Dangerous Goods Panel (Dgp) Meeting of the Working Group of the Whole
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transport of Dangerous Goods
ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions. -
Rhode Island Hazardous Substance List
Rhode Island Hazardous Substance List Source: T - ACGIH F - NFPA49 C - IARC Alphabetical Order C.A.S. ACGIH NFPA IARC CHEMICAL NAME 13010-47-4 C 1,-(2-Chloroethyl)-3-cyclohexyl-1-Nitrosourea 76-11-9 T 1,1,1,2-tetrachloro-2,2-difluoroethane 76-12-0 T 1,1,2,2-tetrachloro-1,2-difluoroethane 79-34-5 T 1,1,2,2-tetrachloroethane - skin 76-13-1 T 1,1,2-trichloro-1,2,2-trifluoroethane 79-00-5 T F C 1,1,2-trichloroethane - skin 594-72-9 T 1,1-Dichloro-1-nitroethane 74-34-3 T 1,1-dichloroethane 57-14-7 T 1,1-dimethylhydrazine (udmh) 96-18-4 T 1,2,3-trichloropropane 120-82-1 T 1,2,4-Trichlorobenzene 106-88-7 F 1,2-Butylene oxide 107-15-3 T F 1,2-Diaminoethane 96-12-8 C 1,2-Dibromo-3-chloropropane 106-93-4 T F C 1,2-Dibromoethane - skin 107-06-2 T F 1,2-Dichlorethane 540-59-0 T F 1,2-Dichloroethene 540-59-0 T F 1,2-Dichloroetylene 1615-80-1 C 1,2-Diethylhydrazine C 1,2-Dimethyl hydrazine - skin 106-99-0 T F 1,3-Butadiene 118-52-5 T 1,3-Dichloro-5,5-dimethylhydantoin 542-75-6 T F 1,3-Dichloropropene (cis and trans) 542-75-6 T F 1,3-Dichloropropylene 110-56-5 F 1,4-Dichlorobutane 123-91-1 T F C 1,4-Dioxane 1120-71-4 1-3-Propane sultone 110-53-2 F 1-Bromopentane 106-89-8 T F C 1-Chloro,2,3-epoxy-propane 600-25-9 T 1-Chloro-1-nitropropane 97-00-7 F 1-chloro-2,4-dinitrobenzene 543-59-9 F 1-Chloropentane 112-30-1 F 1-Decanol 111-27-3 F 1-Hexanol 141-79-7 T F 1-Isobutenyl methyl ketone 108-03-2 T F 1-Nitropropane 71-41-0 F 1-Pentanol 110-58-7 F 1-Pentylamine 111-40-0 T F 2,2'-Diaminodiethylamine 111-44-4 F 2,2'Dichlorodiethyl ether 75-99-0 T 2,2-dichloropropionic acid 556-52-5 T 2,3-Epoxy-1-propanol 93-76-5 T 2,4,5-T 95-95-4 F 2,4,5-trichlorophenol 88-06-2 F C 2,4,6-trichlorophenol 118-96-7 T F 2,4,6-Trinitro Toluene 479-95-8 T 2,4,6-Trinitrophenyl-methylnitramine 94-75-7 T 2,4-d (2,4-dichlorophenoxyacetic acid) 97-02-9 F 2,4-dinitroaniline 584-84-9 T F 2,4-Tolylene diisocyanate 108-83-8 T 2,6-Dimethyl-4-heptanone 108-83-8 T 2,6-Dimethyl-4-heptanone 128-37-0 T 2,6-Ditert. -
WO 2015/025175 Al 26 February 2015 (26.02.2015) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/025175 Al 26 February 2015 (26.02.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C09K 5/06 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/GB2014/052580 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 22 August 2014 (22.08.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 13 15098.2 23 August 2013 (23.08.2013) GB (84) Designated States (unless otherwise indicated, for every (71) Applicant: SUNAMP LIMITED [GB/GB]; Unit 1, Satel kind of regional protection available): ARIPO (BW, GH, lite Place, Macmerry, Edinburgh EH33 1RY (GB). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (72) Inventors: BISSELL, Andrew John; C/o SunAmp, Unit TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, 1, Satellite Place, Macmerry, Edinburgh EH33 1RY (GB). -
Ammonium-Persulphate.Pdf
ADVANCE An Exclusive Chemical Range CHEMICAL SALES CORPORATION CHEMICAL SUPPLIES SIMPLIFIED ABOUT US ADVANCE CHEMICAL SALES CORPORATION Advance Chemical Sales Corporation is an industrial distributor of Fine & Speciality Chemicals. It boasts of its technology-driven innovative ways in suppling products to its customers. ADVANCE CHEMICAL SALES CORPORATION (ACSC) has been a trusted supplier of chemicals since 1968. We like to work alongside customers and solve their challenges with efficiency, progressive solutions and quality products. Whether the order is for chemical commodities or speciality chemicals, no matter if the volume is large or small, we can handle it. We are committed to bring the best quality products at competitive prices from reputed manufacturers to our customers. Our goal is to make sure that our customers find their needs of chemicals in one place. We work to develop the customers' trust An Exclusive Chemical Range EXEMPLAR DELHI is in Trade and Import of ACIDS, INORGANIC CHEMICALS, METAL ORGANIC COMPOUNDS, ORGANIC CHEMICALS & SOLVENTS. EXEMPLAR NOIDA produces chemicals like ACETATES, CHELATED EDTA, CITRATES, EDTA SALTS, GLUCONATES, HEDP SALTS, OXALATES, PHOSPHATES, TARTRATES, FINE & PERFORMANCE CHEMICALS INDUSTRIES SERVED AGRO CHEMICALS DAIRY PAINTS & INKS CERAMIC & GLASS DETERGENTS PESTICIDES CHEMICAL INDUSTRIES FOOD PROCESSING PHARMACEUTICALS CONSTRUCTION LUBRICANTS POULTRY FEED COSMETICS METAL TREATMENT WATER TREATMENT CHEMICAL SUPPLIES SIMPLIFIED ACETATES AGRO CHEMICALS Ammonium acetate Amino acid (Protein hydrolysate) Calcium acetate Boron-20 Potassium acetate Disodium octaborate tetrahydrate Sodium acetate 3 hyd. Fulvic acid Sodium acetate anhy. Potassium humate Sodium diacetate Potassium humate fulvate Zinc acetate 2 hy. Seaweed extract ACIDS ALKALIES Acetic acid glacial Alumina trihydrate Adipic acid Aluminium oxide (Calcined) Ascorbic acid Ammonia solution Benzoic acid Ammonium carbonate Boric acid Calcium carbonate Citric acid mono/ anhy. -
Alphabetical Index of Substances and Articles
ALPHABETICAL INDEX OF SUBSTANCES AND ARTICLES - 355 - NOTES TO THE INDEX 1. This index is an alphabetical list of the substances and articles which are listed in numerical order in the Dangerous Goods List in Chapter 3.2. 2. For the purpose of determining the alphabetical order the following information has been ignored even when it forms part of the proper shipping name: numbers; Greek letters; the abbreviations “sec” and “tert”; and the letters “N” (nitrogen), “n” (normal), “o” (ortho) “m” (meta), “p” (para) and “N.O.S.” (not otherwise specified). 3. The name of a substance or article in block capital letters indicates a proper shipping name. 4. The name of a substance or article in block capital letters followed by the word “see” indicates an alternative proper shipping name or part of a proper shipping name (except for PCBs). 5. An entry in lower case letters followed by the word “see” indicates that the entry is not a proper shipping name; it is a synonym. 6. Where an entry is partly in block capital letters and partly in lower case letters, the latter part is considered not to be part of the proper shipping name. 7. A proper shipping name may be used in the singular or plural, as appropriate, for the purposes of documentation and package marking. - 356 - INDEX Name and description Class UN No. Name and description Class UN No. Accumulators, electric, see 4.3 3292 Acid mixture, nitrating acid, see 8 1796 8 2794 8 2795 Acid mixture, spent, nitrating acid, see 8 1826 8 2800 8 3028 Acraldehyde, inhibited, see 6.1 1092 ACETAL 3 1088 -
Hexafluorosilicic Acid
Sodium Hexafluorosilicate [CASRN 16893-85-9] and Fluorosilicic Acid [CASRN 16961-83-4] Review of Toxicological Literature October 2001 Sodium Hexafluorosilicate [CASRN 16893-85-9] and Fluorosilicic Acid [CASRN 16961-83-4] Review of Toxicological Literature Prepared for Scott Masten, Ph.D. National Institute of Environmental Health Sciences P.O. Box 12233 Research Triangle Park, North Carolina 27709 Contract No. N01-ES-65402 Submitted by Karen E. Haneke, M.S. (Principal Investigator) Bonnie L. Carson, M.S. (Co-Principal Investigator) Integrated Laboratory Systems P.O. Box 13501 Research Triangle Park, North Carolina 27709 October 2001 Toxicological Summary for Sodium Hexafluorosilicate [16893-85-9] and Fluorosilicic Acid [16961-83-4] 10/01 Executive Summary Nomination Sodium hexafluorosilicate and fluorosilicic acid were nominated for toxicological testing based on their widespread use in water fluoridation and concerns that if they are not completely dissociated to silica and fluoride in water that persons drinking fluoridated water may be exposed to compounds that have not been thoroughly tested for toxicity. Nontoxicological Data Analysis and Physical-Chemical Properties Analytical methods for sodium hexafluorosilicate include the lead chlorofluoride method (for total fluorine) and an ion-specific electrode procedure. The percentage of fluorosilicic acid content for water supply service application can be determined by the specific-gravity method and the hydrogen titration method. The American Water Works Association (AWWA) has specified that fluorosilicic acid contain 20 to 30% active ingredient, a maximum of 1% hydrofluoric acid, a maximum of 200 mg/kg heavy metals (as lead), and no amounts of soluble mineral or organic substance capable of causing health effects. -
Chemistry – Writing Equations
Support Information 1, The following elements are diatomic; H2, O2, N2, F2, Cl2, Br2, I2, and At2. 2, Rules for naming compounds: If there are two elements in a compound the non-metal will end in –ide. e.g. CaCl2– calcium chloride, K2O – potassium oxide, Rb3P – rubidium phosphide If the compound contains a metal, non-metal and oxygen the non-metal will end in –ate. If the metal has variable ions, the valency of the ion present must be shown in brackets e.g. Fe2O3 iron (III) oxide and FeO iron (II) oxide 3, Examples of acids (all are soluble): Strong Acids Weak Acids Hydrochloric acid (HCl) Ethanoic Acid (CH3COOH) Sulfuric acid (H2SO4) Propanoic Acid (CH3CH2COOH) Nitric acid (HNO3) Carbonic Acid (H2CO3) Phosphoric acid (H3PO4) 4, Examples of soluble bases (alkalis): Strong Bases Weak Bases Sodium hydroxide (NaOH) Ammonia (NH3) Potassium hydroxide (KOH) Potassium hydrogen carbonate Note: Any base containing an alkali metal (Group 1) will be soluble. 5, Examples of types of insoluble bases: Metal oxides e.g. copper oxide (CuO) Metal carbonates e.g. calcium carbonate (CaCO3) Metal hydroxides e.g. magnesium hydroxide (Mg(OH)2) 6, Examples of types of salts (formed when an acid reacts with a metal or a base) Hydrochloric acid forms – chlorides ethanoic acid forms – ethanoates Sulfuric acid forms - sulfates propanoic acid forms - propanoates Nitric acid forms – nitrates Phosphoric acid forms - phosphates Exception: carbonic acid formed when carbon dioxide reacts with water – forms carbonates and hydrogen carbonates when reacting with a base -
Crystengcomm Accepted Manuscript
CrystEngComm Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/crystengcomm Page 1 of 8 CrystEngComm Journal Name RSC Publishing ARTICLE Influence of alkali metal cations on the formation of zeolites under hydrothermal Cite this: DOI: 10.1039/x0xx00000x conditions with no organic structure directing agents Received 00th January 2012, Accepted 00th January 2012 Antony Nearchou a and Asel Sartbaeva a,†. DOI: 10.1039/x0xx00000x Alkali metal cations play an important role in directing formation of zeolite frameworks in the www.rsc.org/ absence of organic structure directing agents. The interplay between Na and Cs cations in directing formation of zeolite RHO is the main focus of this study. -
Secretariat GENERAL
UNITED NATIONS ST Distr. Secretariat GENERAL ST/SG/AC.10/C.3/2002/33 12 April 2002 ORIGINAL : ENGLISH COMMITTEE OF EXPERTS ON THE TRANSPORT OF DANGEROUS GOODS AND ON THE GLOBALLY HARMONIZED SYSTEM OF CLASSIFICATION AND LABELLING OF CHEMICALS Sub-Committee of Experts on the Transport of Dangerous Goods (Twenty-first session, 1-10 July 2002 agenda item 4) TRANSPORT OF SOLID SUBSTANCES IN BULK IN CONTAINERS Transport of solids in portable tanks Transmitted by the expert from the United States of America 1. At the twentieth session of the Sub-Committee, the expert from the United States of America agreed to coordinate the development of requirements for the transport of solid dangerous goods in portable tanks and to lead a correspondence group to review proposed requirements and develop a proposal for submission to the twenty-first session. Many solids are not currently authorized for transport in portable tanks in the Model Regulations. Consignors that transport solid dangerous goods are required to acquire competent authority approvals to transport their solids in tanks which imposes unnecessary burdens and delays. Adoption of this proposal will result in the assignment of tank codes for the majority of solids dangerous goods listed in the Dangerous Goods List that are suitable and safe for transport in portable tanks. In developing the assignments, a rationalized approach was developed (see Annex 1) and other regulations that provide portable tank requirements for solids were considered (e.g. IMDG Code, ADR/RID and 49 CFR). Annex 2 of this paper provides proposed assignments that are based on the rationalized approach that is provided in Annex 1. -
160 'Ideal' Gases: Anaesthetics in the Heart of the Twentieth Century Ian
International Workshop on the History of Chemistry 2015 Tokyo ‘Ideal’ Gases: Anaesthetics in the Heart of the Twentieth Century Ian D. Rae University of Melbourne, Australia 1. Introduction By 1920 only three gaseous anaesthetics were widely used – nitrous oxide, diethyl ether (ether) and chloroform. The toxicity of chloroform was acknowledged, nitrous oxide did not induce deep anaesthesia, and ether was extremely inflammable, so in the 1920s there were good reasons to search for new anaesthetics. While my concern is with gaseous anaesthetics, I recognise that there were parallel developments in two related fields, that of topical or local anaesthetics, typified by the natural product cocaine and a host of synthetic substances, and injectable anaesthetics starting with opiates, then barbiturates and leading to modern materials such as propofol (2,6-diisopropylphenol). 2. Theories of anaesthetic action Hans Meyer1 noted that the anaesthetic substances were soluble in both fatty and aqueous media, proposed a general theory of anaesthesia based on the partition or distribution coefficient as a critical determinant. Meyer enunciated the following three principles that underpinned his theory: all chemically inert substances that are soluble in fats and fatty materials will produce narcosis; the line of action is in the nerve cells; the comparative strengths of substances depend on their solubility in fatty material and in water, that is, on the distribution coefficient. Charles Overton arrived at the same idea independently. Some years after completing his PhD research on cell permeability studies, Overton first presented his theory of narcosis in a lecture to the Society for Natural History in Zurich in October 1898, in a paper published the following year2 and in his book3 which included a full exposition. -
4050 Safety Wash
4050 Safety Wash MG Chemicals UK Limited Version No: A-2.00 Issue Date: 26/03/2019 Safety data sheet according to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758 Revision Date: 22/04/2021 L.REACH.GB.EN SECTION 1 Identification of the substance / mixture and of the company / undertaking 1.1. Product Identifier Product name 4050 Synonyms SDS Code: 4050-Liquid; 4050-1L, 4050-4L, 4050-20L | UFI: 58R0-10PR-8006-PNCW Other means of identification Safety Wash for Electronics 1.2. Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Cleaner for electronics that is safe for plastics Uses advised against Not Applicable 1.3. Details of the supplier of the safety data sheet Registered company name MG Chemicals UK Limited MG Chemicals (Head office) Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Address 9347 - 193 Street Surrey V4N 4E7 British Columbia Canada Kingdom Telephone +(44) 1663 362888 +(1) 800-201-8822 Fax Not Available +(1) 800-708-9888 Website Not Available www.mgchemicals.com Email [email protected] [email protected] 1.4. Emergency telephone number Association / Organisation Verisk 3E (Access code: 335388) Emergency telephone +(44) 20 35147487 numbers Other emergency telephone +(0) 800 680 0425 numbers SECTION 2 Hazards identification 2.1. Classification of the substance or mixture Classification according to regulation (EC) No 1272/2008 H225 - Flammable Liquid Category 2, H319 - Eye Irritation Category 2 [CLP] and amendments [1] Legend: 1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI 2.2. -
Chemical Formula of Binary Ionic Compounds – Sheet 1 the Combining Power Or Valency of Silver Is Always 1
Chemical Formula of Binary Ionic Compounds – Sheet 1 The combining power or valency of silver is always 1. All other transition metals are 2 unless otherwise indicated. No. Binary compound Formula No. Binary compound Formula 1 potassium fluoride 26 calcium sulfide 2 calcium chloride 27 lithium bromide 3 barium bromide 28 nickel sulfide 4 silver sulfide 29 zinc phosphide 5 aluminium iodide 30 barium iodide 6 potassium iodide 31 caesium chloride 7 lead(IV) oxide 32 copper bromide 8 zinc nitride 33 sodium nitride 9 silver iodide 34 silver chloride 10 barium fluoride 35 sodium hydride 11 lead(II) iodide 36 potassium nitride 12 silver fluoride 37 cobalt chloride 13 sodium sulfide 38 magnesium sulfide 14 sodium bromide 39 potassium chloride 15 calcium oxide 40 calcium bromide 16 zinc fluoride 41 iron(III) oxide 17 strontium phosphide 42 aluminium fluoride 18 barium sulfide 43 magnesium bromide 19 aluminium oxide 44 iron(III) chloride 20 aluminium chloride 45 barium nitride 21 aluminium sulfide 46 sodium fluoride 22 lead(II) oxide 47 lithium fluoride 23 barium chloride 48 lithium iodide 24 copper chloride 49 lithium hydride 25 barium phosphide 50 potassium oxide “Aluminum” and “cesium” are commonly used alternative spellings for "aluminium" and "caesium that are used in the US. May be freely copied for educational use. ©www.chemicalformula.org Chemical Formula of Binary Ionic Compounds – Sheet 2 The combining power or valency of silver is always 1. All other transition metals are 2 unless otherwise indicated. No. Binary compound Formula No.