Documentation of Grapevine Leafroll-Associated Viruses in Wine Grape Varieties and Native Grape Species in Virginia, and Examina
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Abiotic and Biotic Pest Refuges Hamper Biological Control of Mealybugs in California Vineyards K.M
____________________________________ Abiotic and biotic pest refuges in California vineyards 389 ABIOTIC AND BIOTIC PEST REFUGES HAMPER BIOLOGICAL CONTROL OF MEALYBUGS IN CALIFORNIA VINEYARDS K.M. Daane,1 R. Malakar-Kuenen,1 M. Guillén,2 W.J. Bentley3, M. Bianchi,4 and D. González,2 1 Division of Insect Biology, University of California, Berkeley, California, U.S.A. 2 Department of Entomology, University of California, Riverside, California, U.S.A. 3 University of California Statewide IPM Program, Kearney Agricultural Center, Parlier, California, U.S.A. 4 University of California Cooperative Extension, San Luis Obispo, California, U.S.A. INTRODUCTION Four mealybug species cause economic damage in California vineyards. These are the grape mealy- bug, Pseudococcus maritimus (Ehrhorn); obscure mealybug, Pseudococcus viburni (Signoret); longtailed mealybug, Pseudococcus longispinus (Targioni-Tozzeti); and vine mealybug, Planococcus ficus (Signoret) (Godfrey et al., 2002). The grape, obscure, and longtailed mealybugs belong to the Pseudococcus maritimus-malacearum complex–a taxonomically close group of mealybugs (Wilkey and McKenzie, 1961). However, while the origins of the grape and longtailed mealybugs are believed to be in North America, the ancestral lines of the obscure mealybug are unclear. Regardless, these three species have been known as pests in North America for nearly 100 years. The vine mealybug, in contrast, was first identified in California in the Coachella Valley in the early 1990s (Gill, 1994). It has since spread into California’s San Joaquin Valley and central coast regions, with new infestations reported each year. The four species are similar in appearance; however, mealybugs in the P. maritimus- malacearum complex have longer caudal filaments than vine mealybug (Godfrey et al., 2002). -
Grapevine Virus Diseases: Economic Impact and Current Advances in Viral Prospection and Management1
1/22 ISSN 0100-2945 http://dx.doi.org/10.1590/0100-29452017411 GRAPEVINE VIRUS DISEASES: ECONOMIC IMPACT AND CURRENT ADVANCES IN VIRAL PROSPECTION AND MANAGEMENT1 MARCOS FERNANDO BASSO2, THOR VINÍCIUS MArtins FAJARDO3, PASQUALE SALDARELLI4 ABSTRACT-Grapevine (Vitis spp.) is a major vegetative propagated fruit crop with high socioeconomic importance worldwide. It is susceptible to several graft-transmitted agents that cause several diseases and substantial crop losses, reducing fruit quality and plant vigor, and shorten the longevity of vines. The vegetative propagation and frequent exchanges of propagative material among countries contribute to spread these pathogens, favoring the emergence of complex diseases. Its perennial life cycle further accelerates the mixing and introduction of several viral agents into a single plant. Currently, approximately 65 viruses belonging to different families have been reported infecting grapevines, but not all cause economically relevant diseases. The grapevine leafroll, rugose wood complex, leaf degeneration and fleck diseases are the four main disorders having worldwide economic importance. In addition, new viral species and strains have been identified and associated with economically important constraints to grape production. In Brazilian vineyards, eighteen viruses, three viroids and two virus-like diseases had already their occurrence reported and were molecularly characterized. Here, we review the current knowledge of these viruses, report advances in their diagnosis and prospection of new species, and give indications about the management of the associated grapevine diseases. Index terms: Vegetative propagation, plant viruses, crop losses, berry quality, next-generation sequencing. VIROSES EM VIDEIRAS: IMPACTO ECONÔMICO E RECENTES AVANÇOS NA PROSPECÇÃO DE VÍRUS E MANEJO DAS DOENÇAS DE ORIGEM VIRAL RESUMO-A videira (Vitis spp.) é propagada vegetativamente e considerada uma das principais culturas frutíferas por sua importância socioeconômica mundial. -
MOLECULAR BIOLOGY and EPIDEMIOLOGY of GRAPEVINE LEAFROLL- ASSOCIATED VIRUSES by BHANU PRIYA DONDA a Dissertation Submitted in Pa
MOLECULAR BIOLOGY AND EPIDEMIOLOGY OF GRAPEVINE LEAFROLL- ASSOCIATED VIRUSES By BHANU PRIYA DONDA A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSPHY WASHINGTON STATE UNIVERSITY Department of Plant Pathology MAY 2016 © Copyright by BHANU PRIYA DONDA, 2016 All Rights Reserved THANKS Bioengineering MAY 2014 © Copyright by BHANU PRIYA DONDA, 2016 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of BHANU PRIYA DONDA find it satisfactory and recommend that it be accepted. Naidu A. Rayapati, Ph.D., Chair Dennis A. Johnson, Ph.D. Duroy A. Navarre, Ph.D. George J. Vandemark, Ph.D. Siddarame Gowda, Ph.D. ii ACKNOWLEDGEMENT I would like to express my respect and deepest gratitude towards my advisor and mentor, Dr. Naidu Rayapati. I am truly appreciative of the opportunity to pursue my doctoral degree under his guidance at Washington State University (WSU), a challenging and rewarding experience that I will value the rest of my life. I am thankful to my doctoral committee members: Dr. Dennis Johnson, Dr. George Vandemark, Dr. Roy Navarre and Dr. Siddarame Gowda for helpful advice, encouragement and guidance. I would like to thank Dr. Sandya R Kesoju (USDA-IAREC, Prosser, WA) and Dr. Neil Mc Roberts (University of California, Davis) for their statistical expertise, suggestions and collaborative research on the epidemiology of grapevine leafroll disease. To Dr. Gopinath Kodetham (University of Hyderabad, Hyderabad, India), thank you for believing in me and encouraging me to go the extra mile. I thank Dr. Sridhar Jarugula (Ohio State University Agricultural Research and Development Center, Wooster, University of Ohio, Ohio, USA), Dr. -
Essential Oil on the Tea Mealy Bug, Pseudococcus Viburni Sigornet (Hemiptera: Pseudococcidae)
Archives of Phytopathology and Plant Protection ISSN: 0323-5408 (Print) 1477-2906 (Online) Journal homepage: http://www.tandfonline.com/loi/gapp20 Toxicity of Artemisia annua (Asteraceae) essential oil on the tea mealy bug, Pseudococcus viburni Sigornet (Hemiptera: Pseudococcidae) Samar Ramzi, Ali Seraji, Reza Azadi Gonbad, Seyyedeh Kimia Mirhaghparast, Zahra Mojib Haghghadam & Shiva Haghighat To cite this article: Samar Ramzi, Ali Seraji, Reza Azadi Gonbad, Seyyedeh Kimia Mirhaghparast, Zahra Mojib Haghghadam & Shiva Haghighat (2018): Toxicity of Artemisia annua (Asteraceae) essential oil on the tea mealy bug, Pseudococcus viburni Sigornet (Hemiptera: Pseudococcidae), Archives of Phytopathology and Plant Protection, DOI: 10.1080/03235408.2017.1352223 To link to this article: https://doi.org/10.1080/03235408.2017.1352223 Published online: 08 Jan 2018. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gapp20 Download by: [EPFL Bibliothèque] Date: 08 January 2018, At: 07:49 ARCHIVES OF PHYTOPATHOLOGY AND PLANT PROTECTION, 2018 https://doi.org/10.1080/03235408.2017.1352223 Toxicity of Artemisia annua (Asteraceae) essential oil on the tea mealy bug, Pseudococcus viburni Sigornet (Hemiptera: Pseudococcidae) Samar Ramzia, Ali Serajia, Reza Azadi Gonbada, Seyyedeh Kimia Mirhaghparastb, Zahra Mojib Haghghadamc and Shiva Haghighata aTea Research Center, Horticulture Science Research Institute, Agricultural -
The Family Closteroviridae Revised
Virology Division News 2039 Arch Virol 147/10 (2002) VDNVirology Division News The family Closteroviridae revised G.P. Martelli (Chair)1, A. A. Agranovsky2, M. Bar-Joseph3, D. Boscia4, T. Candresse5, R. H. A. Coutts6, V. V. Dolja7, B. W. Falk8, D. Gonsalves9, W. Jelkmann10, A.V. Karasev11, A. Minafra12, S. Namba13, H. J. Vetten14, G. C. Wisler15, N. Yoshikawa16 (ICTV Study group on closteroviruses and allied viruses) 1 Dipartimento Protezione Piante, University of Bari, Italy; 2 Laboratory of Physico-Chemical Biology, Moscow State University, Moscow, Russia; 3 Volcani Agricultural Research Center, Bet Dagan, Israel; 4 Istituto Virologia Vegetale CNR, Sezione Bari, Italy; 5 Station de Pathologie Végétale, INRA,Villenave d’Ornon, France; 6 Imperial College, London, U.K.; 7 Department of Botany and Plant Pathology, Oregon State University, Corvallis, U.S.A.; 8 Department of Plant Pathology, University of California, Davis, U.S.A.; 9 Pacific Basin Agricultural Research Center, USDA, Hilo, Hawaii, U.S.A.; 10 Institut für Pflanzenschutz im Obstbau, Dossenheim, Germany; 11 Department of Microbiology and Immunology, Thomas Jefferson University, Doylestown, U.S.A.; 12 Istituto Virologia Vegetale CNR, Sezione Bari, Italy; 13 Graduate School of Agricultural and Life Sciences, University of Tokyo, Japan; 14 Biologische Bundesanstalt, Braunschweig, Germany; 15 Deparment of Plant Pathology, University of Florida, Gainesville, U.S.A.; 16 Iwate University, Morioka, Japan Summary. Recently obtained molecular and biological information has prompted the revision of the taxonomic structure of the family Closteroviridae. In particular, mealybug- transmitted species have been separated from the genus Closterovirus and accommodated in a new genus named Ampelovirus (from ampelos, Greek for grapevine). -
Novel Ampeloviruses Infecting Cassava in Central Africa and the South-West Indian Ocean Islands
viruses Article Novel Ampeloviruses Infecting Cassava in Central Africa and the South-West Indian Ocean Islands Yves Kwibuka 1,2,* , Espoir Bisimwa 2, Arnaud G. Blouin 1, Claude Bragard 3 , Thierry Candresse 4 , Chantal Faure 4, Denis Filloux 5,6, Jean-Michel Lett 7 , François Maclot 1, Armelle Marais 4, Santatra Ravelomanantsoa 8 , Sara Shakir 9 , Hervé Vanderschuren 9,10 and Sébastien Massart 1,* 1 Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; [email protected] (A.G.B.); [email protected] (F.M.) 2 Faculté des Sciences Agronomiques, Université Catholique de Bukavu, BP 285 Bukavu, Democratic Republic of the Congo; [email protected] 3 Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, 1348 Louvain-la-Neuve, Belgium; [email protected] 4 Université Bordeaux, INRAE, UMR BFP, CS20032, CEDEX, 33882 Villenave d’Ornon, France; [email protected] (T.C.); [email protected] (C.F.); [email protected] (A.M.) 5 CIRAD, UMR PHIM, 34090 Montpellier, France; denis.fi[email protected] 6 PHIM Plant Health Institute, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34000 Montpellier, France 7 CIRAD, UMR PVBMT, Pôle de Protection des Plantes, Saint-Pierre, F-97410 Ile de la Reunion, France; [email protected] 8 FOFIFA-CENRADERU, Laboratoire de Pathologie Végétale, BP 1444 Ambatobe, Madagascar; [email protected] 9 Plant Genetics Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, Citation: Kwibuka, Y.; Bisimwa, E.; 5030 Gembloux, Belgium; [email protected] (S.S.); [email protected] (H.V.) Blouin, A.G.; Bragard, C.; Candresse, 10 Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Biosystems Department, T.; Faure, C.; Filloux, D.; Lett, J.-M.; KU Leuven, 3000 Leuven, Belgium Maclot, F.; Marais, A.; et al. -
An Investigation Into the Integrated Pest Management of The
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Stellenbosch University SUNScholar Repository An investigation into the integrated pest management of the obscure mealybug, Pseudococcus viburni (Signoret) (Hemiptera: Pseudococcidae), in pome fruit orchards in the Western Cape Province, South Africa. Pride Mudavanhu Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Agriculture (Entomology), in the Faculty of AgriSciences. at the University of Stellenbosch Supervisor: Dr Pia Addison Department of Conservation Ecology and Entomology Faculty of AgriSciences University of Stellenbosch South Africa December 2009 DECLARATION By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. December 2009 Copyright © 2009 Stellenbosch University All rights reserved i ABSTRACT Pseudococcus viburni (Signoret) (Hemiptera: Pseudococcidae) (obscure mealybug), is a common and serious pest of apples and pears in South Africa. Consumer and regulatory pressure to produce commodities under sustainable and ecologically compatible conditions has rendered chemical control options increasingly limited. Information on the seasonal occurrence of pests is but one of the vital components of an effective and sustainable integrated pest management system needed for planning the initiation of monitoring and determining when damage can be expected. It is also important to identify which orchards are at risk of developing mealybug infestations while development of effective and early monitoring tools for mealybug populations will help growers in making decisions with regards to pest management and crop suitability for various markets. -
A Parasitoid of Pseudococcus Viburni (Signoret) (Hemiptera: Pseudococcidae)
Revista Brasileira de Entomologia 61 (2017) 257–261 REVISTA BRASILEIRA DE Entomologia A Journal on Insect Diversity and Evolution www.rbentomologia.com Biology, Ecology and Diversity Biology of Blepyrus clavicornis (Compere) (Hymenoptera: Encyrtidae), a parasitoid of Pseudococcus viburni (Signoret) (Hemiptera: Pseudococcidae) a,b,∗ a b Vitor Pacheco da Silva , Mauro Garcia , Marcos Botton a Universidade Federal de Pelotas, Pós-Graduac¸ ão em Fitossanidade, Departamento de Fitossanidade, Pelotas, RS, Brazil b Embrapa Uva e Vinho, Bento Gonc¸ alves, RS, Brazil a b s t r a c t a r t i c l e i n f o Article history: Encyrtids (Hymenoptera: Encyrtidae) are the most important and diverse group of natural enemies of Received 28 November 2016 mealybugs (Hemiptera: Pseudococcidae). Blepyrus clavicornis (Compere) is the most common parasitoid Accepted 24 May 2017 associated with Pseudococcus viburni (Signoret) in the Serra Gaúcha region, Brazil. We conducted labora- Available online 7 June 2017 tory studies to assess the development time, sex ratio, adult longevity, host stage selection for parasitism, Associate Editor: Adeney de Freitas Bueno and effect of food on the longevity of adult females of B. clavicornis. The experiments were conducted in a ◦ climate chamber at 25 ± 1 C, 70 ± 10% RH and 12:12 L:D photoperiod. The solitary parasitoid B. clavicor- Keywords: nis parasitized third-instar and adult female stages of P. viburni. The development time was more than Biological control 30 days (31.75 ± 0.38 for females and 30.02 ± 0.34 for males) when B. clavicornis laid eggs in adult mealy- Chalcidoidea bug females, and 35 days (36.50 ± 0.50 for females and 34.24 ± 0.43 for males) on third-instar mealybug Obscure mealybug Parasitism nymphs. -
1.6 Parasitoids of Giant Whitefly
UC Riverside UC Riverside Electronic Theses and Dissertations Title Life Histories and Host Interaction Dynamics of Parasitoids Used for Biological Control of Giant Whitefly (Aleurodicus dugesii) Cockerell (Hemiptera: Aleyrodidae) Permalink https://escholarship.org/uc/item/8020w7rd Author Schoeller, Erich Nicholas Publication Date 2018 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Life Histories and Host Interaction Dynamics of Parasitoids Used for Biological Control of Giant Whitefly (Aleurodicus dugesii) Cockerell (Hemiptera: Aleyrodidae) A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Entomology by Erich Nicholas Schoeller March 2018 Dissertation Committee: Dr. Richard Redak, Chairperson Dr. Timothy Paine. Dr. Matthew Daugherty Copyright by Erich Nicholas Schoeller 2018 The Dissertation of Erich Nicholas Schoeller is approved: Committee Chairperson University of California, Riverside Acknowledgements This dissertation was made possible with the kind support and help of many individuals. I would like to thank my advisors Drs. Richard Redak, Timothy Paine, and Matthew Daugherty for their wisdom and guidance. Their insightful comments and questions helped me become a better scientist and facilitated the development of quality research. I would particularly like to thank Dr. Redak for his endless patience and unwavering support throughout my degree. I wish to also thank Tom Prentice and Rebeccah Waterworth for their support and companionship. Their presence in the Redak Lab made my time there much more enjoyable. I would like to thank all of the property owners who kindly allowed me to work on their lands over the years, as well as the many undergraduate interns who helped me collect and analyze data from the experiments in this dissertation. -
ICTV Code Assigned: 2011.001Ag Officers)
This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp . -
3′-Coterminal Subgenomic Rnas and Putative Cis-Acting Elements of Grapevine Leafroll-Associated Virus 3 Reveals 'Unique' F
Jarugula et al. Virology Journal 2010, 7:180 http://www.virologyj.com/content/7/1/180 RESEARCH Open Access 3′-coterminal subgenomic RNAs and putative cis-acting elements of Grapevine leafroll-associated virus 3 reveals ‘unique’ features of gene expression strategy in the genus Ampelovirus Sridhar Jarugula1, Siddarame Gowda2, William O Dawson2, Rayapati A Naidu1* Abstract Background: The family Closteroviridae comprises genera with monopartite genomes, Closterovirus and Ampelovirus, and with bipartite and tripartite genomes, Crinivirus. By contrast to closteroviruses in the genera Closterovirus and Crinivirus, much less is known about the molecular biology of viruses in the genus Ampelovirus, although they cause serious diseases in agriculturally important perennial crops like grapevines, pineapple, cherries and plums. Results: The gene expression and cis-acting elements of Grapevine leafroll-associated virus 3 (GLRaV-3; genus Ampelovirus) was examined and compared to that of other members of the family Closteroviridae. Six putative 3′-coterminal subgenomic (sg) RNAs were abundantly present in grapevine (Vitis vinifera) infected with GLRaV-3. The sgRNAs for coat protein (CP), p21, p20A and p20B were confirmed using gene-specific riboprobes in Northern blot analysis. The 5′-termini of sgRNAs specific to CP, p21, p20A and p20B were mapped in the 18,498 nucleotide (nt) virus genome and their leader sequences determined to be 48, 23, 95 and 125 nt, respectively. No conserved motifs were found around the transcription start site or in the leader sequence of these sgRNAs. The predicted secondary structure analysis of sequences around the start site failed to reveal any conserved motifs among the four sgRNAs. The GLRaV-3 isolate from Washington had a 737 nt long 5′ nontranslated region (NTR) with a tandem repeat of 65 nt sequence and differed in sequence and predicted secondary structure with a South Africa isolate. -
Part but Systemic Virus Spread Was Not Observed in C
GRAPEVINE VIRUS DISEASES AND CLEAN GRAPE STOCK PROGRAM IN HUNGARY Lázár, J.1 Mikulás, J.1 Hajdú, E.1 Kölber, M.2 Sznyegi, S.2 1 Research Institute for Viticulture and Enology of Ministry of Agriculture and Rural Development, Kecskemét, Hungary 2 Plant Health and Soil Conservation Station of Ministry of Agriculture and Rural Development, Budapest, Hungary In Hungarian viticulture the use of clones developed of cultivated vine varieties is well justified in order to establish variety true, healthy and productive plantations. Use of virus-free propagation material is an important factor to improve quality and quantity of grape production. In Hungary the exploration of the grape virus and virus-like diseases began in 1960’s in the Research Institute for Viticulture and Enology by Dr. János Lehoczky and his collegues (1). In this time fifteen virus and virus-like diseases of Vitis vinifera are known to occure in Hungary (Table 1). Some of the viruses, for example fanleaf and leafroll cause great crop losses and/or lower fruit quality. Other virus diseases for example Rugose wood complex can cause untimely death of stocks. A few viruses are latent. Their effects on grapevines are less known, however occurrence of these diseases are quite frequent, so they appear to have high economic importance. Table 1. Identified grapevine virus and virus-like diseases in Hungary _________________________________________________________________________________ Virus disease Identified viruses Year _________________________________________________________________________________