribe Neottieae is polyphyletic unless Thaia is removed. Morphological evidence, such as plicate leaves and corms, the structure of the gynostemium and the micromorphol- ogy of pollinia, also indicates that Thaia should be excluded from Neottieae. Thaieae, a new tribe, is therefore tentatively established. Using Bayesian and parsimony methods, analyses of combined plastid and nuclear datasets (rbcL, matK, psaB, trnL-F, ITS, Xdh) confirmed that the monotypic genus Tangtsinia was nested within and is synonymous with the genus Cepha- lanthera, in which an apical stigma has evolved independently at least twice.
    [Show full text]
  • Generic and Subtribal Relationships in Neotropical Cymbidieae (Orchidaceae) Based on Matk/Ycf1 Plastid Data
    LANKESTERIANA 13(3): 375—392. 2014. I N V I T E D P A P E R* GENERIC AND SUBTRIBAL RELATIONSHIPS IN NEOTROPICAL CYMBIDIEAE (ORCHIDACEAE) BASED ON MATK/YCF1 PLASTID DATA W. MARK WHITTEN1,2, KURT M. NEUBIG1 & N. H. WILLIAMS1 1Florida Museum of Natural History, University of Florida Gainesville, FL 32611-7800 USA 2Corresponding author: [email protected] ABSTRACT. Relationships among all subtribes of Neotropical Cymbidieae (Orchidaceae) were estimated using combined matK/ycf1 plastid sequence data for 289 taxa. The matrix was analyzed using RAxML. Bootstrap (BS) analyses yield 100% BS support for all subtribes except Stanhopeinae (87%). Generic relationships within subtribes are highly resolved and are generally congruent with those presented in previous studies and as summarized in Genera Orchidacearum. Relationships among subtribes are largely unresolved. The Szlachetko generic classification of Maxillariinae is not supported. A new combination is made for Maxillaria cacaoensis J.T.Atwood in Camaridium. KEY WORDS: Orchidaceae, Cymbidieae, Maxillariinae, matK, ycf1, phylogenetics, Camaridium, Maxillaria cacaoensis, Vargasiella Cymbidieae include many of the showiest align nrITS sequences across the entire tribe was Neotropical epiphytic orchids and an unparalleled unrealistic due to high levels of sequence divergence, diversity in floral rewards and pollination systems. and instead to concentrate our efforts on assembling Many researchers have posed questions such as a larger plastid data set based on two regions (matK “How many times and when has male euglossine and ycf1) that are among the most variable plastid bee pollination evolved?”(Ramírez et al. 2011), or exon regions and can be aligned with minimal “How many times have oil-reward flowers evolved?” ambiguity across broad taxonomic spans.
    [Show full text]
  • Laelia5 Revista Laelia 2
    Laelia REVISTA DEL GRUPO DE ESTUDIO Y CONSERVACIÓN DE ORQUÍDEAS Número 5 JULIO-AGOSTO 2009 www.gecor.org GECOR N º 5 07-08/2009 ES NOTICIA... JUNTA DIRECTIVA PROYECTO ORQUIDEA EN PÁ- sean producidas en territorio Grupo de Estudio y Conservación de orquídeas NAMA Y TAIWAN panameño. Presidente: Jose Ramón Pinela [email protected] Kevin Chen, jefe de la Misión Está propuesta es secundada Vicepresidente: Maria Jesús Arias técnica taiwanesa en Pánama por un invernadero de orquí- [email protected] afirmó recientemente que Pa- deas que ha sido creado en las Tesorería: Ana Sánchez namá junto con Taiwan colabo- instalaciones de la Universidad [email protected] ran en un proyecto para Tecnológica de Panamá con el Secretaría: Manuel Lucas [email protected] rescatar y comercializar algu- respaldo técnico de taiwan. Vocales: nos tipos de orquídeas. Diego Martínez En el Valle de Antón ubicado en [email protected] Este estudio surgió en el año el cráter de un volcán a 126 Rubén Velázquez 2008 en el distrito de Capira, km al oeste de la capital pana- [email protected] que está localizado a unos 54 meña, es un lugar dominado Emilio Esteban-Infantes km al oeste de la capital pana- por la jardinería. Existen nú- [email protected] meña, sus condiciones climáti- meros viveros en cualquier rin- cas para la agricultura son cón, rosas, orquídeas … aquí es Socios de honor Dª Gemma López Vélez semejantes a las zonas desti- donde se han seleccionado dos Dª Angela Mirro nadas a la floricultura de Tai- grupos para que reciban mate- wan. rial del laboratorio biotecnoló- gico para que se inicie el Esté proyecto científico incluye cultivo de forma organizada.
    [Show full text]
  • Rudolf Schlechter's South-American Orchids Iii
    LANKESTERIANA 20(2): 167–216. 2020. doi: http://dx.doi.org/10.15517/lank.v20i2.42849 RUDOLF SCHLECHTER’S SOUTH-AMERICAN ORCHIDS III. SCHLECHTER’S “NETWORK”: NORTH AND NORTHEAST BRAZIL, THE GUIANAS CARLOS OSSENBACH1,2,4 & RUDOLF JENNY3 1Jardín Botánico Lankester, Universidad de Costa Rica, P.O.Box 302-7050 Cartago, Costa Rica 2Orquideario 25 de mayo, Sabanilla de Montes de Oca, San José, Costa Rica 3Jany Renz Herbarium, Swiss Orchid Foundation, Switzerland 4Corresponding author: [email protected] ABSTRACT. The third chapter of the series about Rudolf Schlechter’s South-American orchids presents concise biographical information about those botanists and orchid collectors who were related to Schlechter and worked in north and northeastern Brazil, as well as in the three Guianas. As an introduction, a brief geographical outline is presented, dividing the northern territories in four zones: the Amazon basin, the Araguaia-Tocantins river basin, the Northeast region and the Guianas. It is followed by a short mention of the historical milestones in the history of orchids in these regions during the preceding centuries. KEY WORDS: Amazon River, biography, Brazil Nordeste, history of botany, Orchidaceae, Roraima, Tocantins River The Amazonas and Tocantins River basins, and the Finally we have the Brazilian states that form the Northeast region. As we have read in the previous coastline from Pará in the north to Espirito Santo in chapter, southern Brazil (taking the capital city of the south, namely eastern Maranhão, Piauí, Ceará, Brasilia as its northernmost point) is part of the La Plata Rio Grande do Norte, Paraíba, Pernambuco, Alagoas, River basin, which drains into the southern Atlantic Sergipe, and Bahia, which occupy the rest of northern Ocean (Ossenbach & Jenny 2019: 207, fig.
    [Show full text]
  • Lycaste Lye-KASS-Tee
    Lycaste lye-KASS-tee Lycastes are deciduous in various degrees, from the strongly deciduous, yellow-flowered species like Lycaste aromatica that flowers from leafless pseudobulbs to the evergreen types like Lycaste skinneri with pseudobulbs that retain their leaves at flowering. This genus produces large, long-lasting, showy, triangular flowers that are waxy. The plants are distinctive for their roundish pseudobulbs and broad, plicate (pleated) leaves. Culture for the hybrid genus Angulocaste (Lycaste ϫ Anguloa) follows the culture for the Lycaste parent. LIGHT requirements vary. Deciduous recommended during active growth species require light conditions as for cat- (usually summer); some growers spread tleyas — 2,000 to 4,000 foot-candles or 50 blood meal on the top of the potting medi- to 70 percent shade. More light is usually um as new pseudobulbs form, though in provided as new growths form pseudoulbs. inexperienced hands this can be dangerous Evergreen species grow best with less light to the plant. In autumn, or as growths — 1,500 to 2,000 foot-candles or 60 to 80 mature and pseudobulbs are produced, percent shade. fertilizer is reduced or switched to a high-phosphorus (such as 10-30-20) TEMPERATURES for the evergreen formulation to stimulate flower species should be fairly constant and never production. hot. Nights of 60 F and days of 75 to 80 F are desirable. The deciduous species of POTTING is best when new growth lycaste can tolerate a wider range, up to starts, usually in spring. A fine-grade pot- 95 F during the day and down to 50 F at ting medium is often used; fir bark and night when dormant in the winter.
    [Show full text]
  • The Orchid Pollinaria Collection at Lankester Botanical Garden, University of Costa Rica
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/258442479 THE ORCHID POLLINARIA COLLECTION AT LANKESTER BOTANICAL GARDEN, UNIVERSITY OF COSTA RICA Article · January 2008 DOI: 10.2307/41760317 CITATIONS READS 4 178 2 authors: Franco Pupulin A. P. Karremans University of Costa Rica University of Costa Rica 201 PUBLICATIONS 1,707 CITATIONS 113 PUBLICATIONS 731 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Sobralias of Costa Rica View project Species Orchidacearum Icones Colombianae View project All content following this page was uploaded by A. P. Karremans on 17 May 2014. The user has requested enhancement of the downloaded file. Selbyana 29(1): 69- 86. 2008. THE ORCHID POLLINARIA COLLECTION AT LANKESTER BOTANICAL GARDEN, UNIVERSITY OF COSTA RICA FRANCO PUPULIN* Lankester Botanical Garden, University of Costa Rica. P.O. Box 1031-7050 Cartago, Costa Rica,. CA Angel Andreetta Research Center on Andean Orchids, University Alfredo Pérez Guerrero, Extension Gualaceo, Ecuador Harvard University Herbaria, Cambridge, MA, USA The Marie Selby Botanical Gardens, Sarasota, FL, USA Email: [email protected] ADAM KARREMANS Lankester Botanical Garden, University of Costa Rica. P.O. Box 1031-7050 Cartago, Costa Rica, CA Angel Andreetta Research Center on Andean Orchids, University Alfredo Pérez Guerrero, Extension Gualaceo, Ecuador ABSTRACT. The relevance of pollinaria study in orchid systematics and reproductive biology is summa­ rized. The Orchid Pollinaria Collection and the associate database of Lankester Botanical Garden, University of Costa Rica, are presented. The collection includes 496 pollinaria, bèlonging to 312 species in 94 genera, with particular emphasis on Neotropical taxa of the tribe Cymbidieae (Epidendroideae).
    [Show full text]
  • Checklist Das Spermatophyta Do Estado De São Paulo, Brasil
    Biota Neotrop., vol. 11(Supl.1) Checklist das Spermatophyta do Estado de São Paulo, Brasil Maria das Graças Lapa Wanderley1,10, George John Shepherd2, Suzana Ehlin Martins1, Tiago Egger Moellwald Duque Estrada3, Rebeca Politano Romanini1, Ingrid Koch4, José Rubens Pirani5, Therezinha Sant’Anna Melhem1, Ana Maria Giulietti Harley6, Luiza Sumiko Kinoshita2, Mara Angelina Galvão Magenta7, Hilda Maria Longhi Wagner8, Fábio de Barros9, Lúcia Garcez Lohmann5, Maria do Carmo Estanislau do Amaral2, Inês Cordeiro1, Sonia Aragaki1, Rosângela Simão Bianchini1 & Gerleni Lopes Esteves1 1Núcleo de Pesquisa Herbário do Estado, Instituto de Botânica, CP 68041, CEP 04045-972, São Paulo, SP, Brasil 2Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP, CP 6109, CEP 13083-970, Campinas, SP, Brasil 3Programa Biota/FAPESP, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP, CP 6109, CEP 13083-970, Campinas, SP, Brasil 4Universidade Federal de São Carlos – UFSCar, Rod. João Leme dos Santos, Km 110, SP-264, Itinga, CEP 18052-780, Sorocaba, SP, Brasil 5Departamento de Botânica – IBUSP, Universidade de São Paulo – USP, Rua do Matão, 277, CEP 05508-090, Cidade Universitária, Butantã, São Paulo, SP, Brasil 6Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana – UEFS, Av. Transnordestina, s/n, Novo Horizonte, CEP 44036-900, Feira de Santana, BA, Brasil 7Universidade Santa Cecília – UNISANTA, R. Dr. Oswaldo Cruz, 266, Boqueirão, CEP 11045-907,
    [Show full text]
  • Orquideologia-34.Pdf
    Volumen XXXIV#2 - Diciembre 2017 / ISSN 0120 - 1433 Oncidium dactyliferum y Oncidium acinaceum dos especies enigmáticas. ORQUIDEOLOGÍA Publicación oficial de la Sociedad Colombiana Editor: de Orquideología desde 1966. Juan Felipe Posada M. Cada volumen consta de dos números por año. La revista acepta artículos originales y temas relacionados con or- Editor área científica: quídeas en conservación, botánicos, ecología, afi ción, cul- Sebastián Vieira U. tivo, preferiblemente de la América tropical. Los artículos científi cos deben ser escritos en español e inglés y deben Editor general: entregarse con las reglas para esta publicación que se en- Luis Eduardo Mejía D. cuentran en la página web de la sociedad. Las opiniones ex- presadas en cada uno de los artículos son responsabilidad Coordinador de contenido: de su respectivo autor. Carlos A. Mesa L. Comité Editorial: Gustavo A. Aguirre, Favor dirigir toda correspondencia a: Ana Patricia Echeverri S., Juan Felipe Posada, Editor Revista Orquideología, Socie- Cecilia I. Restrepo R., dad Colombiana de Orquideología, Carrera 52 No. 73-298, Azucena Vélez de M., Medellín, Colombia. Francisco Villegas V. Teléfono: (57-4) 444-8374. Luis Alberto Wills T. Correo electrónico: [email protected] Visite nuestra página web: www.sco.org.co Comité Asesor Científico: Günter Gerlach, Eric Hágsater, Derechos reservados. Prohibida la reproducción total o Adam P. Karremans, parcial sin previa autorización de la Sociedad Colombiana Juan Sebastián Moreno, de Orquideología y de los autores de los artículos. André Schuiteman, Diego Bogarín y Joel Tupac Otero Ph.D. Diagramación: Official publication of the Colombian Orchid Society Ana Patricia Echeverri S. since 1966. Carátula: Each volume consists of two numbers per year.
    [Show full text]
  • Redalyc.GENERIC RELATIONSHIPS of ZYGOPETALINAE (ORCHIDACEAE: CYMBIDIEAE): COMBINED MOLECULAR EVIDENCE
    Lankesteriana International Journal on Orchidology ISSN: 1409-3871 [email protected] Universidad de Costa Rica Costa Rica WHITTEN, W. MARK; WILLIAMS, NORRIS H.; DRESSLER, ROBERT L.; GERLACH, GÜNTER; PUPULIN, FRANCO GENERIC RELATIONSHIPS OF ZYGOPETALINAE (ORCHIDACEAE: CYMBIDIEAE): COMBINED MOLECULAR EVIDENCE Lankesteriana International Journal on Orchidology, vol. 5, núm. 2, agosto, 2005, pp. 87- 107 Universidad de Costa Rica Cartago, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44339808001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative LANKESTERIANA 5(2):87-107. 2005. GENERIC RELATIONSHIPS OF ZYGOPETALINAE (ORCHIDACEAE: CYMBIDIEAE): COMBINED MOLECULAR EVIDENCE W. MARK WHITTEN Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA NORRIS H. WILLIAMS1 Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA ROBERT L. DRESSLER2 Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA GÜNTER GERLACH Botanischer Garten München Nymphenburg, Menzinger Str. 65. 80638 München, Germany FRANCO PUPULIN Jardín Botánico Lankester, Universidad de Costa Rica, P.O. Box 1031-7050 Cartago, Costa Rica 1Author for correspondence: orchid@flmnh.ufl.edu 2Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166-0299, U.S.A. Mailing address: 21305 NW 86th Ave., Micanopy, Florida 32667. ABSTRACT. The phylogenetic relationships of the orchid subtribe Zygopetalinae were evaluated using parsimony analyses of combined DNA sequence data of nuclear ITS 1 and 2 (including the 5.8s region and portions of the flanking 18s and 26s regions) and of the plastid trnL intron plus the trnL-F intergenic spacer and the plastid matK.
    [Show full text]
  • Epilist 1.0: a Global Checklist of Vascular Epiphytes
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong.
    [Show full text]