Examining the Effect of Visualization Tool Exposure on Local-Level Stakeholder Perceptions on Climate Change Adaptation

Total Page:16

File Type:pdf, Size:1020Kb

Examining the Effect of Visualization Tool Exposure on Local-Level Stakeholder Perceptions on Climate Change Adaptation Examining the Effect of Visualization Tool Exposure on Local-level Stakeholder Perceptions on Climate Change Adaptation by Maliha Majeed A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Environmental Studies in Geography Waterloo, Ontario, Canada, 2015 © Maliha Majeed 2015 AUTHOR’S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii ABSTRACT Vulnerabilities of human communities, driven by environmental, social, economic, and political dynamics, vary across geographical and social regions. Coastal communities are considered to be among those greatest at risk from climate impacts. To cope with these impacts, communities must assess existing vulnerabilities and adaptive capacities, and begin to adapt. Currently, community-based research often focuses on identifying vulnerabilities and possible adaptations, but rarely examines how local-level stakeholders perceive adaptation-based needs and potential action. This research study focuses on Lennox Island, in Prince Edward Island and the Town of Lockeport, in Nova Scotia to examine how two innovative visualization tools, CLIVE and AdaptNS, influence stakeholder perceptions on climate change adaptation. This study explores whether tool exposure changes perceptions of awareness and priorities for potential action among local-level decision-makers and stakeholders. It further explores which aspects of the visualization tools resonate among local-level decision-makers. This research builds on existing vulnerability assessment information established through the Partnership for Canada-Caribbean Community Climate Change Adaptation (ParCA) research project and uses a methodological approach involving semi-structured interviews and community-based workshops with local-level decision-makers and community stakeholders, respectively. After exposure to visualization tools, this tool finds that stakeholders have a greater awareness of and an enhanced need to prioritize critical infrastructure and regions that are vulnerable to the physical impacts of climate change (specifically storm surge and coastal erosion), to consider the impact of climate change on future generations, and to attain further information regarding climate change impacts. It is further revealed that the visual aspects (including physical impacts, timeframes, and localized focus) and decision-support tool aspects of visualization tools are favourable to stakeholders. iii ACKNOWLEDGEMENTS I would like to thank my supervisor, Dr. Johanna Wandel and my fellow ParCA researchers who have supported me throughout this research study and provided me with invaluable guidance, resources, and information. I would also like to thank my friends and family, near and far, who have been very understanding, caring, and motivating towards my efforts in achieving my goals; thank you for keeping me grounded and balanced, especially over the last couple years. iv TABLE OF CONTENTS LIST OF FIGURES ...................................................................................................................... vii LIST OF TABLES ....................................................................................................................... viii LIST OF ABBREVIATIONS ........................................................................................................ ix Chapter 1: Introduction ................................................................................................................... 1 1.1 Climate Change and Adaptation ........................................................................................ 1 1.2 Research Objectives ........................................................................................................... 2 1.3 Project Overview ............................................................................................................... 3 Chapter 2: Literature Review .......................................................................................................... 4 2.1 Stakeholder Engagement in Environmental Decision-making ............................................. 4 2.1.1 Why Stakeholder Engagement is Considered Important ............................................... 4 2.1.2 Who is a Stakeholder and Who Should be Included...................................................... 4 2.1.2.1 Advantages and Disadvantages of Having Everyone Involved .............................. 7 2.1.3 Type of Engagement ...................................................................................................... 8 2.1.4 Methods of Engagement .............................................................................................. 10 2.2 Visualization Tools in Environmental Decision-making .................................................... 11 2.2.1 Why Do We Use Visualization Tools .......................................................................... 11 2.2.1.1 Benefits and Constraints of Visualization Tools .................................................. 13 2.2.2 With Whom Do We Use Visualization Tools.............................................................. 15 2.2.3 How Do We Use Visualization Tools .......................................................................... 16 2.2.4 Overview of Existing Visualization Tools ................................................................... 16 2.3 Behaviour Change in Environmental Decision-making ..................................................... 25 2.3.1 Factors that Influence Behaviour ................................................................................. 25 2.3.1.1 Demographic ......................................................................................................... 25 2.3.1.2 External ................................................................................................................. 26 2.3.1.3 Internal .................................................................................................................. 27 Chapter 3: Study Site and Methods .............................................................................................. 31 3.1 Study Area .......................................................................................................................... 31 3.1.1 Lennox Island............................................................................................................... 32 3.1.1.1 Physical System .................................................................................................... 32 3.1.1.2 Human System ...................................................................................................... 33 3.1.1.3 Local Governance ................................................................................................. 34 3.1.1.4 Current State of Climate Change Adaptation ....................................................... 35 3.1.2 Town of Lockeport ...................................................................................................... 35 3.1.2.1 Physical System .................................................................................................... 35 3.1.2.2 Human System ...................................................................................................... 36 3.1.2.3 Local Governance ................................................................................................. 36 3.1.2.4 Current State of Climate Change Adaptation ....................................................... 37 3.2 Visualization Tools Used in These Study Areas ................................................................. 39 3.2.1 CLIVE .......................................................................................................................... 39 3.2.2 AdaptNS ....................................................................................................................... 41 3.3 Methods for Data Collection ............................................................................................... 43 3.3.1 Key Informant Interviews ............................................................................................ 45 3.3.1.1 Participants ............................................................................................................ 46 3.3.1.2 Process .................................................................................................................. 46 v 3.3.2 Community Workshops ............................................................................................... 47 3.3.2.1 Participants ............................................................................................................ 47 3.3.2.2 Process: Structured Questionnaire ........................................................................ 48 3.3.2.3 Process: Workshop................................................................................................ 49 Chapter 4: Results ......................................................................................................................... 52 4.1 Results from Key Informant Interviews ............................................................................. 52 4.1.1 Awareness ...................................................................................................................
Recommended publications
  • Hurricane and Tropical Storm
    State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy sutwnitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. ProQuest Information and Learning 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 800-521-0600 UMI ‘‘Sustainable Tourism for Smali Towns in the Maritimes’ A thesis submitted by Shaimna Mowatt-Densmore in partial fulfillment of the requirements for the degree of Master of Arts in Atlantic Canada Studies at Saint Mary’s University, Halifax, Nova Scotia. April 2001 Approved by: r. James H. Morrisdn -supervisor) Dr.
    [Show full text]
  • NOM Technical Memorandum NWS HYDR0-21 STORM TIDE
    NOM Technical Memorandum NWS HYDR0-21 STORM TIDE FREQUENCY ANALYSIS FOR THE COAST OF NORTH CAROLINA, SOUTH OF CAPE LOOKOUT Francis P. Ho Robert J. Tracey Office of Hydrology Silver Spring, Md. May 1975 UNITED STATES /NATIONAL OCEANIC AND / National Weather DEPARTMENT OF COMMERCE ATMOSPHERIC ADMINISTRATION Service Frederick B. Dent, Secretary Robert M. White. Administrator George P. Cressman, Director STORM TIDE FREQUENCY ANALYSIS FOR THE COAST OF NORTH CAROLINA, SOUTH OF CAPE LOOKOUT Contents 1. Introduction. 1 1.1 Objective and scope.......................................... 1 1.2 Authorization................................................ 1 1. 3 Study method. 2 2. Summary of historical hurricanes.................................. 2 2.1 Hurricane tracks. 2 2. 2 Historical notes. 3 3. Climatology of hurricane characteristics .......................... 12 3.1 Frequency of hurricane tracks ................................ 13 3.2 Probability distribution of hurricane intensity .............. 13 3.3 Probability distribution of radius of maximum winds .......... 14 3.4 Probability distributions of speed and direction of forward motion............................................. 14 4. Hurricane surge ....·. 14 4. 1 Surge model. • . 14 4.2 Shoaling factor.............................................. 15 5. Tide frequency analysis by joint probability method.............. 16 5.1 The joint probability method................................ 16 5. 2 Astronomical tide. 23 5.3 Tide frequencies at selected points......................... 23 5.4 Adjustment along coast...................................... 24 5. 5 Reference datum. 24 5.6 Comparison of frequency curves with observed tides and high-water marks. 26 6. Relation of this report to disaster planning..................... 27 7. Coordination and comparison with other reports................... 27 References. • . 30 ii Tables Table no. 1. Hurricane and tropical storm parameters - Cape Fear, N.C. 17 2. Hurricane and tropical storm parameters - Wrightsville Beach, N.C .
    [Show full text]
  • The Great Maritimes Blizzard of February 18-19, 2004
    The Great Maritimes Blizzard of February 18-19, 2004 Chris Fogarty Atlantic Storm Prediction Centre, Dartmouth, Nova Scotia Introduction On 18 February 2004 an intense low pressure system formed well south of Nova Scotia as cold air from eastern North America clashed with the relatively warm waters of the Gulf Stream. The storm moved northeastward passing south of Nova Scotia and over Sable Island. A vast area of heavy snow and high winds swept across Nova Scotia, Prince Edward Island and southeast New Brunswick bringing blizzard conditions and record snowfalls. Widespread amounts of 60 to 90 cm (24 to 36 inches, 2 to 3 feet) were experienced bringing Nova Scotia and Prince Edward Island to a standstill. States of emergency were put into effect across these provinces in order for emergency officials to perform their duties and clean up the mammoth snowfall. It took days for many urban streets and highways to be cleared. 1. The Synoptic Situation A storm track map is shown in Fig. 1 with a time series of minimum sea level pressure in the inset based on analyses at the Maritimes Weather Centre in Halifax, Nova Scotia. The storm formed approximately 200 km southeast of Cape Hatteras, NC at 00 UTC 18 February. It then moved to the northeast at 35-40 km/h, attaining its lowest sea level pressure of 959 mb at 18 UTC 19 February 250 km southeast of Halifax, NS (Fig. 2). Fig. 1. Storm track and time series of minimum sea level pressure. 1 Fig. 2. Sea level pressure analysis of the storm at maximum intensity.
    [Show full text]
  • The Atlantic Hurricane Database Re-Analysis Project
    Columbia University Press, 2004 178 HISTORIC VARIABILITY 7 The Atlantic Hurricane Database Re-analysis Project: Documentation for 1851-1910 Alterations and Additions to the HURDAT Database Christopher W. Landsea, Craig Anderson, Noel Charles, Gilbert Clark, Jason Dunion, Jose Fernandez-Partagas, Paul Hungerford, Charlie Neumann, Mark Zimmer A re-analysis of the Atlantic basin tropical storm and hurricane database (“best track”) for the period of 1851 to 1910 has been completed. This reworking and extension back in time of the main archive for tropical cyclones of the North Atlantic Ocean, Caribbean Sea and Gulf of Mexico was necessary to correct systematic and random errors and biases in the data as well as to incorporate the recent historical analyses by Partagas and Diaz. The re-analysis project provides the revised tropical storm and hurricane database, a metadata file detailing individual changes for each tropical cyclone, a “center fix” file of raw tropical cyclone observations, a collection of U.S. landfalling tropical storms and hurricanes, and comments from/replies to the National Hurricane Center’s Best Track Change Committee. This chapter details the methodologies and references utilized for this re-analysis of the Atlantic tropical cyclone record. This chapter provides documentation of the first efforts to re-analyze the National Hurricane Center's (NHC's) North Atlantic hurricane database (or HURDAT, also called “best tracks” since they are the “best” determination of track and intensity in a post-season analysis of the tropical cyclones). The original database of six-hourly tropical cyclone (i.e. tropical storms and hurricanes) positions and intensities was assembled in the 1960s in support of the Apollo space program to help provide statistical tropical cyclone track forecasting guidance (Jarvinen et al.
    [Show full text]
  • Hurricane & Tropical Storm
    5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.
    [Show full text]
  • And Bridge Overloads
    FINAL REPORT Development of Risk Models for Florida's Bridge Management System (Reuters) Contract No. BDK83 977-11 John O. Sobanjo Florida State University Department of Civil and Environmental Engineering 2525 Pottsdamer St. Tallahassee, FL 32310 Paul D. Thompson Consultant 17035 NE 28th Place Bellevue, WA 98008 Prepared for: State Maintenance Office Florida Department of Transportation Tallahassee, FL 32309 June 2013 Final Report ii Disclaimer The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Florida Department of Transportation (FDOT), the U.S. Department of Transportation (USDOT), or Federal Highway Administration (FHWA). Final Report iii SI* (MODERN METRIC) CONVERSION FACTORS APPROXIMATE CONVERSIONS TO SI UNITS SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL LENGTH in Inches 25.4 millimeters mm ft Feet 0.305 meters m yd Yards 0.914 meters m mi Miles 1.61 kilometers km SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL AREA in2 Square inches 645.2 square millimeters mm2 ft2 Square feet 0.093 square meters m2 yd2 square yard 0.836 square meters m2 ac acres 0.405 hectares ha mi2 square miles 2.59 square kilometers km2 SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL VOLUME fl oz fluid ounces 29.57 milliliters mL gal gallons 3.785 liters L ft3 cubic feet 0.028 cubic meters m3 yd3 cubic yards 0.765 cubic meters m3 NOTE: volumes greater than 1000 L shall be shown in m3 SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL MASS oz ounces 28.35 grams g lb pounds 0.454 kilograms
    [Show full text]
  • Florida Hurricanes and Tropical Storms
    FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book.
    [Show full text]
  • DYNAMIC COASTS in a CHANGING CLIMATE Lead Authors: David E
    CHAPTER 2: DYNAMIC COASTS IN A CHANGING CLIMATE Lead Authors: David E. Atkinson (University of Victoria), Donald L. Forbes (Natural Resources Canada) and Thomas S. James (Natural Resources Canada) Contributing Authors: Nicole J. Couture (Natural Resources Canada) and Gavin K. Manson (Natural Resources Canada) Recommended Citation: Atkinson, D.E., Forbes, D.L. and James, T.S. (2016): Dynamic coasts in a changing climate; in Canada’s Marine Coasts in a Changing Climate, (ed.) D.S. Lemmen, F.J. Warren, T.S. James and C.S.L. Mercer Clarke; Government of Canada, Ottawa, ON, p. 27-68. Chapter 2 | DYNAMIC COASTS IN A CHANGING CLIMATE 27 TABLE OF CONTENTS 1 INTRODUCTION 29 4.3 PROJECTIONS OF SEA-LEVEL CHANGE IN CANADA 51 2 COASTAL VARIABILITY 29 4.3.1 PROJECTIONS OF RELATIVE SEA-LEVEL CHANGE 51 2.1 GEOLOGICAL SETTING 30 4.3.2 EXTREME WATER LEVELS 52 2.2 COASTAL PROCESSES 33 4.3.3 SEA-LEVEL PROJECTIONS 2.2.1 EROSION AND SHORELINE RETREAT 35 BEYOND 2100 54 2.2.2 CONTROLS ON RATES OF COASTAL CHANGE 36 5 COASTAL RESPONSE TO SEA-LEVEL RISE 3 CHANGING CLIMATE 38 AND CLIMATE CHANGE 54 3.1 DRIVERS OF CHANGE 38 5.1 PHYSICAL RESPONSE 54 3.2 CLIMATE VARIABILITY AND CHANGE 40 5.2 ECOLOGICAL RESPONSE 57 3.3 CLIMATE DETERMINANTS 41 5.2.1 COASTAL SQUEEZE 57 3.4 TRENDS AND PROJECTIONS 42 5.2.2 COASTAL DUNES 57 3.4.1 TRENDS 42 5.2.3 COASTAL WETLANDS, TIDAL FLATS AND SHALLOW COASTAL WATERS 59 3.4.2 PROJECTIONS 43 3.5 STORMS AND SEA ICE 43 5.3 VISUALIZATION OF COASTAL FLOODING 60 3.5.1 STORMS 43 3.5.2 SEA ICE 44 6 SUMMARY AND SYNTHESIS 60 3.5.3 CHANGES IN STORM
    [Show full text]
  • Hurricane Florence
    Hurricane Florence: Building resilience for the new normal April 2019 Contents Foreword 2 An improved and consistent approach is needed to address large concentrations of Executive summary 4 harmful waste located in high hazard areas 23 Section I: The Physical Context 6 Floods contribute to marginalizing vulnerable communities in multiple ways 23 Previous events: Flooding timeline in North Carolina 8 Climate has visibly changed, sea levels have visibly risen, and these Hurricane threat – Can a Category 1 storm trends are likely to continue 23 be more dangerous than a Category 4? 9 Economic motivators can be used as Section II: Socio-Economic levers for both action and inaction 23 Disaster Landscape 10 The Saffir-Simpson Scale is not sufficient Physical Landscape 11 to charaterize potential hurricane impacts 25 Understanding the Risk Landscape 13 Even the best data has limitations and can’t substitute for caution and common sense 25 Socio-Economic Landscape 13 Recovery after Recovery 13 Section V: Recommendations 26 Environmental Risk 14 Now is the time to act – failure to do so will be far more expensive in the long run 27 Coastal Development 15 We need to critically assess where we are Section III: What Happened? 16 building and how we are incentivizing risk 27 Response 17 Shifting from siloed interventions to a holistic approach is key 27 Recovery 17 Change how we communicate risk 27 Section IV: Key Insights 20 Insurance is vital, but it needs to be the Lived experience, even repeat experience, right type of insurance and it should be doesn’t make people take action 21 a last resort 28 As a Nation, we continue to Imagine how bad it could be and plan support high-risk investments and for worse 28 unsustainable development 21 Section VI: Ways Forward 30 Hurricane Florence: Building resilience for the new normal 1 Foreword 2 Hurricane Florence: Building resilience for the new normal When people live through a catastrophic event their experience becomes a milestone moment that colors everything moving forward.
    [Show full text]
  • Hurricanes of 1955 Gordon E
    DECEMBEB1955 MONTHLY WEATHER REVIEW 315 HURRICANES OF 1955 GORDON E. DUNN, WALTER R. DAVIS, AND PAUL L. MOORE Weather Bureau Offrce, Miami, Fla. 1. GENERAL SUMMARY grouping i,n theirpaths. Thethree hurricanes entering the United States all crossed the North Carolina coast There were 13 tropical storms in 1955, (fig. 9), of which within a 6-week period and three more crossed the Mexican 10 attained hurricane force, a number known to have been coast within 150 miles of Tampico within a period of 25 exceeded only once before when 11 hurricanes were re- days. corded in 1950. This compares with a normal of about The hurricane season of 1955 was the most disastrous 9.2 tropical storms and 5 of hurricane intensity. In con- in history and for the second consecutive year broke all trast to 1954, no hurricanes crossed the coastline north of previous records for damage. Hurricane Diane was Cape Hatteras andno hurricane winds were reported north undoubtedly the greatest natural catastrophe in the his- of that point. No tropical storm of hurricane intensity tory of the United Statesand earned the unenviable affected any portion of the United States coastline along distinction of “the first billion dollar hurricane”. While the Gulf of Mexico or in Florida for the second consecutive the WeatherBureau has conservatively estimated the year. Only one hurricane has affected Florida since 1950 direct damage from Diane at between $700,000,000 and and it was of little consequence. However, similar hurri- $800,000,000, indirect losses of wages, business earnings, cane-free periods have occurred before.
    [Show full text]
  • Planning for Sea-Level Rise in Halifax Harbour Adaptation Measures Can Be Incrementally Adjusted As New Information Becomes Available
    i t y i fa x a l P a l h ional Munici eg r Photo courtesy of Planning for sea-level rise in halifax harbour Adaptation measures can be incrementally adjusted as new information becomes available Halifax Regional Municipality (HRM), the capital of Nova Scotia, is Atlantic Canada’s largest city. The municipality covers more than 5500 km2 and has a population of more than 390 000. Halifax Harbour, at the heart of HRM, is a major seaport with significant industrial, military and municipal infrastructure. Rising sea level, along with increased storm intensity and associated waves and storm surges, presents risks to damaging storms residents, property and infrastructure in coastal areas of In recent years, Halifax has experienced frequent extreme HRM. Following extreme weather events in September weather, including several major storms that caused 2003 and February 2004, HRM launched ClimateSMART extensive erosion and flood damage. Most notable was (Sustainable Mitigation & Adaptation Risk Toolkit) to help Hurricane Juan in September 2003, a “once-in-a-century” mainstream climate change mitigation and adaptation into event. This Category 2 hurricane made landfall just west municipal planning and decision making. ClimateSMART of Halifax and tracked across central Nova Scotia and initiated discussion of climate change and spurred further Prince Edward Island, leaving a trail of damage to property, adaptation action. infrastructure and the environment (cost estimated at In August 2006, the HRM Council adopted the Regional $200 million). A few months later, in February 2004, the Municipal Planning Strategy, an integrated land use severe winter blizzard that became known as “White Juan” planning guide for future development.
    [Show full text]