Rhode Island Hazardous Substance List

Total Page:16

File Type:pdf, Size:1020Kb

Rhode Island Hazardous Substance List Rhode Island Hazardous Substance List Source: T - ACGIH F - NFPA49 C - IARC Alphabetical Order C.A.S. ACGIH NFPA IARC CHEMICAL NAME 13010-47-4 C 1,-(2-Chloroethyl)-3-cyclohexyl-1-Nitrosourea 76-11-9 T 1,1,1,2-tetrachloro-2,2-difluoroethane 76-12-0 T 1,1,2,2-tetrachloro-1,2-difluoroethane 79-34-5 T 1,1,2,2-tetrachloroethane - skin 76-13-1 T 1,1,2-trichloro-1,2,2-trifluoroethane 79-00-5 T F C 1,1,2-trichloroethane - skin 594-72-9 T 1,1-Dichloro-1-nitroethane 74-34-3 T 1,1-dichloroethane 57-14-7 T 1,1-dimethylhydrazine (udmh) 96-18-4 T 1,2,3-trichloropropane 120-82-1 T 1,2,4-Trichlorobenzene 106-88-7 F 1,2-Butylene oxide 107-15-3 T F 1,2-Diaminoethane 96-12-8 C 1,2-Dibromo-3-chloropropane 106-93-4 T F C 1,2-Dibromoethane - skin 107-06-2 T F 1,2-Dichlorethane 540-59-0 T F 1,2-Dichloroethene 540-59-0 T F 1,2-Dichloroetylene 1615-80-1 C 1,2-Diethylhydrazine C 1,2-Dimethyl hydrazine - skin 106-99-0 T F 1,3-Butadiene 118-52-5 T 1,3-Dichloro-5,5-dimethylhydantoin 542-75-6 T F 1,3-Dichloropropene (cis and trans) 542-75-6 T F 1,3-Dichloropropylene 110-56-5 F 1,4-Dichlorobutane 123-91-1 T F C 1,4-Dioxane 1120-71-4 1-3-Propane sultone 110-53-2 F 1-Bromopentane 106-89-8 T F C 1-Chloro,2,3-epoxy-propane 600-25-9 T 1-Chloro-1-nitropropane 97-00-7 F 1-chloro-2,4-dinitrobenzene 543-59-9 F 1-Chloropentane 112-30-1 F 1-Decanol 111-27-3 F 1-Hexanol 141-79-7 T F 1-Isobutenyl methyl ketone 108-03-2 T F 1-Nitropropane 71-41-0 F 1-Pentanol 110-58-7 F 1-Pentylamine 111-40-0 T F 2,2'-Diaminodiethylamine 111-44-4 F 2,2'Dichlorodiethyl ether 75-99-0 T 2,2-dichloropropionic acid 556-52-5 T 2,3-Epoxy-1-propanol 93-76-5 T 2,4,5-T 95-95-4 F 2,4,5-trichlorophenol 88-06-2 F C 2,4,6-trichlorophenol 118-96-7 T F 2,4,6-Trinitro Toluene 479-95-8 T 2,4,6-Trinitrophenyl-methylnitramine 94-75-7 T 2,4-d (2,4-dichlorophenoxyacetic acid) 97-02-9 F 2,4-dinitroaniline 584-84-9 T F 2,4-Tolylene diisocyanate 108-83-8 T 2,6-Dimethyl-4-heptanone 108-83-8 T 2,6-Dimethyl-4-heptanone 128-37-0 T 2,6-Ditert. butyl-p-cresol 141-43-5 T F 2-Aminoethanol 504-29-0 T 2-Aminopyridine 123-73-9 T F 2-Butenal 111-76-2 T 2-Butoxyethanol - skin 126-99-8 T 2-Chloro-1,3-butadiene 1929-82-4 T 2-Chloro-6-(trichloromethyl) pyridine 107-07-3 T 2-Chloroethanol 110-80-5 T 2-Ethoxyethanol - skin 111-15-9 T 2-Ethoxyethyl acetate - skin 97-95-0 F 2-ethylbutanol 123-66-0 F 2-Ethylbutyl acetate 103-11-7 F 2-Ethylhexyl acrylate 110-43-0 T 2-Heptanone 591-78-6 T 2-Hexanone 75-86-5 F 2-hydroxy-2-methylpropaneitrile 75-86-5 F 2-Hydroxy-2-methylpropanenitrile 141-43-5 T F 2-Hydroxyethylamine 999-61-1 T 2-Hydroxypropyl acrylate - skin 109-86-4 T 2-Methoxyethanol - skin 110-49-6 T 2-Methoxyethyl acetate - skin 75-85-4 F 2-methyl-2-butanol 75-69-4 F 2-methyl-2-propanol 108-10-1 T F 2-Methyl-4-pentanone 96-17-3 F 2-methylbutyraldehyde 102-81-8 T 2-N-Dibutylaminoethanol - skin 79-46-9 T F 2-nitropropane 6032-29-7 F 2-Pentanol 107-87-9 T 2-Pentanone 119-90-4 C 3,3' Dimethoxybenzidine 91-94-1 T C 3,3'-dichlorobenzidine - skin 119-93-7 T C 3,3'-Dimethylbenzidine 95-76-1 F 3,4-dichloroaniline 148-01-6 T 3,5-Dinitro-o-toluamide 2148-01-6 T 3,5-Dinitro-o-tolumide 106-95-6 F 3-Bromopropene-1 106-96-7 F 3-Bromopropyne 107-05-1 T F 3-Chloropropene 106-35-4 T F 3-Heptanone 109-78-4 F 3-Hydroxypropanenitrile 584-02-1 F 3-Pentanol 101-14-4 T 4,4'-Methylene bis(2-chloroaniline) - skin 101-77-9 T 4,4-Methylene dianiline - skin 96-69-5 T 4,4'-thiobis (6-tert-butyl-m-cresol) 92-67-1 T C 4-aminobiphenyl 123-42-2 T 4-Hydroxy-4-methyl-2-pentanone 150-76-5 T 4-Methoxyphenol 92-93-3 T 4-nitrobiphenyl 104-90-5 F 5-Ethyl-2-methylpyridine 104-90-5 F 5-Ethyl-2-picoline 541-85-5 T 5-Methyl-3-heptanone 194-59-2 C 7H-Dibenzo(c.g.)carbazone 3383-96-8 T Abate 75-07-0 T F acetaldehyde 64-19-7 T F acetic acid glacial 108-24-7 T F Acetic Anhydride 67-64-1 T F acetone 75-05-8 T F acetonitrile 98-86-2 F acetophenone 75-36-5 F acetyl chloride 110-22-5 F Acetyl peroxide 74-86-2 T F acetylene 540-59-0 T F Acetylene dichloride 79-27-6 T F acetylene tetrabromide 107-02-8 T F Acrolein 100-73-2 F Acrolein dimer 79-06-1 T acrylamide - skin 79-10-7 T F acrylic acid 107-13-1 T F C Acrylonitrile - skin 124-04-9 F Adipic acid 111-69-3 F Adiponitrile 23214-92-8 C Adriamycin 1402-68-2 C Aflatoxins 309-00-2 T F Aldrin -skin F Alkylaluminums 107-18-6 T F allyl alcohol - skin 106-95-6 F Allyl Bromide 107-05-1 T F Allyl chloride 2937-50-0 F Allyl Chlorocarbonate 2937-50-0 F Allyl chloroformate 106-92-3 T Allyl glycidyl ether (AGE) - skin 2179-59-1 T Allyl propyl disulfide 107-11-9 F Allylamine 1344-28-1 T alpha-Alumina 532-27-4 T alpha-Chloroacetophenone 100-44-7 T F alpha-Chlorotoluene 98-83-9 T alpha-methyl styrene 7429-90-5 T F Aluminum (Dust or Powder),metal & oxide, welding fumes, 7446-70-0 F Aluminum chloride (anhydrous) 1344-28-1 T Aluminum oxide - "inert" particulate 61-82-5 T C amitrole 7773-06-0 T Ammate 7664-41-7 T F Ammonia - anhydrous 7789-09-5 F Ammonium bichromate 12124-97-9 F Ammonium bromide 12125-02-9 T F Ammonium chloride - fume 7789-09-5 F Ammonium dichromate 12125-01-8 F Ammonium flouride 6484-52-2 F Ammonium nitrate 7790-98-9 F Ammonium perchlorate 13446-10-1 F Ammonium permanganate 7773-06-0 T Ammonium sulfamate 7783-20-2 F Ammonium sulfate 110-66-7 F Amyl mercaptans 1002-16-0 F Amyl nitrate 110-58-7 F Amylamine 62-44-2 C Analgesic mixtures containing phenacetin or phenecetin 62-53-3 T F aniline & homologues - skin 29191-52-4 T Anisidine (o-, p-, isomers) - skin 7440-36-0 T Antimony and compounds, as Sb. 7647-18-9 F Antimony Pentachloride 7783-70-2 F Antimony pentaflouride 1315-04-4 F Antimony pentasulfide 1315-04-4 F Antimony red 1309-64-4 T Antimony trioxide 86-88-4 T antu 140-57-8 C Aramite 7440-37-1 T Argon 7440-38-2 T C Arsenic and soluble compounds (as As) 7784-34-1 F Arsenic chloride 1327-53-3 T Arsenic trioxide production 1303-33-9 F Arsenic trisulfide 7784-34-1 F Arsenious chloride 7784-34-1 F Arsenous chloride 7784-42-1 T Arsine 1332-21-4 T C Asbestos 8052-42-4 T F Asphalt (petroleum) 50-78-2 T aspirin (acetylsalicylic acid) 1912-24-9 T Atrazine 492-80-8 C Auramine 115-02-6 C Azaserine 446-86-6 C Azathioprine 86-50-0 T azinphos-methyl - skin 151-56-4 T F Aziridine 6923-22-4 T Azodrin 13477-00-4 F Barium chlorate 10022-31-8 F Barium nitrate 1304-29-6 F Barium peroxide 7440-39-3 T Barium soluble compounds (as Ba) 1304-29-6 F Barium superoxide 114-26-1 T Baygon 55-63-0 T baytex 17804-35-2 T Benomyl 56-55-3 C Benz (a) anthacene 225-51-4 C Benz (c) acridine 100-52-7 F Benzaldehyde 71-43-2 T F C benzene - skin 100-52-7 F Benzenecarbonal 92-87-5 T C benzidine 205-99-2 C Benzo (b) fluoranthene C Benzo (j) fluoranthene 50-32-8 T benzo[a]pyrene 100-52-7 F Benzoic Aldehyde 98-08-8 F benzotriflouride 98-88-4 F benzoyl chloride 94-36-0 T F benzoyl peroxide 100-44-7 T F Benzyl chloride 7440-41-7 T F C Beryllium (as Be) 126-99-8 T beta-Chloroprene - skin 91-59-8 T C beta-Naphthylamine 57-57-8 T beta-propiolactone F Bichromates 141-66-2 T Bidrin 92-52-4 T biphenyl 54-28-8 C bis(chloromethyl)ether 154-93-8 C Bischloroethyl nitrosourea 542-88-1 T bis-Chloromethyl ether 1304-82-1 T Bismuth telluride 7778-54-3 F Bleaching powder 35400-43-2 T Bolstar 1303-96-4 T Borates, tetra, sodium salts 17702-41-9 T F Boron hydride (Decaborane) 19287-45-7 T F Boron hydride (Diborane) 1303-86-2 T Boron oxide 10294-33-4 T Boron tribromide 7637-07-2 T F Boron triflouride 314-40-9 T Bromacil 7726-95-6 T F Bromine 506-68-3 F Bromine Cyanide 7789-30-2 T F Bromine pentaflouride 7787-71-5 F Bromine triflouride 75-25-2 T bromoform - skin 55-98-1 C busulfan 106-99-0 T F Butadiene-1,3 123-72-8 F Butanal 106-97-8 T F Butane 109-79-5 T Butanethiol 107-92-6 F Butanoic acid 25167-67-3 F Butenes 109-79-5 T Butlyl mercaptan 7784-34-1 F Butter of arsenic 141-32-2 T F Butyl acrylate 136-60-7 F Butyl benzoate 111-76-2 T Butyl cellosolve 142-96-1 F Butyl ether 614-45-9 F Butyl Perbenzoate (tertiary) 107-71-1 F Butyl peroxyacetate, ter.(75% sol'n in benzene or mineral sp 927-07-1 F Butyl peroxypivalate (tert.) (75% sol'n in mineral spirits) 109-73-9 T F Butylamine - skin F Butyllithium in hydrocarbon solvents 123-72-8 F Butyraldehyde (normal and iso) 107-92-6 F Butyric acid (normal) 7440-43-9 T C Cadmium - dusts and salts - as Cd.
Recommended publications
  • Air Contaminants – Permissible Exposure Limits (Pels)
    SUBPART Z -- TOXIC AND HAZARDOUS SUBSTANCES 1910.1000-AIR CONTAMINANTS An employee’s exposure to any substance listed in Table Z-1-A of this section shall be limited in accordance with the requirements of the following paragraphs of this section. (a) Table Z-1-A. Limits for Air Contaminants (1) & (2) Enforcement of Transitional Limits has expired. See Paragraph (3) for Limits. (3) Limits for Air Contaminants Columns. An employee’s exposure to any substance listed in Table Z-1-A shall not exceed the Time Weighted Average (TWA), Short Term Exposure Limit (STEL) and Ceiling Limit specified for that substance in Table Z-1-A. (4) Skin Designation. To prevent or reduce skin absorption, an employee’s skin exposure to substances listed in Table Z-1-A with an “X” in the Skin Designation column following the substance name shall be prevented or reduced to the extent necessary in the circumstances through the use of gloves, coveralls, goggles, or other appropriate personal protective equipment, engineering controls or work practices. (5) Definitions. The following definitions are applicable to the Limits for Air Contaminants columns of Table Z- 1-A: (i) Time weighted average (TWA) is the employee’s average airborne exposure in any 8-hour work shift of a 40-hour work week which shall not be exceeded. (ii) Short term exposure limit (STEL) is the employee’s 15-minute time weighted average exposure which shall not be exceeded at any time during a work day unless another time limit is specified in a parenthetical notation below the limit.
    [Show full text]
  • Downloads/DL Praevention/Fachwissen/Gefahrstoffe/TOXIKOLOGI SCHE BEWERTUNGEN/Bewertungen/Toxbew072-L.Pdf
    Distribution Agreement In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. Signature: _____________________________ ______________ Jedidiah Samuel Snyder Date Statistical analysis of concentration-time extrapolation factors for acute inhalation exposures to hazardous substances By Jedidiah S. Snyder Master of Public Health Global Environmental Health _________________________________________ P. Barry Ryan, Ph.D. Committee Chair _________________________________________ Eugene Demchuk, Ph.D. Committee Member _________________________________________ Paige Tolbert, Ph.D. Committee Member Statistical analysis of concentration-time extrapolation factors for acute inhalation exposures to hazardous substances By Jedidiah S. Snyder Bachelor of Science in Engineering, B.S.E. The University of Iowa 2010 Thesis Committee Chair: P. Barry Ryan, Ph.D. An abstract of A thesis submitted to the Faculty of the Rollins School of Public Health of Emory University in partial fulfillment of the requirements for the degree of Master of Public Health in Global Environmental Health 2015 Abstract Statistical analysis of concentration-time extrapolation factors for acute inhalation exposures to hazardous substances By Jedidiah S.
    [Show full text]
  • 2018 Annual Survey of Biological and Chemical Agents Regulated by Homeland Security (And Carcinogens Regulated by OSHA)
    Name: Dept: Date: 2018 Annual Survey of Biological and Chemical Agents regulated by Homeland Security (and carcinogens regulated by OSHA) Due (date) All labs that do not have a current chemical inventory in Chematix MUST complete this survey. The University is required to make an annual report of all chemicals on the Chemical Facility Anti-Terrorism Standards (CFATS) lists. Additional information regarding the regulations is available on the EH&S website at http://www.safety.rochester.edu/restricted/occsafe/chemicalagent.html and https://www.selectagents.gov. 1. Please review the lists on the following pages and indicate if any are possessed by your lab. The CAS# has been added to the list for ease of searching databases. The CAS# is a Chemical Abstract Service numbering system which assigns a unique number to every chemical substance based on structure; this helps avoid confusion by use of synonyms or different naming conventions. a. If yes for possession, place an X in the applicable box and if requested, include the quantity held in your lab. b. If no, leave blank. 2. After reviewing the list, please complete the information box below (or on last page for possession), then sign, date and return to EH&S. 3. Please call Donna Douglass at 275-2402 if you have any questions. Thank you for your cooperation in collecting data required by the Department of Homeland Security! Possession: 1) Fill in applicable boxes, 2) have PI sign last page, 3) return all pages to Donna Douglass OR Non-possession: 1) Check only one box on the left, 2) sign, 3) return just this page to Donna Douglass I do not have a lab, do not work in a lab, nor do I possess any of the agents in this survey.
    [Show full text]
  • Chemical Chemical Hazard and Compatibility Information
    Chemical Chemical Hazard and Compatibility Information Acetic Acid HAZARDS & STORAGE: Corrosive and combustible liquid. Serious health hazard. Reacts with oxidizing and alkali materials. Keep above freezing point (62 degrees F) to avoid rupture of carboys and glass containers.. INCOMPATIBILITIES: 2-amino-ethanol, Acetaldehyde, Acetic anhydride, Acids, Alcohol, Amines, 2-Amino-ethanol, Ammonia, Ammonium nitrate, 5-Azidotetrazole, Bases, Bromine pentafluoride, Caustics (strong), Chlorosulfonic acid, Chromic Acid, Chromium trioxide, Chlorine trifluoride, Ethylene imine, Ethylene glycol, Ethylene diamine, Hydrogen cyanide, Hydrogen peroxide, Hydrogen sulfide, Hydroxyl compounds, Ketones, Nitric Acid, Oleum, Oxidizers (strong), P(OCN)3, Perchloric acid, Permanganates, Peroxides, Phenols, Phosphorus isocyanate, Phosphorus trichloride, Potassium hydroxide, Potassium permanganate, Potassium-tert-butoxide, Sodium hydroxide, Sodium peroxide, Sulfuric acid, n-Xylene. Acetone HAZARDS & STORAGE: Store in a cool, dry, well ventilated place. INCOMPATIBILITIES: Acids, Bromine trifluoride, Bromine, Bromoform, Carbon, Chloroform, Chromium oxide, Chromium trioxide, Chromyl chloride, Dioxygen difluoride, Fluorine oxide, Hydrogen peroxide, 2-Methyl-1,2-butadiene, NaOBr, Nitric acid, Nitrosyl chloride, Nitrosyl perchlorate, Nitryl perchlorate, NOCl, Oxidizing materials, Permonosulfuric acid, Peroxomonosulfuric acid, Potassium-tert-butoxide, Sulfur dichloride, Sulfuric acid, thio-Diglycol, Thiotrithiazyl perchlorate, Trichloromelamine, 2,4,6-Trichloro-1,3,5-triazine
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • SDS SOB SAF SAW 2015-07-10.Xlsx
    SAFETY DATA SHEET Issuing Date: 28-Mar-2014 Revision Date: 10-July-2015 Revision No.: 1 1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY/UNDERTAKING Product identifier Product Name Strike Anywhere Matches Other means of identification UN-No. UN1331 Synonyms SAW Recommended use of the chemical and restrictions on use Recommended use Matches Uses advised against No information available Details of the supplier of the safety data sheet Supplier Name Jarden Home Brands Supplier Address 1800 Cloquet Ave. Cloquet MN 55720 US Supplier Phone Number Phone:1-800-392-2575 Supplier Email [email protected] Emergency telephone number CHEMTREC 1-800-424-9300 2. HAZARDS IDENTIFICATION Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Flammable solids Category 2 GHS Label elements, including precautionary statements Emergency Overview Signal Word Warning Hazard Statements Flammable solids Appearance: wooden match Physical State: Solid Odor: none Precautionary Statements - Prevention Keep away from heat/sparks/open flames/hot surfaces - KEEP AWAY FROM CHILDREN - No smoking Wear protective gloves/protective clothing/eye protection/face protection Precautionary Statements - Response Precautionary Statements - Storage Store in a cool, dry location, away from heat, open flames or sparks, or flammable materials. Page 1 Diamond Strike Anywhere Matches Revision Date: 10-Jul-2015 Precautionary Statements - Disposal None Hazards not otherwise classified (HNOC) Smoke from fire may be irritating to lungs and eyes. Unknown Toxicity 11% of the mixture consists of ingredient(s) of unknown toxicity Other Information None Interactions with Other Chemicals No information available 3. COMPOSITION/INFORMATION ON INGREDIENTS Chemical Name CAS No.
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • Gas Conversion Factor for 300 Series
    300GasTable Rec # Gas Symbol GCF Density (g/L) Density (g/L) 25° C / 1 atm 0° C / 1 atm 1 Acetic Acid C2H4F2 0.4155 2.7 2.947 2 Acetic Anhydride C4H6O3 0.258 4.173 4.555 3 Acetone C3H6O 0.3556 2.374 2.591 4 Acetonitryl C2H3N 0.5178 1.678 1.832 5 Acetylene C2H2 0.6255 1.064 1.162 6 Air Air 1.0015 1.185 1.293 7 Allene C3H4 0.4514 1.638 1.787 8 Ammonia NH3 0.7807 0.696 0.76 9 Argon Ar 1.4047 1.633 1.782 10 Arsine AsH3 0.7592 3.186 3.478 11 Benzene C6H6 0.3057 3.193 3.485 12 Boron Trichloride BCl3 0.4421 4.789 5.228 13 Boron Triflouride BF3 0.5431 2.772 3.025 14 Bromine Br2 0.8007 6.532 7.13 15 Bromochlorodifluoromethane CBrClF2 0.3684 6.759 7.378 16 Bromodifluoromethane CHBrF2 0.4644 5.351 5.841 17 Bromotrifluormethane CBrF3 0.3943 6.087 6.644 18 Butane C4H10 0.2622 2.376 2.593 19 Butanol C4H10O 0.2406 3.03 3.307 20 Butene C4H8 0.3056 2.293 2.503 21 Carbon Dioxide CO2 0.7526 1.799 1.964 22 Carbon Disulfide CS2 0.616 3.112 3.397 23 Carbon Monoxide CO 1.0012 1.145 1.25 24 Carbon Tetrachloride CCl4 0.3333 6.287 6.863 25 Carbonyl Sulfide COS 0.668 2.456 2.68 26 Chlorine Cl2 0.8451 2.898 3.163 27 Chlorine Trifluoride ClF3 0.4496 3.779 4.125 28 Chlorobenzene C6H5Cl 0.2614 4.601 5.022 29 Chlorodifluoroethane C2H3ClF2 0.3216 4.108 4.484 30 Chloroform CHCl3 0.4192 4.879 5.326 31 Chloropentafluoroethane C2ClF5 0.2437 6.314 6.892 32 Chloropropane C3H7Cl 0.308 3.21 3.504 33 Cisbutene C4H8 0.3004 2.293 2.503 34 Cyanogen C2N2 0.4924 2.127 2.322 35 Cyanogen Chloride ClCN 0.6486 2.513 2.743 36 Cyclobutane C4H8 0.3562 2.293 2.503 37 Cyclopropane C3H6 0.4562
    [Show full text]
  • 160 'Ideal' Gases: Anaesthetics in the Heart of the Twentieth Century Ian
    International Workshop on the History of Chemistry 2015 Tokyo ‘Ideal’ Gases: Anaesthetics in the Heart of the Twentieth Century Ian D. Rae University of Melbourne, Australia 1. Introduction By 1920 only three gaseous anaesthetics were widely used – nitrous oxide, diethyl ether (ether) and chloroform. The toxicity of chloroform was acknowledged, nitrous oxide did not induce deep anaesthesia, and ether was extremely inflammable, so in the 1920s there were good reasons to search for new anaesthetics. While my concern is with gaseous anaesthetics, I recognise that there were parallel developments in two related fields, that of topical or local anaesthetics, typified by the natural product cocaine and a host of synthetic substances, and injectable anaesthetics starting with opiates, then barbiturates and leading to modern materials such as propofol (2,6-diisopropylphenol). 2. Theories of anaesthetic action Hans Meyer1 noted that the anaesthetic substances were soluble in both fatty and aqueous media, proposed a general theory of anaesthesia based on the partition or distribution coefficient as a critical determinant. Meyer enunciated the following three principles that underpinned his theory: all chemically inert substances that are soluble in fats and fatty materials will produce narcosis; the line of action is in the nerve cells; the comparative strengths of substances depend on their solubility in fatty material and in water, that is, on the distribution coefficient. Charles Overton arrived at the same idea independently. Some years after completing his PhD research on cell permeability studies, Overton first presented his theory of narcosis in a lecture to the Society for Natural History in Zurich in October 1898, in a paper published the following year2 and in his book3 which included a full exposition.
    [Show full text]
  • Figure: 30 TAC §335.521(A)(2) [Figure: 30 TAC §335.521(A)(2)]
    Figure: 30 TAC §335.521(a)(2) [Figure: 30 TAC §335.521(a)(2)] Appendix 1, Table 2. Examples of Ignitable Solids. Constituents listed from Department of Transportation Regulations, 49 CFR Part 173 Subpart E, October 1, 1993. (Note: The presence of a constituent on this table in a nonhazardous [non-hazardous] waste does not automatically identify that waste as a Class 1 ignitable waste. The constituents on this table are examples of materials which could be considered Class 1 ignitable waste. The physical characteristics of the waste will be the determining factor as to whether or not a waste is ignitable. Refer to §335.505(2) of this title (relating to Class 1 Waste Determination) for the Class 1 ignitable criteria.) Compound or Material Aluminum, metallic, powder Alkali metal amalgams Alkali metal amides Aluminum alkyl halides Aluminum alkyl hydrides Aluminum alkyls Aluminum borohydrides Aluminum carbide Aluminum ferrosilicon powder Aluminum hydride Aluminum phosphide Aluminum resinate Aluminum silicon powder Ammonium picrate 2, 2'-Azodi-(2,4-dimethyl-4-methoxyvaleronitrile) 2, 2'-Azodi-(2,4-dimethylvaleronitrile) 1, 1' Azodi-(hexahydrobenzonitrile) 2,2'-Azodi (2-methyl-butryronitrile) Azodiisobutryonitrile Barium, metallic Barium alloys, pyrophoric Barium azide Benzene-1,3-disulfohydrazide Benzene sulfohydrazide 4-(Benzyl(ethyl)amino)-3-ethoxybenzenediazonium zinc chloride 4-(Benzyl(methyl)amino)-3-ethoxybenzenediazonium zinc chloride Borneol Boron trifluoride dimethyl etherate 5-tert-Butyl-2,4,6-trinitro-m-xylene Calcium, metallic Calcium
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2007/0059270 A1 Hall Et Al
    US 2007005927OA1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0059270 A1 Hall et al. (43) Pub. Date: Mar. 15, 2007 (54) ION EXCHANGE RESIN TREATED TO (22) Filed: Sep. 13, 2005 CONTROL, SWELLING Publication Classification (75) Inventors: Harlan Hall, Oregon, WI (US); J. Scott Madsen, Cottage Grove, WI (US) (51) Int. Cl. A 6LX 3L/795 (2006.01) Correspondence Address: (52) U.S. Cl. ............................................................ 424/78.1 CHALKER FLORES, LLP 2711 LBJ FRWY (57) ABSTRACT Suite 1036 DALLAS, TX 75234 (US) The present invention provides a method and composition are provided that includes an ion exchange resin treated with (73) Assignee: The Coating Place, Inc., Verona, WI from between about 0.01 to about 10 percent by weight of one or more Sugar alcohols in contact with one or more ionic (21) Appl. No.: 11/225,834 pharmaceutically active drug. US 2007/0059270 A1 Mar. 15, 2007 ON EXCHANGE RESIN TREATED TO CONTROL drug bound to an ion-exchange resin to provide a drug-resin SWELLING complex having a drug content above a specified value. The drug-resin complex is Subsequently coated with a water TECHNICAL FIELD OF THE INVENTION permeable diffusion barrier coating that is insoluble in 0001. The present invention relates general to the con gastrointestinal fluids. Thus, the release of drug is controlled trolled release of active agents, and in particular, to phar under conditions encountered in the gastrointestinal tract. macologically active drugs adsorbed to ion exchange resin. 0007 One of the major disadvantages with the use of an ion exchange resin as a pharmaceutical delivery agent is that BACKGROUND OF THE INVENTION ion exchange resin particles are Susceptible to Swelling.
    [Show full text]
  • The Hydrolysis of Phosphinates and Phosphonates: a Review
    molecules Review The Hydrolysis of Phosphinates and Phosphonates: A Review Nikoletta Harsági and György Keglevich * Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-1-463-1111 (ext. 5883) Abstract: Phosphinic and phosphonic acids are useful intermediates and biologically active com- pounds which may be prepared from their esters, phosphinates and phosphonates, respectively, by hydrolysis or dealkylation. The hydrolysis may take place both under acidic and basic conditions, but the C-O bond may also be cleaved by trimethylsilyl halides. The hydrolysis of P-esters is a challenging task because, in most cases, the optimized reaction conditions have not yet been explored. Despite the importance of the hydrolysis of P-esters, this field has not yet been fully surveyed. In order to fill this gap, examples of acidic and alkaline hydrolysis, as well as the dealkylation of phosphinates and phosphonates, are summarized in this review. Keywords: hydrolysis; dealkylation; phosphinates; phosphonates; P-acids 1. Introduction Phosphinic and phosphonic acids are of great importance due to their biological activity (Figure1)[ 1]. Most of them are known as antibacterial agents [2,3]. Multidrug- resistant (MDR) and extensively drug-resistant (XDR) pathogens may cause major problems Citation: Harsági, N.; Keglevich, G. in the treatment of bacterial infections. However, Fosfomycin has remained active against The Hydrolysis of Phosphinates and both Gram-positive and Gram-negative MDR and XDR bacteria [2]. Acyclic nucleoside Phosphonates: A Review. Molecules phosphonic derivatives like Cidofovir, Adefovir and Tenofovir play an important role 2021, 26, 2840.
    [Show full text]