Wrightsville Beach

Total Page:16

File Type:pdf, Size:1020Kb

Wrightsville Beach DRAFT TOWN OF WRIGHTSVILLE BEACH HAZARD MITIGATION PLAN November 20, 2009 Prepared By: Wilmington, North Carolina DRAFT Wrightsville Beach Hazard Mitigation Plan Table of Contents PAGE Section 1. Introduction A. INTRODUCTION ............................................. 1-1 B. STATEMENT OF THE PROBLEM . 1-1 C. HAZARD MITIGATION LEGISLATION . 1-2 D. TOWN OF WRIGHTSVILLE BEACH HAZARD MITIGATION PLAN . 1-3 E. PLAN ORGANIZATION ......................................... 1-4 F. PLANNING PROCESS ......................................... 1-5 Section 2. Community Profile A. LOCATION AND GENERAL TOPOGRAPHY . 2-1 B. HISTORY .................................................. 2-1 C. CLIMATE .................................................. 2-3 D. DEMOGRAPHIC SUMMARY ..................................... 2-4 1. Permanent Population . 2-4 2. Seasonal Population ..................................... 2-5 3. Population Profile - Age .................................. 2-5 4. Housing ............................................. 2-6 5. Economy ............................................. 2-7 Section 3. Hazard Identification A. INTRODUCTION ............................................. 3-1 B. HURRICANES ............................................... 3-2 1. Description ........................................... 3-2 2. Historical Impact ....................................... 3-4 a. October 5 to 18, 1954 (Hurricane Hazel) . 3-4 b. August 3 to 14, 1955 (Hurricane Connie) . 3-5 c. August 7 to 21, 1955 (Hurricane Diane) . 3-5 d. September 10 to 23, 1955 (Hurricane Ione) . 3-6 e. August 29 to September 13, 1960 (Hurricane Donna) . 3-6 f. September 9 to 14, 1984 (Hurricane Diana) . 3-7 g. July 5 to 12, 1996 (Hurricane Bertha) . 3-7 h. August 23 to September 5, 1996 (Hurricane Fran) . 3-8 i. August 19 to 30, 1998 (Hurricane Bonnie) . 3-8 j. August 24 to September 7, 1999 (Hurricane/Tropical Storm Dennis) 3-9 k. September 7 to 18, 1999 (Hurricane Floyd) . 3-10 November 20, 2009 Page C-1 Table of Contents DRAFT Wrightsville Beach Hazard Mitigation Plan 3. Likelihood of Occurrence . 3-10 a. August 24, 2004 (Hurricane Charley) . 3-10 b. September 14 to 15, 2005 (Hurricane Ophelia) . 3-11 c. August 31 to September 1, 2006 (Tropical Storm Ernesto) . 3-12 d. Retired Names ...................................3-12 C. NOR’EASTERS ..............................................3-13 1. Description ...........................................3-13 2. Historical Impact ....................................... 3-13 3. Likelihood of Occurrence . 3-14 D. URBAN FIRES/WIND .......................................... 3-14 1. Description ...........................................3-14 2. Historical Impact ....................................... 3-15 3. Likelihood of Occurrence . 3-15 E. THUNDERSTORMS AND TORNADOES . 3-16 1. Description ...........................................3-16 2. Historical Impact ....................................... 3-17 3. Likelihood of Occurrence . 3-18 F. LIGHTNING ................................................3-19 1. Description ...........................................3-19 2. Historical Impact ....................................... 3-19 3. Likelihood of Occurrence . 3-20 G. FLOODING ................................................3-20 1. Description ...........................................3-20 2. Historical Impact ....................................... 3-22 3. Likelihood of Occurrence . 3-22 H. RIP CURRENTS .............................................3-23 1. Description ...........................................3-23 2. Historical Impact ....................................... 3-23 3. Likelihood of Occurrence . 3-23 I. SEVERE WINTER STORMS ...................................... 3-24 1. Description ...........................................3-24 2. Historical Impact ....................................... 3-25 3. Likelihood of Occurrence . 3-25 J. DROUGHTS/HEAT WAVES ...................................... 3-26 1. Description ...........................................3-26 2. Historical Impact ....................................... 3-26 3. Likelihood of Occurrence . 3-26 K. EARTHQUAKES .............................................3-27 1. Description ...........................................3-27 2. Historical Impact ....................................... 3-28 3. Likelihood of Occurrence . 3-28 November 20, 2009 Page C-2 Table of Contents DRAFT Wrightsville Beach Hazard Mitigation Plan L. TSUNAMIS .................................................3-29 1. Description ...........................................3-29 2. Historical Impact ....................................... 3-30 3. Likelihood of Occurrence . 3-30 M. RANKING OF NATURAL HAZARD POTENTIAL . 3-30 N. EXPLANATION OF HAZARDS NOT IDENTIFIED . 3-31 O. HAZARD DAMAGE AND LIKELIHOOD OF OCCURRENCE SUMMARY . 3-32 Section 4. Capability Assessment A. INSTITUTIONAL CAPABILITY . 4-1 B. PLANNING AND ORDINANCE REVIEW . 4-3 1. Floodplain Damage Prevention Ordinance . 4-3 2. North Carolina State Building Code . 4-4 3. Zoning Ordinance ...................................... 4-4 4. Subdivision Ordinance ................................... 4-7 5. Town of Wrightsville Beach Stormwater Management Program . 4-8 6. Water Supply Shortage Ordinance . 4-8 7. Community Rating System . 4-9 8. Town of Wrightsville Beach Hurricane Operations Plan (Preparedness and Response) . 4-9 9. Town of Wrightsville Beach Hurricane Operations Re-Entry Plan . 4-10 10. Tsunami Ready Plan for New Hanover County . 4-10 11. New Hanover County Emergency Operations Plan . 4-10 12. Coastal Area Management Act (CAMA) Land Use Plan . 4-11 C. LEGAL CAPABILITY ...........................................4-11 1. Regulations ...........................................4-12 a. General Police Power . 4-12 b. Building Code and Building Inspections . 4-12 c. Land Use .......................................4-13 2. Acquisition ...........................................4-15 3. Taxation .............................................4-15 4. Spending ............................................4-15 D. FISCAL CAPABILITY .......................................... 4-16 E. POLITICAL CAPABILITY . 4-17 F. TECHNICAL CAPABILITY ....................................... 4-17 Section 5. Vulnerability Assessment A. INTRODUCTION ............................................. 5-1 B. EXISTING DEVELOPMENT PATTERNS . 5-1 1. Central Beach Area ..................................... 5-3 November 20, 2009 Page C-3 Table of Contents DRAFT Wrightsville Beach Hazard Mitigation Plan 2. North End ............................................ 5-3 3. The Parmele Area ...................................... 5-3 4. The Waynick Boulevard-South Lumina Area . 5-3 5. South End ............................................ 5-4 6. Old Harbor Island ...................................... 5-4 7. Pelican Drive, Lees Cut, Channel Walk, and Lookout Harbor . 5-4 8. Causeway Drive/Marina Area . 5-5 9. Town Government and Parks Area . 5-5 10. Mainland/Wrightsville Sound Area . 5-5 C. VULNERABILITY ANALYSIS RESULTS . 5-6 1. Hazards Impacting the Town Overall . 5-6 a. Existing Vulnerability ............................... 5-6 b. Future Vulnerability ................................ 5-7 c. Estimated Impact of Residential Development . 5-8 2. Flooding ............................................. 5-9 Flood Insurance Rate Maps (FIRM) . 5-9 a. Existing Vulnerability . 5-11 b. Future Vulnerability . 5-11 c. Estimated Impact of Residential Development . 5-12 SLOSH Model .......................................... 5-12 a. Existing Vulnerability . 5-15 b. Future Vulnerability . 5-16 c. Estimated Impact of Residential Development . 5-18 D. FRAGILE AREAS ............................................. 5-18 1. Estuarine and Ocean System . 5-19 a. Estuarine Water ..................................5-19 b. Estuarine Shoreline . 5-19 c. Coastal Wetlands .................................5-20 d. Public Trust Areas . 5-20 2. Ocean Hazard System ................................... 5-21 a. Ocean Erodible Area ............................... 5-21 b. High Hazard Flood Area . 5-21 c. Inlet Hazard Area .................................5-22 d. Unvegetated Beach Area . 5-22 E. CRITICAL FACILITIES ......................................... 5-22 F. REPETITIVE LOSS AND SEVERE REPETITIVE LOSS STRUCTURES . 5-24 Section 6. Mitigation Strategies A. INTRODUCTION ............................................. 6-1 B. MITIGATION STRATEGIES ..................................... 6-2 November 20, 2009 Page C-4 Table of Contents DRAFT Wrightsville Beach Hazard Mitigation Plan C. HAZARD MITIGATION ACTIVITIES ELIMINATED THROUGH PLAN UPDATE . 6-14 Section 7. Plan Implementation and Maintenance A. IMPLEMENTATION ........................................... 7-1 B. ROLE OF THE MITIGATION ADVISORY COMMITTEE IN IMPLEMENTATION AND MAINTENANCE . 7-2 C. MAINTENANCE .............................................. 7-2 D. CONTINUED PUBLIC INVOLVEMENT . 7-4 E. INCORPORATION OF EXISTING PLANNING MECHANISMS . 7-4 TABLES Table 1 Town of Wrightsville Beach Population, 1990-2008 . 2-4 Table 2 Town of Wrightsville Beach High and Low Seasonal Population Estimates 2-5 Table 3 Town of Wrightsville Beach Age Composition, 1990-2000 . 2-5 Table 4 Town of Wrightsville Beach Housing Units, 2000 . 2-6 Table 5 Town of Wrightsville Beach Residential Building Permit Activity . 2-7 Table 6 Town of Wrightsville Beach Workers by Industry . 2-7 Table 7 The Dolan-Davis Nor’easter Intensity Scale . 3-13 Table 8 Enhanced Fujita Tornado Scale . 3-17 Table 9 New Hanover County
Recommended publications
  • Hurricane and Tropical Storm
    State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development.
    [Show full text]
  • UNDERSTANDING the GENESIS of HURRICANE VINCE THROUGH the SURFACE PRESSURE TENDENCY EQUATION Kwan-Yin Kong City College of New York 1 1
    9B.4 UNDERSTANDING THE GENESIS OF HURRICANE VINCE THROUGH THE SURFACE PRESSURE TENDENCY EQUATION Kwan-yin Kong City College of New York 1 1. INTRODUCTION 20°W Hurricane Vince was one of the many extraordinary hurricanes that formed in the record-breaking 2005 Atlantic hurricane season. Unlike Katrina, Rita, and Wilma, Vince was remarkable not because of intensity, nor the destruction it inflicted, but because of its defiance to our current understandings of hurricane formation. Vince formed in early October of 2005 in the far North Atlantic Ocean and acquired characteristics of a hurricane southeast of the Azores, an area previously unknown to hurricane formation. Figure 1 shows a visible image taken at 14:10 UTC on 9 October 2005 when Vince was near its peak intensity. There is little doubt that a hurricane with an eye surrounded by convection is located near 34°N, 19°W. A buoy located under the northern eyewall of the hurricane indicated a sea-surface temperature (SST) of 22.9°C, far below what is considered to be the 30°N minimum value of 26°C for hurricane formation (see insert of Fig. 3f). In March of 2004, a first-documented hurricane in the South Atlantic Ocean also formed over SST below this Figure 1 Color visible image taken at 14:10 UTC 9 October 2005 by Aqua. 26°C threshold off the coast of Brazil. In addition, cyclones in the Mediterranean and polar lows in sub-arctic seas had been synoptic flow serves to “steer” the forward motion of observed to acquire hurricane characteristics.
    [Show full text]
  • NOM Technical Memorandum NWS HYDR0-21 STORM TIDE
    NOM Technical Memorandum NWS HYDR0-21 STORM TIDE FREQUENCY ANALYSIS FOR THE COAST OF NORTH CAROLINA, SOUTH OF CAPE LOOKOUT Francis P. Ho Robert J. Tracey Office of Hydrology Silver Spring, Md. May 1975 UNITED STATES /NATIONAL OCEANIC AND / National Weather DEPARTMENT OF COMMERCE ATMOSPHERIC ADMINISTRATION Service Frederick B. Dent, Secretary Robert M. White. Administrator George P. Cressman, Director STORM TIDE FREQUENCY ANALYSIS FOR THE COAST OF NORTH CAROLINA, SOUTH OF CAPE LOOKOUT Contents 1. Introduction. 1 1.1 Objective and scope.......................................... 1 1.2 Authorization................................................ 1 1. 3 Study method. 2 2. Summary of historical hurricanes.................................. 2 2.1 Hurricane tracks. 2 2. 2 Historical notes. 3 3. Climatology of hurricane characteristics .......................... 12 3.1 Frequency of hurricane tracks ................................ 13 3.2 Probability distribution of hurricane intensity .............. 13 3.3 Probability distribution of radius of maximum winds .......... 14 3.4 Probability distributions of speed and direction of forward motion............................................. 14 4. Hurricane surge ....·. 14 4. 1 Surge model. • . 14 4.2 Shoaling factor.............................................. 15 5. Tide frequency analysis by joint probability method.............. 16 5.1 The joint probability method................................ 16 5. 2 Astronomical tide. 23 5.3 Tide frequencies at selected points......................... 23 5.4 Adjustment along coast...................................... 24 5. 5 Reference datum. 24 5.6 Comparison of frequency curves with observed tides and high-water marks. 26 6. Relation of this report to disaster planning..................... 27 7. Coordination and comparison with other reports................... 27 References. • . 30 ii Tables Table no. 1. Hurricane and tropical storm parameters - Cape Fear, N.C. 17 2. Hurricane and tropical storm parameters - Wrightsville Beach, N.C .
    [Show full text]
  • Hurricane & Tropical Storm
    5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.
    [Show full text]
  • ANNUAL SUMMARY Atlantic Hurricane Season of 2005
    MARCH 2008 ANNUAL SUMMARY 1109 ANNUAL SUMMARY Atlantic Hurricane Season of 2005 JOHN L. BEVEN II, LIXION A. AVILA,ERIC S. BLAKE,DANIEL P. BROWN,JAMES L. FRANKLIN, RICHARD D. KNABB,RICHARD J. PASCH,JAMIE R. RHOME, AND STACY R. STEWART Tropical Prediction Center, NOAA/NWS/National Hurricane Center, Miami, Florida (Manuscript received 2 November 2006, in final form 30 April 2007) ABSTRACT The 2005 Atlantic hurricane season was the most active of record. Twenty-eight storms occurred, includ- ing 27 tropical storms and one subtropical storm. Fifteen of the storms became hurricanes, and seven of these became major hurricanes. Additionally, there were two tropical depressions and one subtropical depression. Numerous records for single-season activity were set, including most storms, most hurricanes, and highest accumulated cyclone energy index. Five hurricanes and two tropical storms made landfall in the United States, including four major hurricanes. Eight other cyclones made landfall elsewhere in the basin, and five systems that did not make landfall nonetheless impacted land areas. The 2005 storms directly caused nearly 1700 deaths. This includes approximately 1500 in the United States from Hurricane Katrina— the deadliest U.S. hurricane since 1928. The storms also caused well over $100 billion in damages in the United States alone, making 2005 the costliest hurricane season of record. 1. Introduction intervals for all tropical and subtropical cyclones with intensities of 34 kt or greater; Bell et al. 2000), the 2005 By almost all standards of measure, the 2005 Atlantic season had a record value of about 256% of the long- hurricane season was the most active of record.
    [Show full text]
  • Florida Hurricanes and Tropical Storms
    FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book.
    [Show full text]
  • Hurricane Florence
    Hurricane Florence: Building resilience for the new normal April 2019 Contents Foreword 2 An improved and consistent approach is needed to address large concentrations of Executive summary 4 harmful waste located in high hazard areas 23 Section I: The Physical Context 6 Floods contribute to marginalizing vulnerable communities in multiple ways 23 Previous events: Flooding timeline in North Carolina 8 Climate has visibly changed, sea levels have visibly risen, and these Hurricane threat – Can a Category 1 storm trends are likely to continue 23 be more dangerous than a Category 4? 9 Economic motivators can be used as Section II: Socio-Economic levers for both action and inaction 23 Disaster Landscape 10 The Saffir-Simpson Scale is not sufficient Physical Landscape 11 to charaterize potential hurricane impacts 25 Understanding the Risk Landscape 13 Even the best data has limitations and can’t substitute for caution and common sense 25 Socio-Economic Landscape 13 Recovery after Recovery 13 Section V: Recommendations 26 Environmental Risk 14 Now is the time to act – failure to do so will be far more expensive in the long run 27 Coastal Development 15 We need to critically assess where we are Section III: What Happened? 16 building and how we are incentivizing risk 27 Response 17 Shifting from siloed interventions to a holistic approach is key 27 Recovery 17 Change how we communicate risk 27 Section IV: Key Insights 20 Insurance is vital, but it needs to be the Lived experience, even repeat experience, right type of insurance and it should be doesn’t make people take action 21 a last resort 28 As a Nation, we continue to Imagine how bad it could be and plan support high-risk investments and for worse 28 unsustainable development 21 Section VI: Ways Forward 30 Hurricane Florence: Building resilience for the new normal 1 Foreword 2 Hurricane Florence: Building resilience for the new normal When people live through a catastrophic event their experience becomes a milestone moment that colors everything moving forward.
    [Show full text]
  • Hurricanes of 1955 Gordon E
    DECEMBEB1955 MONTHLY WEATHER REVIEW 315 HURRICANES OF 1955 GORDON E. DUNN, WALTER R. DAVIS, AND PAUL L. MOORE Weather Bureau Offrce, Miami, Fla. 1. GENERAL SUMMARY grouping i,n theirpaths. Thethree hurricanes entering the United States all crossed the North Carolina coast There were 13 tropical storms in 1955, (fig. 9), of which within a 6-week period and three more crossed the Mexican 10 attained hurricane force, a number known to have been coast within 150 miles of Tampico within a period of 25 exceeded only once before when 11 hurricanes were re- days. corded in 1950. This compares with a normal of about The hurricane season of 1955 was the most disastrous 9.2 tropical storms and 5 of hurricane intensity. In con- in history and for the second consecutive year broke all trast to 1954, no hurricanes crossed the coastline north of previous records for damage. Hurricane Diane was Cape Hatteras andno hurricane winds were reported north undoubtedly the greatest natural catastrophe in the his- of that point. No tropical storm of hurricane intensity tory of the United Statesand earned the unenviable affected any portion of the United States coastline along distinction of “the first billion dollar hurricane”. While the Gulf of Mexico or in Florida for the second consecutive the WeatherBureau has conservatively estimated the year. Only one hurricane has affected Florida since 1950 direct damage from Diane at between $700,000,000 and and it was of little consequence. However, similar hurri- $800,000,000, indirect losses of wages, business earnings, cane-free periods have occurred before.
    [Show full text]
  • Eastern Shore Archipelago: Conservation and Scientific Assessment
    Eastern Shore Archipelago: Conservation and Scientific Assessment Field Studies of a Range of Sea Islands on the Eastern Shore of Nova Scotia from Clam Harbour to Taylor Head Monday, March 5 2012 Contributors: Nick Hill, Bob Guscott, Tom Neily, Peter Green, Tom Windeyer, Chris Pepper and David Currie 1 Contents 1. INTRODUCTION................................................................................................................. 5 1.1 Purpose of the Work ........................................................................................................................ 6 1.2 NSNT Mandate ................................................................................................................................. 7 1.3 Contents of Report ........................................................................................................................... 7 2. SITE DESCRIPTION ............................................................................................................. 8 2.1 Physical Characteristics .................................................................................................................... 8 2.2 Community History ........................................................................................................................... 8 2.3 Ship Harbour National Park and Eastern Shore Seaside Park System .............................................. 9 2.4 Community Profile ...........................................................................................................................
    [Show full text]
  • Hurricane Season04.Pub
    Carolina Sky Watcher NOAA has been issuing hurricane seasonal for the last six years and they have been very accurate. They are based on NOAA's Accumulated Cyclone Energy – or ACE –Index. The ACE index measures the collective strength and duration of tropical storms and hurricanes in a given region. It has proven to be highly predict- able and is a key forecast parameter for NOAA hurricane outlooks. National Weather Service, Newport, NC Vol. 11, Number 2 (#39) Jun 1, 2004 - Nov 30, 2004 For 2004, NOAA predicts an above normal hurricane season. The outlook calls for * 12-15 tropical storms * 6-8 becoming hurricanes – 2004 at least 74 mph winds * 2-4 becoming major Hurricane hurricanes (Categories 3- 5) – at least 115 mph winds. Season Based on historical data, similar seasons have averaged two to three land-falling hurricanes in the continental During the prior, relatively in- United States, and 1-2 hurricanes in the region around the Caribbean Sea. active, 1970-1994 period, hurri- cane seasons averaged only 9 This above normal forecast is continuing the trend of above normal activity since 1995. Between 1995-2003, tropical storms, 5 hurricanes, Atlantic hurricane seasons have averaged 13 tropical storms, 8 hurricanes, and 4 major hurricanes. An and 2 major hurricanes. Only above-normal season features a lot of activity in the deep tropics of the Atlantic.. These become hurricanes three seasons during this entire and major hurricanes, and have general westward tracks toward the United States. This is why we have so period were classified as above many more hurricane landfalls in the U.S.
    [Show full text]
  • Examining the Effect of Visualization Tool Exposure on Local-Level Stakeholder Perceptions on Climate Change Adaptation
    Examining the Effect of Visualization Tool Exposure on Local-level Stakeholder Perceptions on Climate Change Adaptation by Maliha Majeed A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Environmental Studies in Geography Waterloo, Ontario, Canada, 2015 © Maliha Majeed 2015 AUTHOR’S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii ABSTRACT Vulnerabilities of human communities, driven by environmental, social, economic, and political dynamics, vary across geographical and social regions. Coastal communities are considered to be among those greatest at risk from climate impacts. To cope with these impacts, communities must assess existing vulnerabilities and adaptive capacities, and begin to adapt. Currently, community-based research often focuses on identifying vulnerabilities and possible adaptations, but rarely examines how local-level stakeholders perceive adaptation-based needs and potential action. This research study focuses on Lennox Island, in Prince Edward Island and the Town of Lockeport, in Nova Scotia to examine how two innovative visualization tools, CLIVE and AdaptNS, influence stakeholder perceptions on climate change adaptation. This study explores whether tool exposure changes perceptions of awareness and priorities for potential action among local-level decision-makers and stakeholders. It further explores which aspects of the visualization tools resonate among local-level decision-makers. This research builds on existing vulnerability assessment information established through the Partnership for Canada-Caribbean Community Climate Change Adaptation (ParCA) research project and uses a methodological approach involving semi-structured interviews and community-based workshops with local-level decision-makers and community stakeholders, respectively.
    [Show full text]
  • A Review of Media Coverage of Climate Change and Global Warming in 2020 Special Issue 2020
    A REVIEW OF MEDIA COVERAGE OF CLIMATE CHANGE AND GLOBAL WARMING IN 2020 SPECIAL ISSUE 2020 MeCCO monitors 120 sources (across newspapers, radio and TV) in 54 countries in seven different regions around the world. MeCCO assembles the data by accessing archives through the Lexis Nexis, Proquest and Factiva databases via the University of Colorado libraries. Media and Climate Change Observatory, University of Colorado Boulder http://mecco.colorado.edu Media and Climate Change Observatory, University of Colorado Boulder 1 MeCCO SPECIAL ISSUE 2020 A Review of Media Coverage of Climate Change and Global Warming in 2020 At the global level, 2020 media attention dropped 23% from 2019. Nonetheless, this level of coverage was still up 34% compared to 2018, 41% higher than 2017, 38% higher than 2016 and still 24% up from 2015. In fact, 2020 ranks second in terms of the amount of coverage of climate change or global warming (behind 2019) since our monitoring began 17 years ago in 2004. Canadian print media coverage – The Toronto Star, National Post and Globe and Mail – and United Kingdom (UK) print media coverage – The Daily Mail & Mail on Sunday, The Guardian & Observer, The Sun & Sunday Sun, The Telegraph & Sunday Telegraph, The Daily Mirror & Sunday Mirror, and The Times & Sunday Times – reached all-time highs in 2020. has been As the year 2020 has drawn to a close, new another vocabularies have pervaded the centers of critical year our consciousness: ‘flattening the curve’, in which systemic racism, ‘pods’, hydroxycholoroquine, 2020climate change and global warming fought ‘social distancing’, quarantines, ‘remote for media attention amid competing interests learning’, essential and front-line workers, in other stories, events and issues around the ‘superspreaders’, P.P.E., ‘doomscrolling’, and globe.
    [Show full text]