D 6.1 EMBRIC Showcases

Total Page:16

File Type:pdf, Size:1020Kb

D 6.1 EMBRIC Showcases Grant Agreement Number: 654008 EMBRIC European Marine Biological Research Infrastructure Cluster to promote the Blue Bioeconomy Horizon 2020 – the Framework Programme for Research and Innovation (2014-2020), H2020-INFRADEV-1-2014-1 Start Date of Project: 01.06.2015 Duration: 48 Months Deliverable D6.1 b EMBRIC showcases: prototype pipelines from the microorganism to product discovery (Revised 2019) HORIZON 2020 - INFRADEV Implementation and operation of cross-cutting services and solutions for clusters of ESFRI 1 Grant agreement no.: 654008 Project acronym: EMBRIC Project website: www.embric.eu Project full title: European Marine Biological Research Infrastructure cluster to promote the Bioeconomy (Revised 2019) Project start date: June 2015 (48 months) Submission due date: May 2019 Actual submission date: Apr 2019 Work Package: WP 6 Microbial pipeline from environment to active compounds Lead Beneficiary: CABI [Partner 15] Version: 1.0 Authors: SMITH David [CABI Partner 15] GOSS Rebecca [USTAN 10] OVERMANN Jörg [DSMZ Partner 24] BRÖNSTRUP Mark [HZI Partner 18] PASCUAL Javier [DSMZ Partner 24] BAJERSKI Felizitas [DSMZ Partner 24] HENSLER Michael [HZI Partner 18] WANG Yunpeng [USTAN Partner 10] ABRAHAM Emily [USTAN Partner 10] FIORINI Federica [HZI Partner 18] Project funded by the European Union’s Horizon 2020 research and innovation programme (2015-2019) Dissemination Level PU Public X PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services 2 Abstract Deliverable D6.1b replaces Deliverable 6.1 EMBRIC showcases: prototype pipelines from the microorganism to product discovery with the specific goal to refine technologies used but more specifically deliver results of the microbial discovery pipeline. The objective of work package 6 Microbial pipeline from environment to active compounds was to develop coherent chains of high-quality services for access to biological, analytical and data resources and deploying common underpinning technologies and practices for useful secondary metabolites from marine bacteria. This prototype pipeline brings together the expertise and facilities of partners from the MIRRI, EMBRC and EUOPENSCREEN research infrastructures to target and release the potential of microorganisms from isolation through characterisation to end product. Deliverable D3.1 Map of centres of expertise and best practices from EMBRIC work package 3 provides a comprehensive coverage of the cluster capabilities. Work package 6 demonstrated how the discovery pipelines can utilize the partner RIs and specifically how some of the services can be linked to produce specific end products. EMBRIC has established an overarching and operational structure to facilitate the integration of the multidisciplinary value chains of services. The partner RIs are committed to retain such activities as legacy to the EMBRIC project. Bacteria are key components of the marine environment, performing a wide range of biogeochemical and ecological functions yet we know very little about them. It is estimated that we have seen less than 1 percent in culture and the vast potential remains locked away. Population genomics has provided us with a picture of what might be there and an idea of the chemistry they may perform. EMBRIC’s microorganism pipeline aims to unlock this potential. Utilizing the specialist expertise and facilities of key laboratories, organisms that are difficult to cultivate or have yet to be grown were targeted, characterised and prepared for scale up and production of active compounds. DSMZ undertook to make difficult-to-culture bacteria amenable to subsequent natural compound analyses. Optimal growth conditions for some of these organisms were determined to enable strains with novel properties to be grown. Following de-replication, DSMZ isolated 264 species of slow growing bacteria from sea water, sediment and sponges of the Pacific Ocean representing the phyla Actinobacteria, Bacteroidetes, Proteobacteria and Rhodothermaeota. The most interesting were selected for cosmid library production. Two Arcobacter strains are described as novel species in the genus and those exemplary strains were fermented and organic extracts supplied to HZI for analysis. USTAN had the role of improving the efficiency and effectiveness of a harmonised natural product discovery pipeline. Cosmid libraries were established for test strains and these put through heterologous platforms to determine the presence of compounds. 9 gene clusters and a series of compounds were detected. Improvements to the process were made using elicitors and promoters and some difficult cyclic peptides were characterised. HZI improved the efficiency of different extraction and characterization techniques for use on different types of organisms and as a result isolates producing interesting compounds were discovered. Once the pipeline through the partner infrastructures were fine-tuned user fully sequenced samples were put through the microbial pipeline and demonstrated that interesting compounds could be discovered. CABI focused on the regulatory environment addressing issues around access to genetic resources and access and benefit sharing in particular. The microorganism prototype pipeline resulted in a flexible system to access cross research Infrastructure expertise and facilities to meet specific user defined demand of the research community. In one single experiment to develop the EMBRIC microbial prototype pipeline, a total of 264 rarely isolated species of bacteria were made available for study of their bioactive compounds. This demonstrates that coordinated and targeted isolation programmes engaging research teams from the many partners in the Research Infrastructures orchestrated for specific bioindustry needs could yield many thousands of candidate organisms. The potential for discovery of new interesting bioactive compounds is thus increased exponentially. 3 Contents Abstract ................................................................................................................................ 3 1. Introduction .................................................................................................................... 6 1.1 Microorganism prototype pipeline ................................................................................ 6 Cultivation and culture collection .................................................................................... 7 Determination of organism potential ............................................................................... 7 Extract production .......................................................................................................... 8 Purification of characterised compounds........................................................................ 8 Legal framework ............................................................................................................ 8 2. Protocols for isolation, selection, growth of strains and extract supply ......................... 10 2.1. Sample collection and processing ............................................................................ 10 2.2. Cultivation strategies ............................................................................................. 10 2.2.1 Single dilution high-throughput in liquid media. ................................................... 10 2.2.2 Direct plating method .......................................................................................... 11 2.2.3 Growth in biofilms ............................................................................................... 11 2.2.4 Chemotaxis chambers ........................................................................................ 11 2.3. Taxonomic affiliation of isolates ................................................................................ 12 2.4. Maintenance procedures .......................................................................................... 13 2.5. Fermentation of bacteria for natural product production ............................................ 13 3. The genomic characterisation, cosmid library production and analysis ........................ 14 3.1 Gene Clusters Prediction ........................................................................................... 14 3.2 Genomic DNA Preparation ........................................................................................ 15 3.3 Vector DNA Preparation ............................................................................................ 15 3.4 Construction of Cosmid Library ................................................................................. 16 3.5 Transformation of Gene Clusters and Secondary Metabolite Heterologous Expression ........................................................................................................................................ 17 4. Analysis of extracts ...................................................................................................... 20 4.1 Analysis of extracts at USTAN ................................................................................... 20 4.1.1 Secondary metabolites production at Ustan ........................................................ 20 4.1.2 Secondary metabolites extraction ....................................................................... 20
Recommended publications
  • Thiobacillus Denitrificans
    Nitrate-Dependent, Neutral pH Bioleaching of Ni from an Ultramafic Concentrate by Han Zhou A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Chemical Engineering and Applied Chemistry University of Toronto © Copyright by Han Zhou 2014 ii Nitrate-Dependent, Neutral pH Bioleaching of Ni from an Ultramafic Concentrate Han Zhou Master of Applied Science Chemical Engineering and Applied Chemistry University of Toronto 2014 Abstract This study explores the possibility of utilizing bioleaching techniques for nickel extraction from a mixed sulfide ore deposit with high magnesium content. Due to the ultramafic nature of this material, well-studied bioleaching technologies, which rely on acidophilic bacteria, will lead to undesirable processing conditions. This is the first work that incorporates nitrate-dependent bacteria under pH 6.5 environments for bioleaching of base metals. Experiments with both defined bacterial strains and indigenous mixed bacterial cultures were conducted with nitrate as the electron acceptor and sulfide minerals as electron donors in a series of microcosm studies. Nitrate consumption, sulfate production, and Ni released into the aqueous phase were used to track the extent of oxidative sulfide mineral dissolution; taxonomic identification of the mixed culture community was performed using 16S rRNA gene sequencing. Nitrate-dependent microcosms that contained indigenous sulfur- and/or iron-oxidizing microorganisms were cultured, characterized, and provided a proof-of-concept basis for further bioleaching studies. iii Acknowledgments I would like to extend my most sincere gratitude toward both of my supervisors Dr. Vladimiros Papangelakis and Dr. Elizabeth Edwards. This work could not have been completed without your brilliant and patient guidance.
    [Show full text]
  • Updating the Taxonomic Toolbox: Classification of Alteromonas Spp
    1 Updating the taxonomic toolbox: classification of Alteromonas spp. 2 using Multilocus Phylogenetic Analysis and MALDI-TOF Mass 3 Spectrometry a a a 4 Hooi Jun Ng , Hayden K. Webb , Russell J. Crawford , François a b b c 5 Malherbe , Henry Butt , Rachel Knight , Valery V. Mikhailov and a, 6 Elena P. Ivanova * 7 aFaculty of Life and Social Sciences, Swinburne University of Technology, 8 PO Box 218, Hawthorn, Vic 3122, Australia 9 bBioscreen, Bio21 Institute, The University of Melbourne, Vic 3010, Australia 10 cG.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian 11 Academy of Sciences, Vladivostok 690022, Russian Federation 12 13 *Corresponding author: Tel: +61-3-9214-5137. Fax: +61-3-9214-5050. 14 E-mail: [email protected] 15 16 Abstract 17 Bacteria of the genus Alteromonas are Gram-negative, strictly aerobic, motile, 18 heterotrophic marine bacteria, known for their versatile metabolic activities. 19 Identification and classification of novel species belonging to the genus Alteromonas 20 generally involves DNA-DNA hybridization (DDH) as distinct species often fail to be 1 21 resolved at the 97% threshold value of the 16S rRNA gene sequence similarity. In this 22 study, the applicability of Multilocus Phylogenetic Analysis (MLPA) and Matrix- 23 Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF 24 MS) for the differentiation of Alteromonas species has been evaluated. Phylogenetic 25 analysis incorporating five house-keeping genes (dnaK, sucC, rpoB, gyrB, and rpoD) 26 revealed a threshold value of 98.9% that could be considered as the species cut-off 27 value for the delineation of Alteromonas spp.
    [Show full text]
  • Deciphering a Marine Bone Degrading Microbiome Reveals a Complex Community Effort
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.093005; this version posted November 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Deciphering a marine bone degrading microbiome reveals a complex community effort 2 3 Erik Borcherta,#, Antonio García-Moyanob, Sergio Sanchez-Carrilloc, Thomas G. Dahlgrenb,d, 4 Beate M. Slabya, Gro Elin Kjæreng Bjergab, Manuel Ferrerc, Sören Franzenburge and Ute 5 Hentschela,f 6 7 aGEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, 8 Kiel, Germany 9 bNORCE Norwegian Research Centre, Bergen, Norway 10 cCSIC, Institute of Catalysis, Madrid, Spain 11 dDepartment of Marine Sciences, University of Gothenburg, Gothenburg, Sweden 12 eIKMB, Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany 13 fChristian-Albrechts University of Kiel, Kiel, Germany 14 15 Running Head: Marine bone degrading microbiome 16 #Address correspondence to Erik Borchert, [email protected] 17 Abstract word count: 229 18 Text word count: 4908 (excluding Abstract, Importance, Materials and Methods) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.093005; this version posted November 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 19 Abstract 20 The marine bone biome is a complex assemblage of macro- and microorganisms, however the 21 enzymatic repertoire to access bone-derived nutrients remains unknown.
    [Show full text]
  • Bacterial Epibiotic Communities of Ubiquitous and Abundant Marine Diatoms Are Distinct in Short- and Long-Term Associations
    fmicb-09-02879 December 1, 2018 Time: 14:0 # 1 ORIGINAL RESEARCH published: 04 December 2018 doi: 10.3389/fmicb.2018.02879 Bacterial Epibiotic Communities of Ubiquitous and Abundant Marine Diatoms Are Distinct in Short- and Long-Term Associations Klervi Crenn, Delphine Duffieux and Christian Jeanthon* CNRS, Sorbonne Université, Station Biologique de Roscoff, Adaptation et Diversité en Milieu Marin, Roscoff, France Interactions between phytoplankton and bacteria play a central role in mediating biogeochemical cycling and food web structure in the ocean. The cosmopolitan diatoms Thalassiosira and Chaetoceros often dominate phytoplankton communities in marine systems. Past studies of diatom-bacterial associations have employed community- level methods and culture-based or natural diatom populations. Although bacterial assemblages attached to individual diatoms represents tight associations little is known on their makeup or interactions. Here, we examined the epibiotic bacteria of 436 Thalassiosira and 329 Chaetoceros single cells isolated from natural samples and Edited by: collection cultures, regarded here as short- and long-term associations, respectively. Matthias Wietz, Epibiotic microbiota of single diatom hosts was analyzed by cultivation and by cloning- Alfred Wegener Institut, Germany sequencing of 16S rRNA genes obtained from whole-genome amplification products. Reviewed by: The prevalence of epibiotic bacteria was higher in cultures and dependent of the host Lydia Jeanne Baker, Cornell University, United States species. Culture approaches demonstrated that both diatoms carry distinct bacterial Bryndan Paige Durham, communities in short- and long-term associations. Bacterial epibonts, commonly University of Washington, United States associated with phytoplankton, were repeatedly isolated from cells of diatom collection *Correspondence: cultures but were not recovered from environmental cells.
    [Show full text]
  • Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
    www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms.
    [Show full text]
  • Cultivation-Independent Analysis of Pseudomonas Species in Soil and in the Rhizosphere of field-Grown Verticillium Dahliae Host Plants
    Blackwell Publishing LtdOxford, UKEMIEnvironmental Microbiology1462-2912© 2006 The Authors; Journal compilation © 2006 Society for Applied Microbiology and Blackwell Publishing Ltd200681221362149Original Article Pseudomonas diversity in the rhizosphereR. Costa, J. F. Salles, G. Berg and K. Smalla Environmental Microbiology (2006) 8(12), 2136–2149 doi:10.1111/j.1462-2920.2006.01096.x Cultivation-independent analysis of Pseudomonas species in soil and in the rhizosphere of field-grown Verticillium dahliae host plants Rodrigo Costa,1 Joana Falcão Salles,2 Gabriele Berg3 rescens lineage and showed closest similarity to and Kornelia Smalla1* culturable Pseudomonas known for displaying anti- 1Federal Biological Research Centre for Agriculture and fungal properties. This report provides a better under- Forestry (BBA), Messeweg 11/12, D-38104 standing of how different factors drive Pseudomonas Braunschweig, Germany. community structure and diversity in bulk and rhizo- 2UMR 5557 Ecologie Microbienne (CNRS – Université sphere soils. Lyon 1), USC 1193 INRA, bâtiment G. Mendel, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne, Introduction France. 3Graz University of Technology, Institute of Environmental Verticillium dahliae causes wilt of a broad range of crop Biotechnology, Petersgasse 12, A-8010 Graz, Austria. plants and significant annual yield losses worldwide (Tja- mos et al., 2000). Control of V. dahliae in soil had been largely dependent on the application of methyl bromide in Summary the field. As this ozone-depleting soil fumigant has been Despite their importance for rhizosphere functioning, recently phased-out, the use of alternative, ecologically rhizobacterial Pseudomonas spp. have been mainly friendly practices to combat V. dahliae is a subject of studied in a cultivation-based manner.
    [Show full text]
  • Motiliproteus Sediminis Gen. Nov., Sp. Nov., Isolated from Coastal Sediment
    Antonie van Leeuwenhoek (2014) 106:615–621 DOI 10.1007/s10482-014-0232-2 ORIGINAL PAPER Motiliproteus sediminis gen. nov., sp. nov., isolated from coastal sediment Zong-Jie Wang • Zhi-Hong Xie • Chao Wang • Zong-Jun Du • Guan-Jun Chen Received: 3 April 2014 / Accepted: 4 July 2014 / Published online: 20 July 2014 Ó Springer International Publishing Switzerland 2014 Abstract A novel Gram-stain-negative, rod-to- demonstrated that the novel isolate was 93.3 % similar spiral-shaped, oxidase- and catalase- positive and to the type strain of Neptunomonas antarctica, 93.2 % facultatively aerobic bacterium, designated HS6T, was to Neptunomonas japonicum and 93.1 % to Marino- isolated from marine sediment of Yellow Sea, China. bacterium rhizophilum, the closest cultivated rela- It can reduce nitrate to nitrite and grow well in marine tives. The polar lipid profile of the novel strain broth 2216 (MB, Hope Biol-Technology Co., Ltd) consisted of phosphatidylethanolamine, phosphatidyl- with an optimal temperature for growth of 30–33 °C glycerol and some other unknown lipids. Major (range 12–45 °C) and in the presence of 2–3 % (w/v) cellular fatty acids were summed feature 3 (C16:1 NaCl (range 0.5–7 %, w/v). The pH range for growth x7c/iso-C15:0 2-OH), C18:1 x7c and C16:0 and the main was pH 6.2–9.0, with an optimum at 6.5–7.0. Phylo- respiratory quinone was Q-8. The DNA G?C content genetic analysis based on 16S rRNA gene sequences of strain HS6T was 61.2 mol %. Based on the phylogenetic, physiological and biochemical charac- teristics, strain HS6T represents a novel genus and The GenBank accession number for the 16S rRNA gene T species and the name Motiliproteus sediminis gen.
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • Impacts of Biogenic Polyunsaturated Aldehydes on Metabolism and Community
    https://doi.org/10.5194/bg-2020-243 Preprint. Discussion started: 24 July 2020 c Author(s) 2020. CC BY 4.0 License. 1 Impacts of biogenic polyunsaturated aldehydes on metabolism and community 2 composition of particle-attached bacteria in coastal hypoxia 3 Zhengchao Wu1,2, Qian P. Li1,2,3,*, Zaiming Ge1,3, Bangqin Huang4, Chunming Dong5 4 1State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese 5 Academy of Sciences, Guangzhou, China 6 2Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China 7 3College of Marine Science, University of the Chinese Academy of Sciences, Beijing, China 8 4Fujian Provincial Key Laboratory of Coastal Ecology and Environmental Studies, State Key Laboratory of 9 Marine Environmental Science, Xiamen University, Xiamen, China 10 5Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, MNR, Xiamen, China 11 *Correspondence to: Qian Li ([email protected]) 12 13 Abstract. Eutrophication-driven coastal hypoxia is of great interest recently, though its mechanisms are not 14 fully understood. Here, we showed elevated concentrations of particulate and dissolved polyunsaturated 15 aldehydes (PUAs) associated with the hypoxic waters meanly dominated by particle-attached bacteria (PAB) 16 in the bottom water of a salt-wedge estuary. Particle-adsorbed PUAs of ~10 micromoles per liter particle in 17 the hypoxic waters were directly quantified for the first time using large-volume-filtration followed with 18 on-site derivation and extraction of the adsorbed PUAs. PUAs-amended incubation experiments for PAB 19 retrieved from the low-oxygen waters were also performed to explore the impacts of PUAs on the growth 20 and metabolism of PAB and associated oxygen utilization.
    [Show full text]
  • Which Organisms Are Used for Anti-Biofouling Studies
    Table S1. Semi-systematic review raw data answering: Which organisms are used for anti-biofouling studies? Antifoulant Method Organism(s) Model Bacteria Type of Biofilm Source (Y if mentioned) Detection Method composite membranes E. coli ATCC25922 Y LIVE/DEAD baclight [1] stain S. aureus ATCC255923 composite membranes E. coli ATCC25922 Y colony counting [2] S. aureus RSKK 1009 graphene oxide Saccharomycetes colony counting [3] methyl p-hydroxybenzoate L. monocytogenes [4] potassium sorbate P. putida Y. enterocolitica A. hydrophila composite membranes E. coli Y FESEM [5] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) K. pneumonia ATCC13883 P. aeruginosa BAA-1744 composite membranes E. coli Y SEM [6] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) graphene oxide E. coli ATCC25922 Y colony counting [7] S. aureus ATCC9144 P. aeruginosa ATCCPAO1 composite membranes E. coli Y measuring flux [8] (unspecified/unique sample type) graphene oxide E. coli Y colony counting [9] (unspecified/unique SEM sample type) LIVE/DEAD baclight S. aureus stain (unspecified/unique sample type) modified membrane P. aeruginosa P60 Y DAPI [10] Bacillus sp. G-84 LIVE/DEAD baclight stain bacteriophages E. coli (K12) Y measuring flux [11] ATCC11303-B4 quorum quenching P. aeruginosa KCTC LIVE/DEAD baclight [12] 2513 stain modified membrane E. coli colony counting [13] (unspecified/unique colony counting sample type) measuring flux S. aureus (unspecified/unique sample type) modified membrane E. coli BW26437 Y measuring flux [14] graphene oxide Klebsiella colony counting [15] (unspecified/unique sample type) P. aeruginosa (unspecified/unique sample type) graphene oxide P. aeruginosa measuring flux [16] (unspecified/unique sample type) composite membranes E.
    [Show full text]
  • Characterization of Arsenite-Oxidizing Bacteria Isolated from Arsenic-Rich Sediments, Atacama Desert, Chile
    microorganisms Article Characterization of Arsenite-Oxidizing Bacteria Isolated from Arsenic-Rich Sediments, Atacama Desert, Chile Constanza Herrera 1, Ruben Moraga 2,*, Brian Bustamante 1, Claudia Vilo 1, Paulina Aguayo 1,3,4, Cristian Valenzuela 1, Carlos T. Smith 1 , Jorge Yáñez 5, Victor Guzmán-Fierro 6, Marlene Roeckel 6 and Víctor L. Campos 1,* 1 Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; [email protected] (C.H.); [email protected] (B.B.); [email protected] (C.V.); [email protected] (P.A.); [email protected] (C.V.); [email protected] (C.T.S.) 2 Microbiology Laboratory, Faculty of Renewable Natural Resources, Arturo Prat University, Iquique 1100000, Chile 3 Faculty of Environmental Sciences, EULA-Chile, Universidad de Concepcion, Concepcion 4070386, Chile 4 Institute of Natural Resources, Faculty of Veterinary Medicine and Agronomy, Universidad de Las Américas, Sede Concepcion, Campus El Boldal, Av. Alessandri N◦1160, Concepcion 4090940, Chile 5 Faculty of Chemical Sciences, Department of Analytical and Inorganic Chemistry, University of Concepción, Concepción 4070386, Chile; [email protected] 6 Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepcion 4070386, Chile; victorguzmanfi[email protected] (V.G.-F.); [email protected] (M.R.) * Correspondence: [email protected] (R.M.); [email protected] (V.L.C.) Abstract: Arsenic (As), a semimetal toxic for humans, is commonly associated
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]