3. Slutsky Equations Slutsky 方程式 Y

3. Slutsky Equations Slutsky 方程式 Y

Part 2C. Individual Demand Functions 3. Slutsky Equations Slutsky 方程式 Own-Price Effects A Slutsky Decomposition Cross-Price Effects Duality and the Demand Concepts 2014.11.20 1 Own-Price Effects Q: Wha t h appens t o purch ases of good x chhhange when px changes? x/px Differentiation of the FOCsF.O.Cs from utility maximization could be used. HHthiowever, this approachhi is cumb ersome and provides little economic insight. 2 The Identity b/w Marshallian & Hicksian Demands: * Since x = x(px, py, I) = hx(px, py, U) Replacing I by the EF, e(px, py, U), and U by gives x(px, py, e(px, py, )) = hx(px, py, ) Differenti ati on ab ove equati on w.r.t. px, we have xxehx x pepp x x xx p x U = constant I = hx = x x xx x pp I xxU = constant 3 x xx x pp I xxU = constant S.E. I.E. ( – ) ( ?) The S. E. is always negative h x 0 as long as MRS is diminishing. px The Law of Deman d hldholds x x as long as x is a normal good. 00 Ipx xx If x is a Giffen good , 00 hen x must be an inferior good. pIx E/px = hx = x A$1iA $1 increase in px raiditises necessary expenditures by x dollars. 4 Compensated Demand Elasticities The compensated demand function: hx(px, py, U) Compensated OwnOwn--PricePrice Elasticity of Demand dhx hhp e x xx hpx , x dp x px hx px Compensated CrossCross--PricePrice Elasticity of Demand dhx hh p e xxy hpxy, dp y phyx p x 5 OwnOwn--PricePrice Elasticity form of the Slutsky Equation x h x x x ppxx I x php xI p xxx x x pxxx p x IxI ee se x,,pxxxhIh pxx ,I px where s x Expenditure share on x. x I The Slutsky equation shows that the compensatdted an d uncompensa tdted pri ce elasticities will be similar if the share of income devoted to x is small . the income elasticity of x is small. 6 A Slutsky Decomposition Example: Cobb-Douglas utility function U(x,y) = x0.5y0.5 1 I 1 I The Marshallian Demands: x y 2 px 2 py 050.50 05.5 11II I The IUF: (,ppIxy ,) 0.5 0.5 22ppppxx 2 xy The EF: 0.5 0.5 ep(,xy p ,)2 p xy p The Hicksian Demands: e p0.5 e p0.5 y h x hx 0.5 y 0.5 pp ppyy xx 7 The Slutskyyp Decomposition: xI1 TE.. 2 0 ppxx2 0.5 0.5 hx 11ppyyII 1 SE..1.5 1.5 0.5 0.5 2 0 ppx 2224xxxyx pppp xI1111II I IE.. x 2 0 Ippp22xx 4 x 8 Numerical Example: CobbCobb--DouDouggylas utility function U(x,y) = x0.5y0.5 Let px = $1, py = $4, I = $8 1 I 1 I The Marshallian Demands: x 4 y 1 2 px 2 py 0.5 0.5 The IUF: ()412( ppIxy,,)4 1 2 The EF: ep(,xy p ,) I 8 The Hicksian Demand for x: p0.5 40.5 p0.5 10.5 y h x 21 hx 0.5 0.5 24 y 0.5 0.5 px 1 py 4 9 Suppose that px : $1 $4 18 18 The Marshallian Demands: x '1 y '1 24 24 0.5 0.5 The IUF: (,ppIxy ,)1 1 1 050.50 05.5 Thlihe real income: eepp'(,,')241216 xy The Hicksian Demand for x: 40.5 40.5 hx 22 h 22 40.5 y 40.5 The Slutsky Decomposition: TE..: x 1 4 3 SE..: hx 2 4 2 IE.. TE .. SE .. (3)(2) 1 10 Figure: The Slutsky Decomposition px : $1 $4 y TE..: x 1 4 3 SE..: hx 24 2 4 IE.. TE .. SE .. (3)(2) 1 I I = –2y 2 1 IC IC1 0 1 2 4 8 x I.E. S.E. 11 Figure: The Slutsky Decomposition px : $1 $4 px TE..: x 1 4 3 SE..: hx 24 2 4 IE.. TE .. SE .. (3)(2) 1 1 hx x 1 2 4 x I.E. S.E. 12 Crossross--PiPrice EffEfftects The identity b/w Marshallian & Hicksian Demands: x(px, py, e(px, py, )) = hx(px, py, ) Differenti ati on ab ove equati on w.r.t. py, we have xxehx x pepp x yyy p y U = constant I = hy = y x xx y ppyy I U = constant 13 CrossCross--PricePrice Elasticity form of the Slutsky Equation xxh x y ppyy I x ppph xI yyyx y pppyyx p xIxI ee se x,,phpyxIyxy , py where s y Expenditure share on y. y I 14 Definition: Gross Substitutes Two goods are (gross) substitutes if one good may replace the other in use. i.e., if x i 0 p j e.g, tea & coffee, butter & margarine Definition: Gross Complements Two goods are (gross) complements if they are used together. i.e., if x i 0 p j e.g., coffee & cream, fish & chips 15 FigureFigure:: Gross Substitutes When the price of y falls, the substitution effect may be so large y that the consumer purchases less x and more y. In this case , we call x and y gross substitutes. y1 y x/p > 0 0 U1 y U0 x1 x0 x 16 FigureFigure:: Gross Complements When the price of y falls, the substitution effect may be so small that y the consumer purchases more x and more y. In this case , we call x and y gross complements. y1 y0 x/py < 0 U1 U0 x x 0 1 x 17 Definition: Net Substitutes Two goods are net substitutes if hi x 0 or i 0 p j p j U constant Definition: Net Complements Two goods are net complements if h x i 0 or i 0 p j p j U constant Note: The concepts of net substitutes and complements fllfocuses solely on subs titu tion eff ect ss. 18 x xx y pp I yyU = constant S.E. I.E. ( + ) ( ?) h The S .E . is always positive x 0 if DMRS and n = 2. py If x is a normaldl good, IEI.E. < 0 . The combined effect is ambiguous. x 0 S.E. > |I.E.| Gross Substitutes py x SES.E. <|IE|< |I.E.| Gross Complements 0 py If x is an inferior good, both S . E. > 0 x and I.E. >0 Gross Substitutes 0 py 19 Case of Manyy( Goods (nn>> 2) The Generalized Slutsky Equation is: xx x ii x i ppj I jjU =constant When n > 2, hi/pj can be negative. i.e., xi and xj can be net complementscomplements. If the utility function is quasi-concave, then the crosscross--netnet--substitutionsubstitution effects are symmetricmmetric. i.e., h h i j pp Proof: ji 2 h e p e e p j hj i i ppppppj jiji i 20 Asyyymmetry of the Gross CrossCross--PricePrice Effects The gross definitions of substitutes and complements are not symmetric. It is possible for xi to be a substitute for xj and at the same time for xj to be a complement of xi. 21 DDlituality and the Deman d Concep ts “Dual” Problem UMP EMP Slutsky Equation xxh x x* p p I x* xp(, p ,) I xx hppU(, ,) xy xxh xxy x y* pyypI Roy ’s Iden tity Shephard’s Lemma x(,ppIxy ,) xppI(,xy ,) hpp xxy (, ,(, ppI xy ,)) hppUxxy(, ,) px hppUxxy(, ,) xppeppU (, xy ,(, xy ,)) e I px * * UppI(,xy ,) eeppU (,xy ,) * ee ((())ppxy,,( pp xy,,II)) * UppeppUU(,xy ,(, xy ,)) 22.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    22 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us