MOLECULAR BIOLOGY and EPIDEMIOLOGY of GRAPEVINE LEAFROLL- ASSOCIATED VIRUSES by BHANU PRIYA DONDA a Dissertation Submitted in Pa

Total Page:16

File Type:pdf, Size:1020Kb

MOLECULAR BIOLOGY and EPIDEMIOLOGY of GRAPEVINE LEAFROLL- ASSOCIATED VIRUSES by BHANU PRIYA DONDA a Dissertation Submitted in Pa MOLECULAR BIOLOGY AND EPIDEMIOLOGY OF GRAPEVINE LEAFROLL- ASSOCIATED VIRUSES By BHANU PRIYA DONDA A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSPHY WASHINGTON STATE UNIVERSITY Department of Plant Pathology MAY 2016 © Copyright by BHANU PRIYA DONDA, 2016 All Rights Reserved THANKS Bioengineering MAY 2014 © Copyright by BHANU PRIYA DONDA, 2016 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of BHANU PRIYA DONDA find it satisfactory and recommend that it be accepted. Naidu A. Rayapati, Ph.D., Chair Dennis A. Johnson, Ph.D. Duroy A. Navarre, Ph.D. George J. Vandemark, Ph.D. Siddarame Gowda, Ph.D. ii ACKNOWLEDGEMENT I would like to express my respect and deepest gratitude towards my advisor and mentor, Dr. Naidu Rayapati. I am truly appreciative of the opportunity to pursue my doctoral degree under his guidance at Washington State University (WSU), a challenging and rewarding experience that I will value the rest of my life. I am thankful to my doctoral committee members: Dr. Dennis Johnson, Dr. George Vandemark, Dr. Roy Navarre and Dr. Siddarame Gowda for helpful advice, encouragement and guidance. I would like to thank Dr. Sandya R Kesoju (USDA-IAREC, Prosser, WA) and Dr. Neil Mc Roberts (University of California, Davis) for their statistical expertise, suggestions and collaborative research on the epidemiology of grapevine leafroll disease. To Dr. Gopinath Kodetham (University of Hyderabad, Hyderabad, India), thank you for believing in me and encouraging me to go the extra mile. I thank Dr. Sridhar Jarugula (Ohio State University Agricultural Research and Development Center, Wooster, University of Ohio, Ohio, USA), Dr. Sudarsana Poojari (Agriculture and Agri-Food Canada, Canada) and Dr. Olfemi Alabi (Texas A&M University, Texas, USA) for help, guidance and motivation during the initial years of my Ph.D. at WSU. To all members of Dr. Rayapati, past and current, I enjoyed learning alongside you and am grateful for your assistance and support. I sincerely thank the faculty, staff and students in the WSU Department of Plant Pathology for their help and support. It is my pleasure to thank all the members of WSU-Irrigated Agriculture Research and Extension Centre for their help during my PhD. I wish to acknowledge the following for supporting my graduate research program: Department of Plant Pathology, WSU Agricultural Research Center, the Wine Advisory iii Committee, the Washington Wine Commission, Washington State Grape & Wine Research Program, Northwest Center for Small Fruits Research, and Altria - Chateau Ste. Michelle Wine Estates. I sincerely acknowledge the following for scholarships and travel awards: Dr. Walter J Clore scholarship from Washington Wine Industry Foundation, 2015-16 American Society for Enology and Viticulture scholarship and Student Travel Award to attend the American Society for Enology and Viticulture annual meeting, June 15-18, 2015, Portland, OR, and Raymond G. Grogan Student Travel Award from the American Phytopathological Society to attend the American Phytopathological Society annual meeting, August 1-5, 2015, Pasadena, CA. I am forever grateful to my parents and my brother for their unconditional love and support, which has always been a source of inspiration for me. Lastly, I would like to thank my husband, Kale Harrison, without his encouragement and support this degree would not have been possible. I thank you for being my anchor. iv MOLECULAR BIOLOGY AND EPIDEMIOLOGY OF GRAPEVINE LEAFROLL- ASSOCIATED VIRUSES Abstract by Bhanu Priya Donda, Ph.D. Washington State University May 2016 Chair: Naidu A. Rayapati Studies were conducted on molecular biology and epidemiology of grapevine leafroll- associated viruses infecting wine grape (Vitis vinifera) cultivars in Washington State. In the first objective, the complete genome sequence of two isolates of Grapevine leafroll-associated virus 1 (GLRaV-1, genus: Ampelovirus, family Closteroviridae) was determined to be 18,731 and 18,946 nucleotides. The genome of GLRaV-1 isolates contain nine open reading frames with long 5’ and 3’ non-translated regions (NTRs). The sequence differences in the 5’NTR was used to develop a restriction fragment length polymorphism assay for distinguishing GLRaV-1 variants in vineyards. Northern blot hybridization revealed the presence of three of the eight putative 3' co-terminal subgenomic (sg) RNAs at higher levels in virus infected grapevine samples. The 5’ termini of five sgRNAs were mapped and their leader sequences determined. The results provided a foundation to further elucidate the comparative molecular biology of grapevine-infecting members of the family Closteroviridae. In the second objective, the spread of grapevine leafroll disease (GLD) was monitored for several seasons in vineyard blocks planted with three red-berried wine grape cultivars. v Grapevines exhibiting GLD symptoms in these blocks were tested positive for Grapevine leafroll-associated virus 3 (GLRaV-3, genus: Ampelovirus, family Closteroviridae). The temporal spread of GLD indicated higher number of symptomatic vines in each season compared to previous seasons, suggesting increased incidence of the disease during successive seasons. The spatial distribution of symptomatic vines in all three blocks indicated a disease gradient in which the highest percentage of symptomatic vines were present in rows closest to old vineyard blocks showing GLD symptoms. Spatial autocorrelation (dependence) analysis indicated random distribution of symptomatic vines during initial years of post-planting suggesting primary spread and clustering of symptomatic vines during subsequent years suggesting secondary spread of GLD. Sequence analysis of a portion of the heat-shock protein 70 homolog gene encoded by GLRaV-3 revealed predominance of one of the several genetic variants of the virus in the three vineyard blocks. These results provided for the first time science-based knowledge on nature of the spread of GLD in young vineyards to pursue site-specific disease management strategies under conditions prevailing in Washington State. vi TABLE OF CONTENTS Page ACKNOWLEDGEMENT ............................................................................................................. iii ABSTRACT….. .............................................................................................................................. v LIST OF TABLES ......................................................................................................................... ix LIST OF FIGURES ........................................................................................................................ x CHAPTER 1. GENERAL INTRODUCTION.......................................................................................... 1 REFERENCES ................................................................................................................ 18 2. SEQUENCE ANALYSIS OF GRAPEVINE LEAFROLL-ASSOCIATED VIRUS 1 ISOLATES FROM WASHINGTON VINEYARDS ...................................................... 34 ABSTRACT ..................................................................................................................... 34 INTRODUCTION ........................................................................................................... 35 MATERIALS AND METHODS ..................................................................................... 38 RESULTS ........................................................................................................................ 48 DISCUSSION .................................................................................................................. 70 ACKNOWLEDGEMENTS ............................................................................................. 77 AFFLIATION OF CO-AUTHORS ................................................................................. 77 AUTHORS' CONTRIBUTIONS ..................................................................................... 77 REFERENCES ................................................................................................................ 78 2. SPATIO-TEMPORAL SPREAD OF GRAPEVINE LEAFROLL-ASSOCIATED VIRUS 3 IN WASHINGTON VINEYARDS ................................................................. 87 ABSTRACT ..................................................................................................................... 87 INTRODUCTION ........................................................................................................... 88 vii MATERIALS AND METHODS ..................................................................................... 91 RESULTS ........................................................................................................................ 97 DISCUSSION ................................................................................................................ 116 ACKNOWLEDGEMENTS ........................................................................................... 121 AFFLIATIONS OF CO-AUTHORS ............................................................................. 121 AUTHORS' CONTRIBUTIONS ................................................................................... 122 REFERENCES .............................................................................................................. 123 3. SUMMARY AND CONCLUSIONS ...........................................................................
Recommended publications
  • Abiotic and Biotic Pest Refuges Hamper Biological Control of Mealybugs in California Vineyards K.M
    ____________________________________ Abiotic and biotic pest refuges in California vineyards 389 ABIOTIC AND BIOTIC PEST REFUGES HAMPER BIOLOGICAL CONTROL OF MEALYBUGS IN CALIFORNIA VINEYARDS K.M. Daane,1 R. Malakar-Kuenen,1 M. Guillén,2 W.J. Bentley3, M. Bianchi,4 and D. González,2 1 Division of Insect Biology, University of California, Berkeley, California, U.S.A. 2 Department of Entomology, University of California, Riverside, California, U.S.A. 3 University of California Statewide IPM Program, Kearney Agricultural Center, Parlier, California, U.S.A. 4 University of California Cooperative Extension, San Luis Obispo, California, U.S.A. INTRODUCTION Four mealybug species cause economic damage in California vineyards. These are the grape mealy- bug, Pseudococcus maritimus (Ehrhorn); obscure mealybug, Pseudococcus viburni (Signoret); longtailed mealybug, Pseudococcus longispinus (Targioni-Tozzeti); and vine mealybug, Planococcus ficus (Signoret) (Godfrey et al., 2002). The grape, obscure, and longtailed mealybugs belong to the Pseudococcus maritimus-malacearum complex–a taxonomically close group of mealybugs (Wilkey and McKenzie, 1961). However, while the origins of the grape and longtailed mealybugs are believed to be in North America, the ancestral lines of the obscure mealybug are unclear. Regardless, these three species have been known as pests in North America for nearly 100 years. The vine mealybug, in contrast, was first identified in California in the Coachella Valley in the early 1990s (Gill, 1994). It has since spread into California’s San Joaquin Valley and central coast regions, with new infestations reported each year. The four species are similar in appearance; however, mealybugs in the P. maritimus- malacearum complex have longer caudal filaments than vine mealybug (Godfrey et al., 2002).
    [Show full text]
  • Grapevine Virus Diseases: Economic Impact and Current Advances in Viral Prospection and Management1
    1/22 ISSN 0100-2945 http://dx.doi.org/10.1590/0100-29452017411 GRAPEVINE VIRUS DISEASES: ECONOMIC IMPACT AND CURRENT ADVANCES IN VIRAL PROSPECTION AND MANAGEMENT1 MARCOS FERNANDO BASSO2, THOR VINÍCIUS MArtins FAJARDO3, PASQUALE SALDARELLI4 ABSTRACT-Grapevine (Vitis spp.) is a major vegetative propagated fruit crop with high socioeconomic importance worldwide. It is susceptible to several graft-transmitted agents that cause several diseases and substantial crop losses, reducing fruit quality and plant vigor, and shorten the longevity of vines. The vegetative propagation and frequent exchanges of propagative material among countries contribute to spread these pathogens, favoring the emergence of complex diseases. Its perennial life cycle further accelerates the mixing and introduction of several viral agents into a single plant. Currently, approximately 65 viruses belonging to different families have been reported infecting grapevines, but not all cause economically relevant diseases. The grapevine leafroll, rugose wood complex, leaf degeneration and fleck diseases are the four main disorders having worldwide economic importance. In addition, new viral species and strains have been identified and associated with economically important constraints to grape production. In Brazilian vineyards, eighteen viruses, three viroids and two virus-like diseases had already their occurrence reported and were molecularly characterized. Here, we review the current knowledge of these viruses, report advances in their diagnosis and prospection of new species, and give indications about the management of the associated grapevine diseases. Index terms: Vegetative propagation, plant viruses, crop losses, berry quality, next-generation sequencing. VIROSES EM VIDEIRAS: IMPACTO ECONÔMICO E RECENTES AVANÇOS NA PROSPECÇÃO DE VÍRUS E MANEJO DAS DOENÇAS DE ORIGEM VIRAL RESUMO-A videira (Vitis spp.) é propagada vegetativamente e considerada uma das principais culturas frutíferas por sua importância socioeconômica mundial.
    [Show full text]
  • Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies
    viruses Review Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies Varvara I. Maliogka 1,* ID , Angelantonio Minafra 2 ID , Pasquale Saldarelli 2, Ana B. Ruiz-García 3, Miroslav Glasa 4 ID , Nikolaos Katis 1 and Antonio Olmos 3 ID 1 Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] 2 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/D, 70126 Bari, Italy; [email protected] (A.M.); [email protected] (P.S.) 3 Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia, Spain; [email protected] (A.B.R.-G.); [email protected] (A.O.) 4 Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovak Republic; [email protected] * Correspondence: [email protected]; Tel.: +30-2310-998716 Received: 23 July 2018; Accepted: 13 August 2018; Published: 17 August 2018 Abstract: Perennial crops, such as fruit trees, are infected by many viruses, which are transmitted through vegetative propagation and grafting of infected plant material. Some of these pathogens cause severe crop losses and often reduce the productive life of the orchards. Detection and characterization of these agents in fruit trees is challenging, however, during the last years, the wide application of high-throughput sequencing (HTS) technologies has significantly facilitated this task. In this review, we present recent advances in the discovery, detection, and characterization of fruit tree viruses and virus-like agents accomplished by HTS approaches.
    [Show full text]
  • Essential Oil on the Tea Mealy Bug, Pseudococcus Viburni Sigornet (Hemiptera: Pseudococcidae)
    Archives of Phytopathology and Plant Protection ISSN: 0323-5408 (Print) 1477-2906 (Online) Journal homepage: http://www.tandfonline.com/loi/gapp20 Toxicity of Artemisia annua (Asteraceae) essential oil on the tea mealy bug, Pseudococcus viburni Sigornet (Hemiptera: Pseudococcidae) Samar Ramzi, Ali Seraji, Reza Azadi Gonbad, Seyyedeh Kimia Mirhaghparast, Zahra Mojib Haghghadam & Shiva Haghighat To cite this article: Samar Ramzi, Ali Seraji, Reza Azadi Gonbad, Seyyedeh Kimia Mirhaghparast, Zahra Mojib Haghghadam & Shiva Haghighat (2018): Toxicity of Artemisia annua (Asteraceae) essential oil on the tea mealy bug, Pseudococcus viburni Sigornet (Hemiptera: Pseudococcidae), Archives of Phytopathology and Plant Protection, DOI: 10.1080/03235408.2017.1352223 To link to this article: https://doi.org/10.1080/03235408.2017.1352223 Published online: 08 Jan 2018. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gapp20 Download by: [EPFL Bibliothèque] Date: 08 January 2018, At: 07:49 ARCHIVES OF PHYTOPATHOLOGY AND PLANT PROTECTION, 2018 https://doi.org/10.1080/03235408.2017.1352223 Toxicity of Artemisia annua (Asteraceae) essential oil on the tea mealy bug, Pseudococcus viburni Sigornet (Hemiptera: Pseudococcidae) Samar Ramzia, Ali Serajia, Reza Azadi Gonbada, Seyyedeh Kimia Mirhaghparastb, Zahra Mojib Haghghadamc and Shiva Haghighata aTea Research Center, Horticulture Science Research Institute, Agricultural
    [Show full text]
  • Novel Ampeloviruses Infecting Cassava in Central Africa and the South-West Indian Ocean Islands
    viruses Article Novel Ampeloviruses Infecting Cassava in Central Africa and the South-West Indian Ocean Islands Yves Kwibuka 1,2,* , Espoir Bisimwa 2, Arnaud G. Blouin 1, Claude Bragard 3 , Thierry Candresse 4 , Chantal Faure 4, Denis Filloux 5,6, Jean-Michel Lett 7 , François Maclot 1, Armelle Marais 4, Santatra Ravelomanantsoa 8 , Sara Shakir 9 , Hervé Vanderschuren 9,10 and Sébastien Massart 1,* 1 Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; [email protected] (A.G.B.); [email protected] (F.M.) 2 Faculté des Sciences Agronomiques, Université Catholique de Bukavu, BP 285 Bukavu, Democratic Republic of the Congo; [email protected] 3 Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, 1348 Louvain-la-Neuve, Belgium; [email protected] 4 Université Bordeaux, INRAE, UMR BFP, CS20032, CEDEX, 33882 Villenave d’Ornon, France; [email protected] (T.C.); [email protected] (C.F.); [email protected] (A.M.) 5 CIRAD, UMR PHIM, 34090 Montpellier, France; denis.fi[email protected] 6 PHIM Plant Health Institute, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34000 Montpellier, France 7 CIRAD, UMR PVBMT, Pôle de Protection des Plantes, Saint-Pierre, F-97410 Ile de la Reunion, France; [email protected] 8 FOFIFA-CENRADERU, Laboratoire de Pathologie Végétale, BP 1444 Ambatobe, Madagascar; [email protected] 9 Plant Genetics Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, Citation: Kwibuka, Y.; Bisimwa, E.; 5030 Gembloux, Belgium; [email protected] (S.S.); [email protected] (H.V.) Blouin, A.G.; Bragard, C.; Candresse, 10 Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Biosystems Department, T.; Faure, C.; Filloux, D.; Lett, J.-M.; KU Leuven, 3000 Leuven, Belgium Maclot, F.; Marais, A.; et al.
    [Show full text]
  • An Investigation Into the Integrated Pest Management of The
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Stellenbosch University SUNScholar Repository An investigation into the integrated pest management of the obscure mealybug, Pseudococcus viburni (Signoret) (Hemiptera: Pseudococcidae), in pome fruit orchards in the Western Cape Province, South Africa. Pride Mudavanhu Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Agriculture (Entomology), in the Faculty of AgriSciences. at the University of Stellenbosch Supervisor: Dr Pia Addison Department of Conservation Ecology and Entomology Faculty of AgriSciences University of Stellenbosch South Africa December 2009 DECLARATION By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. December 2009 Copyright © 2009 Stellenbosch University All rights reserved i ABSTRACT Pseudococcus viburni (Signoret) (Hemiptera: Pseudococcidae) (obscure mealybug), is a common and serious pest of apples and pears in South Africa. Consumer and regulatory pressure to produce commodities under sustainable and ecologically compatible conditions has rendered chemical control options increasingly limited. Information on the seasonal occurrence of pests is but one of the vital components of an effective and sustainable integrated pest management system needed for planning the initiation of monitoring and determining when damage can be expected. It is also important to identify which orchards are at risk of developing mealybug infestations while development of effective and early monitoring tools for mealybug populations will help growers in making decisions with regards to pest management and crop suitability for various markets.
    [Show full text]
  • A Parasitoid of Pseudococcus Viburni (Signoret) (Hemiptera: Pseudococcidae)
    Revista Brasileira de Entomologia 61 (2017) 257–261 REVISTA BRASILEIRA DE Entomologia A Journal on Insect Diversity and Evolution www.rbentomologia.com Biology, Ecology and Diversity Biology of Blepyrus clavicornis (Compere) (Hymenoptera: Encyrtidae), a parasitoid of Pseudococcus viburni (Signoret) (Hemiptera: Pseudococcidae) a,b,∗ a b Vitor Pacheco da Silva , Mauro Garcia , Marcos Botton a Universidade Federal de Pelotas, Pós-Graduac¸ ão em Fitossanidade, Departamento de Fitossanidade, Pelotas, RS, Brazil b Embrapa Uva e Vinho, Bento Gonc¸ alves, RS, Brazil a b s t r a c t a r t i c l e i n f o Article history: Encyrtids (Hymenoptera: Encyrtidae) are the most important and diverse group of natural enemies of Received 28 November 2016 mealybugs (Hemiptera: Pseudococcidae). Blepyrus clavicornis (Compere) is the most common parasitoid Accepted 24 May 2017 associated with Pseudococcus viburni (Signoret) in the Serra Gaúcha region, Brazil. We conducted labora- Available online 7 June 2017 tory studies to assess the development time, sex ratio, adult longevity, host stage selection for parasitism, Associate Editor: Adeney de Freitas Bueno and effect of food on the longevity of adult females of B. clavicornis. The experiments were conducted in a ◦ climate chamber at 25 ± 1 C, 70 ± 10% RH and 12:12 L:D photoperiod. The solitary parasitoid B. clavicor- Keywords: nis parasitized third-instar and adult female stages of P. viburni. The development time was more than Biological control 30 days (31.75 ± 0.38 for females and 30.02 ± 0.34 for males) when B. clavicornis laid eggs in adult mealy- Chalcidoidea bug females, and 35 days (36.50 ± 0.50 for females and 34.24 ± 0.43 for males) on third-instar mealybug Obscure mealybug Parasitism nymphs.
    [Show full text]
  • Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases
    viruses Review Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases Krin S. Mann † and Hélène Sanfaçon ,* Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-250-494-6393 † Current Address: University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada. Received: 21 December 2018; Accepted: 12 January 2019; Published: 15 January 2019 Abstract: Many plant viruses express their proteins through a polyprotein strategy, requiring the acquisition of protease domains to regulate the release of functional mature proteins and/or intermediate polyproteins. Positive-strand RNA viruses constitute the vast majority of plant viruses and they are diverse in their genomic organization and protein expression strategies. Until recently, proteases encoded by positive-strand RNA viruses were described as belonging to two categories: (1) chymotrypsin-like cysteine and serine proteases and (2) papain-like cysteine protease. However, the functional characterization of plant virus cysteine and serine proteases has highlighted their diversity in terms of biological activities, cleavage site specificities, regulatory mechanisms, and three-dimensional structures. The recent discovery of a plant picorna-like virus glutamic protease with possible structural similarities with fungal and bacterial glutamic proteases also revealed new unexpected sources of protease domains. We discuss the variety of plant positive-strand RNA virus protease domains. We also highlight possible evolution scenarios of these viral proteases, including evidence for the exchange of protease domains amongst unrelated viruses. Keywords: proteolytic processing; viral proteases; protease specificity; protease structure; virus evolution 1. Introduction Eukaryotic RNA viruses have a long evolution history, which is driven by their necessary adaptation to their hosts [1].
    [Show full text]
  • ICTV Code Assigned: 2011.001Ag Officers)
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp .
    [Show full text]
  • 3′-Coterminal Subgenomic Rnas and Putative Cis-Acting Elements of Grapevine Leafroll-Associated Virus 3 Reveals 'Unique' F
    Jarugula et al. Virology Journal 2010, 7:180 http://www.virologyj.com/content/7/1/180 RESEARCH Open Access 3′-coterminal subgenomic RNAs and putative cis-acting elements of Grapevine leafroll-associated virus 3 reveals ‘unique’ features of gene expression strategy in the genus Ampelovirus Sridhar Jarugula1, Siddarame Gowda2, William O Dawson2, Rayapati A Naidu1* Abstract Background: The family Closteroviridae comprises genera with monopartite genomes, Closterovirus and Ampelovirus, and with bipartite and tripartite genomes, Crinivirus. By contrast to closteroviruses in the genera Closterovirus and Crinivirus, much less is known about the molecular biology of viruses in the genus Ampelovirus, although they cause serious diseases in agriculturally important perennial crops like grapevines, pineapple, cherries and plums. Results: The gene expression and cis-acting elements of Grapevine leafroll-associated virus 3 (GLRaV-3; genus Ampelovirus) was examined and compared to that of other members of the family Closteroviridae. Six putative 3′-coterminal subgenomic (sg) RNAs were abundantly present in grapevine (Vitis vinifera) infected with GLRaV-3. The sgRNAs for coat protein (CP), p21, p20A and p20B were confirmed using gene-specific riboprobes in Northern blot analysis. The 5′-termini of sgRNAs specific to CP, p21, p20A and p20B were mapped in the 18,498 nucleotide (nt) virus genome and their leader sequences determined to be 48, 23, 95 and 125 nt, respectively. No conserved motifs were found around the transcription start site or in the leader sequence of these sgRNAs. The predicted secondary structure analysis of sequences around the start site failed to reveal any conserved motifs among the four sgRNAs. The GLRaV-3 isolate from Washington had a 737 nt long 5′ nontranslated region (NTR) with a tandem repeat of 65 nt sequence and differed in sequence and predicted secondary structure with a South Africa isolate.
    [Show full text]
  • Small Hydrophobic Viral Proteins Involved in Intercellular Movement of Diverse Plant Virus Genomes Sergey Y
    AIMS Microbiology, 6(3): 305–329. DOI: 10.3934/microbiol.2020019 Received: 23 July 2020 Accepted: 13 September 2020 Published: 21 September 2020 http://www.aimspress.com/journal/microbiology Review Small hydrophobic viral proteins involved in intercellular movement of diverse plant virus genomes Sergey Y. Morozov1,2,* and Andrey G. Solovyev1,2,3 1 A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia 2 Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia 3 Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia * Correspondence: E-mail: [email protected]; Tel: +74959393198. Abstract: Most plant viruses code for movement proteins (MPs) targeting plasmodesmata to enable cell-to-cell and systemic spread in infected plants. Small membrane-embedded MPs have been first identified in two viral transport gene modules, triple gene block (TGB) coding for an RNA-binding helicase TGB1 and two small hydrophobic proteins TGB2 and TGB3 and double gene block (DGB) encoding two small polypeptides representing an RNA-binding protein and a membrane protein. These findings indicated that movement gene modules composed of two or more cistrons may encode the nucleic acid-binding protein and at least one membrane-bound movement protein. The same rule was revealed for small DNA-containing plant viruses, namely, viruses belonging to genus Mastrevirus (family Geminiviridae) and the family Nanoviridae. In multi-component transport modules the nucleic acid-binding MP can be viral capsid protein(s), as in RNA-containing viruses of the families Closteroviridae and Potyviridae. However, membrane proteins are always found among MPs of these multicomponent viral transport systems.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]