Part 2C. Individual Demand Functions 3. Slutsky Equations Slutsky 方程式

 Own-Price Effects  A Slutsky Decomposition  Cross-Price Effects  Duality and the Demand Concepts

2014.11.20 1 Own-Price Effects

Q: What h appens t o purch ases of good x chhhange when

px changes?

x/px Differentiation of the FOCsF.O.Cs from utility maximization could be used. HHthiowever, this approachhi is cumb ersome and provides little economic insight.

2  The Identity b/w Marshallian & Hicksian Demands: * Since x = x(px, py, I) = hx(px, py, U)

Replacing I by the EF, e(px, py, U), and U by  gives

x(px, py, e(px, py, )) = hx(px, py, )

Differenti ati on ab ove equati on w.r.t. px, we have

xxehx   x pepp  x x xx p x U = constant I = hx = x x xx  x pp  I xxU = constant 3 x xx   x pp  I xxU = constant S.E. I.E. ( – ) ( ?) The S . E. is always negative h x  0 as long as MRS is diminishing. px The Law of Demand hldholds x x as long as x is a . 00  Ipx xx If x is a , 00  hen x must be an . pIx

E/px = hx = x A$1iA $1 increase i n px raiditises necessary expenditures by x dollars. 4 Compensated Demand Elasticities

The compensated demand function: hx(px, py, U)  Compensated OwnOwn--PricePrice of Demand

dhx hhp e x xx hpx , x dp x px hx

px  Compensated CrossCross--PricePrice Elasticity of Demand

dhx hh p e xxy hpxy, dp y phyx p x 5  OwnOwn--PricePrice Elasticity form of the Slutsky Equation x h x  x x ppxx I x php xI p xxx  x  x pxxx p x  IxI  ee se x,,pxxxhIh pxx ,I px where s  x  Expenditure share on x. x I The Slutsky equation shows that the compensatdted and uncompensat tded pri ce elasticities will be similar if the share of income devoted to x is small . the income elasticity of x is small. 6 A Slutsky Decomposition

 Example: Cobb-Douglas utility function U(x,y) = x0.5y0.5 1 I 1 I The Marshallian Demands: x  y  2 px 2 py 050.50 05.5 11II I The IUF: (,ppIxy ,) 0.5 0.5 22ppppxx 2 xy The EF: 0.5 0.5 ep(,xy p ,)2  p xy p  The Hicksian Demands: e p0.5 e p0.5 y h x  hx   0.5  y 0.5 pp ppyy xx 7 The Slutskyyp Decomposition:

xI1 TE.. 2  0 ppxx2

0.5 0.5 hx 11ppyyII 1 SE..1.5 1.5 0.5 0.5  2 0 ppx 2224xxxyx pppp

xI1111II I IE.. x   2  0 Ippp22xx 4 x

8  Numerical Example: CobbCobb--DouDouggylas utility function U(x,y) = x0.5y0.5

Let px = $1, py = $4, I = $8 1 I 1 I The Marshallian Demands: x 4 y 1 2 px 2 py 0.5 0.5 The IUF: ()412( ppIxy,,)4 1 2

The EF: ep(,xy p ,)  I 8 The Hicksian Demand for x: p0.5 40.5 p0.5 10.5 y h  x  21 hx 0.5 0.5 24 y 0.5 0.5 px 1 py 4

9 Suppose that px : $1  $4 18 18 The Marshallian Demands: x '1  y '1  24 24 0.5 0.5 The IUF: (,ppIxy ,)1  1 1

050.50 05.5 Thlihe real income: eepp'(,,')241216 xy    The Hicksian Demand for x: 40.5 40.5 hx 22 h  22 40.5 y 40.5 The Slutsky Decomposition: TE..: x 1 4  3

SE..: hx  2 4 2 IE.. TE .. SE .. (3)(2) 1 10  Figure: The Slutsky Decomposition

px : $1  $4

y TE..: x 1 4  3

SE..: hx 24 2 4 IE.. TE .. SE .. (3)(2) 1 I I = –2y 2

1 IC IC1 0 1 2 4 8 x I.E. S.E. 11  Figure: The Slutsky Decomposition

px : $1  $4

px TE..: x 1 4  3

SE..: hx 24 2 4 IE.. TE .. SE .. (3)(2) 1

1

hx x 1 2 4 x I.E. S.E. 12 Crossross--PiPrice EffEfftects

 The identity b/w Marshallian & Hicksian Demands:

x(px, py, e(px, py, )) = hx(px, py, )

 Differenti ati on ab ove equati on w.r.t. py, we have

xxehx   x pepp  x yyy p y U = constant I = hy = y x xx  y ppyy  I U = constant 13  CrossCross--PricePrice Elasticity form of the Slutsky Equation xxh  x y ppyy I x ppph xI yyyx y pppyyx p xIxI  ee  se x,,phpyxIyxy , py where s  y  Expenditure share on y. y I

14  Definition: Gross Substitutes Two goods are (gross) substitutes if one good may replace the other in use. i.e., if x i  0 p j e.g, tea & coffee, butter & margarine

 Definition: Gross Complements Two goods are (gross) complements if they are used together. i.e., if x i  0 p j e.g., coffee & cream, fish & chips 15  FigureFigure:: Gross Substitutes

When the price of y falls, the substitution effect may be so large y that the consumer purchases less x and more y.

In this case , we call x and y gross substitutes. y1

y x/p > 0 0 U1 y

U0

x1 x0 x

16  FigureFigure:: Gross Complements

When the price of y falls, the substitution effect may be so small that y the consumer purchases more x and more y. In this case , we call x and y gross complements. y1

y0 x/py < 0 U1 U0

x x 0 1 x

17  Definition: Net Substitutes Two goods are net substitutes if

hi x  0 or i  0 p j p j U constant

 Definition: Net Complements Two goods are net complements if h x i  0 or i  0 p j p j U constant

Note: The concepts of net substitutes and complements fllfocuses solely on substit u tion eff ect ss.

18 x xx   y pp  I yyU = constant S.E. I.E. ( + ) ( ?) h The S .E . is always positive x  0 if DMRS and n = 2. py If x is a normaldl good, IEI.E. < 0 . The combined effect is ambiguous. x  0 S.E. > |I.E.|  Gross Substitutes py x SES.E. <|IE|< |I.E.|  Gross Complements  0 py If x is an inferior good, both S .E . > 0 x and I.E. >0  Gross Substitutes 0 py 19  Case of Manyy( Goods (nn>> 2) The Generalized Slutsky Equation is: xx  x ii  x i ppj  I jjU =constant

When n > 2, hi/pj can be negative. i.e., xi and xj can be net complementscomplements. If the utility function is quasi-concave, then the crosscross--netnet--substitutionsubstitution effects are symmetricmmetric. i.e., h h i  j pp Proof: ji 2 h e p   e  e p j  h i i j ppppppj jiji i 20 Asyyymmetry of the Gross CrossCross--PricePrice Effects The gross definitions of substitutes and complements are not symmetric.

It is possible for xi to be a substitute for xj and at the same time for xj to be a complement of xi.

21 DlitDuality and the Deman d Concep ts “Dual” Problem UMP EMP Slutsky Equation xxh   x x* p p I x*  xp(, p ,) I xx hppU(, ,) xy xxh  xxy  x y* pyypI Roy’ s Iden tity Shephard’s Lemma x(,ppIxy ,) xppI(,xy ,) hpp xxy (, ,(, ppI xy ,)) hppUxxy(, ,)  px  hppUxxy(, ,) xppeppU (, xy ,(, xy ,)) e  I  px

* * UppI(,xy ,) eeppU (,xy ,) * ee ((())ppxy,,( pp xy,,II))  * UppeppUU(,xy ,(, xy ,)) 22