Scintillation Detectors in Nuclear and High-Energy Physics - Based on Inorganic Scintillators - R
Total Page:16
File Type:pdf, Size:1020Kb
Scintillation Detectors in Nuclear and High-Energy Physics - based on inorganic scintillators - R. W. Novotny 2nd Physics Institute, University Giessen BaF2 • short history • what is required and what can be provided? • basic properties of scintillators • particle detection PWO • energy measurement • particle identification/discrimination • time-of-flight • pulse-shape analysis • phoswich technique CeF3 LYSO • photon/electron detection • low energy • calorimetry • outlook into near and far future history of scintillators SrI2:Eu 1968/2008 LSO:Ce,Ca 2007 LuI3:Ce 2003 LaBr3:Ce 2001 LYSO:Ce 2001 LuYAP:Ce 2001 LaCl3:Ce 2000 LuAP:Ce 1994 LSO:Ce 1982 Invention of the photomultiplier tube ZnS CdWO4 Late 1800s …. BaPt(CN)4 M. J. Weber, J. Lumin. 100 (2002) 35 discovery and development of new scintillator materials are strongly correlated with basic research and technology in physics ... historical development: • 1895 discovery of X-rays tilting table for fluoroscopy, Paris 1896 • 1896 natural radioactivity low energetic probes of a few MeV • 1931 Van de Graaft - generator ( TANDEM) linear accelerator principles: HF-resonators cyclotron energy of reaction products increases according to the available bombarding energy: MeV TeV investigations in nuclear, medium and high energy physics • near Cb -barrier: nuclear excitations, „binary“ reactions single particle or photon detection • near Fermi-energy: high excitations, DIC, multi-fragmentation multi-particle production, high photon multiplicities • medium ... relativistic energies: study of hot and compressed matter meson production, global parameters similar development in HE physics: exploratory experiments, resonance studies, jet-physics, Higgs - search, ... research trend in astrophysics very similar ! detection/identification/discrimination of charged and neutral hadrons dE/dx limitation due to the large hadronic interaction length dE ~m⋅ z2 λ >> Xo dx • complete stopping total kinetic energy << 1 GeV β⋅γ energy no shower detection • energy loss ∆E MIP position • limited by the size of the individual detector module velocity • time-of-flight for low-energy particles • ∆E-E technique PID • intrinsic sensitivity (pulse shape) detection/identification/discrimination of charged and neutral hadrons neutrons: En < 20 MeV (n,γ) capture reactions n+63 Li →α+ H n+10 B →α+ 7 Li nHepH+33 →+ En > 20 MeV (n,p) En > 1 GeV hadronic shower electromagnetic probes 7 183 7 A 1 σ = α⋅ 22 ≈ ⋅ ⋅ pair 4 re Z ln 1/3 photons 9 Z 9NA0 X electrons Bremsstrahlung dE E EM − = dx X0 shower 1 radiation length X ~ o Z2 electron energy / MeV requirements for electromagnetic calorimetry: energy and position measurement of e+/- and photons invariant mass reconstruction decay of neutral mesons γ in 2 photons π0 π0 counts γ η 2 m γγc = 2E1E2 (1 − cosΘ12 ) mγγ / MeV electromagnetic shower visualized with a Wilson chamber 30 cm NaI(Tl) Eγ 50 MeV γ 20 cm 500 MeV 5 GeV 50 GeV PbWO4 10 X0 γ 2RM G4-simulations experimental conditions ref.: LHC/FAIR beam luminosity: up to 1034 cm-2 s-2 events/interactions: up to 109 s-1 high multiplicities: heavy ion reactions ! high occupancies: large shower dimensions high radiation dose: in 10 years neutrons: 1017 n/cm2 γ−rays : 107 Gy • fast response (trigger, read-out) • high granularity • compact (operation in magnetic field) • radiation hard basic processes in luminescence centre – LC inorganic scintillators Intrinsic or Dopant e ionic crystal conduction band host material Egap > ~ 4 - 12 eV valence band VIS 400 - 800 nm 3.1 - 1.6 eV h UV 180 - 400 nm 6.9 - 3.1 eV VUV < 180 nm > 6.9 eV thermalization ideal absorption in air transport model C.W.E. van Eijk scintillator basics scintillation mechanism = conversion of ionization energy into visible light (hνrad) hν ⋅ N general efficiency: η = rad ph Edep N ph relative light output: L R = Edep ξ eh = β⋅ Eg Eg : band − gap β = 1.5 − 2 : ionic crystals energy to generate an e/h-pair: β = 3 − 4 : covalent binding thermalization Eγ Nph = ⋅S ⋅Q β⋅Egap C.W.E. van Eijk, NIM A460 (2001) 1 relevant properties of the most common crystal scintillators crystal NaI(Tl) CsI(Tl) BaF2 CeF3 BGO PbWO4 LYSO 3 density g/cm 3.67 4.51 4.89 6.16 7.13 8.28 7.1 radiation length cm 2.59 1.85 2.06 1.68 1.12 0.89 1.2 Moliere radius cm 4.8 3.8 3.4 2.6 2.3 2.1 2.4 nuclear interaction 41.4 36.5 29.9 22.0 18.0 21.0 length cm luminescence nm 410 565 310 310 480 420 420 420 195,210 340 decay time ns 230 1300 620 30 300 5-15 40 35 0.6 9 dLY/dT %/oC -1.8 ~ 0 ~ 0.3 -0.8 -1.8 0 at RT 0 relative light output 1 1 0.25 0.10 0.09 0.02 1 compared to NaI(Tl) 0.04 typical inorganic scintillators identical volume: 3 (X0) γ-ray spectra measured with different scintillators emission and transmission spectra of different scintillators temperature dependence of different scintillators how everything started: R.Hofstadter, Phys.Rev. 74 (1948) 100 NaI with source NaI without source particle detection: low beam and scintillators cannot compete with solid state or gaseous detectors particle energies: due to statistics higher energies scintillators allow large and granular solid angle, stopping power > 5 MeV/u and fast response (but: also depending on photosensor) most common: CsI(Tl), BaF2, BGO, ... NaI(Tl) MSU Miniball R.T.De Souza et al.,NIM A295 (1990) 109 DWARF Ball/Wall D.W.Stracener et al., NIM A294 (1990) 485 AMPHORA D.Drain et al., NIM A281 (1989) 528 MEDEA E.Migneco et al., NIM A314 (1992) 31 particle ID: γ + C → π0 + X + ... 250 • time-of-flight BaF2 (TAPS) 200 E (MeV) 150 2 AGeV Ca+Ca 100 flight ns / flight - 50 of - 0 0 2 4 6 8 10 time t (ns) time resolution: σt > 85 ps energy / MeV C.W.E. van Eijk BaF2 kinetics of the two fast scintillation components at λ = 195nm and λ = 220nm P.Schotanus et al., NIM A259 (1987) 586 particle ID: • ∆E-E telescope via phoswich technique combination of a fast and slow scintillator common readout with photomultiplier • two organic scintillators: NE102A / NE115 • fast plastic and slow inorganic scintillator: NE102A / BGO NE102A / CsI(Tl) 35MeV/u Ar+Au H He fast MSU Miniball slow • identification via pulse shape analysis PSA due to intrinsic luminescence properties: scintillation components show different response to electromagnetic or hadronic probes CsI(Tl), BaF2, ... time proton t s s a n f to - ho photon E p ns oto pr fast component total light output E-total signal integration width plastic BaF -detector VETO 2 identification of charged and neutral events • identification via pulse shape analysis PSA all events reaction products: 2 AGeV Ar + Ca charged neutral events events protons photons n • identification via pulse shape analysis PSA visualisation of PSA in polar coordinates transformation: radius / MeV short radius= short2 + long2 , angle= atan( ) long protons π+ photons angle / ° time • identification via PSA and charged particle tt phoswich technique ss aa ff -- EE ns t to plastic/BaF d ho 2 p p fast component total light output E-total signal integration width phoswich: plastic/BaF2 BaF2-detector plastic scintillator common PM-read-out MEDEA @ LNS Catania 180 BaF2 detectors (10X0), PM-readout 120 plastic phoswich plastic BaF2 MEDEA @ LNS Catania particle ID via TOF and PSA plastic phoswich: NE102A/NE115 BaF2: PSA H fast photons He total Miniball @ MSU 188 fast plastic / CsI(Tl) telescopes Coverage: 89% 4π AMPHORA detector @ SARA neutron detection DWARF Ball/Wall 105 plastic/CsI(Tl) elements particle ID detection of γ-rays in a Ge detector in coincidence with charged particle to select reaction channels INDRA@GANIL/GSI PID: PSA of CsI(Tl) Si-CsI(Tl) telescopes CsI(Tl) PSA particle detection: at medium and high energies secondary reactions and development of hadronic shower options: TOF, ∆E vs TOF correlations 180 MeV d calorimetry, but interaction length ~ 10 X0 counts BaF2 “proton calibration” energy / a.u. t d p Ep= 50 MeV Ep= 200 MeV p π p π counts flight relative to photonsns / relative flight - of - MIP d t d time 15 cm PbWO4 energy / MeV particle detection: neutron detection TAPS neutron efficiency depends strongly on energy and detector threshold En < 300 MeV: neutron identification via exclusively measured reaction γ + p π0 + π+ + n efficiency: En > 750 MeV 17% efficiency efficiency threshold reconstructed energy / MeV particle detection: thermal neutron detection capture reactions of 6Li n + 6Li (7.5%*) → 3H + 4He (4.8 MeV) σ = 941 barn @ 1.8 Å 6Li glass 6LiI:Eu 662 keV neutron 1332 keV ~ 4.1 MeV 662 keV neutron By courtesy of Paul Schotanus, Scionix By courtesy of Paul Schotanus, A.Syntfeld et al, IEEE Trans Nucl Sci Scionix vol 52, no 6, 3151-3156, 2005 photon detection: spectroscopy with scintillators could not compete with Si or Ge solid state detectors at very low energies ! NaI(Tl) but: high efficiency provides optimum material for anti-Compton suppression (BGO most common) counts Ge energy Euroball, Eurogam, Gammasphere, ... energy / keV photon detection: response to low energy photons example: BaF2 @ RT fast γ 60Co α α total total 137Cs 1.3 MeV α fast advantage of Ce3+ luminescence Ce3+ luminescence center why Ce3+ ? e conduction band relaxation 5d core excitation emission and 1 electron in 4f 4f state valence band h 5d → 4f allowed dipole transition fast response τ ~ 20 ns C.W.E. van Eijk Lu SiO :Ce LuAlO :Ce RbGd Br :Ce crystal 2 5 3 2 7 LaCl :10%Ce (LSO) (LuAP) 1) 3 density g/cm3 7.40 8.39 4.8 3.9 radiation length cm 1.1 1.1 2.03 ? luminescence nm 420 365 415 350 decay time ns 40 17 50 20 440 330 2000 relative light output 0.63 0.30 1.4 ~ 1 compared to NaI(Tl) LaCl3:Ce LaCl3:Ce 32keV Ba 4 mm x 6 mm ΔE/E = 3.1% La X-ray escape peak Counts 400 500 600 700 800 0 200 400 600 800 Energy (keV) E.V.D.