UNIVERSITY of CALIFORNIA, SAN DIEGO the Comparative Genomics

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSITY of CALIFORNIA, SAN DIEGO the Comparative Genomics UNIVERSITY OF CALIFORNIA, SAN DIEGO The Comparative Genomics of Salinispora and the Distribution and Abundance of Secondary Metabolite Genes in Marine Plankton A Dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Marine Biology by Kevin Matthew Penn Committee in charge: Paul R. Jensen, Chair Eric Allen Lin Chao Bradley Moore Brian Palenik Forest Rohwer 2012 UMI Number: 3499839 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3499839 Copyright 2012 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 Copyright Kevin Matthew Penn, 2012 All rights reserved The Dissertation of Kevin Matthew Penn is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2012 iii DEDICATION I dedicate this dissertation to my Mom Gail Penn and my Father Lawrence Penn they deserve more credit then any person could imagine. They have supported me through the good times and the bad times. They have never given up on me and they are always excited to know that I am doing well. They just want the best for me. They have encouraged my education from both a philosophical and financial point of view. I also thank my sister Heather Kalish and brother in-law Michael Kalish for providing me with support during the beginning of my academic career and introducing me to Jonathan Eisen who ended opening the door for me to an endless bounty of intellectual pursuits. iv EPIGRAPH “Nothing in Biology Makes Sense Except in the Light of Evolution” - Theodosius Dobzhansky, 1973 v TABLE OF CONTENTS SIGNATURE PAGE ..................................................................................................................................III DEDICATION .............................................................................................................................................IV EPIGRAPH ....................................................................................................................................................V TABLE OF CONTENTS ...........................................................................................................................VI LIST OF FIGURES ....................................................................................................................................IX LIST OF TABLES ......................................................................................................................................XI ACKNOWLEDGEMENTS ....................................................................................................................XIII VITA...........................................................................................................................................................XVI PUBLICATIONS......................................................................................................................................XVI FIELD OF STUDY................................................................................................................................. XVII ABSTRACT OF THE DISSERTATION ..........................................................................................XVIII CHAPTER 1: INTRODUCTION ...............................................................................................................1 MARINE BIOLOGY ........................................................................................................................................2 MICROBIAL LOOP .........................................................................................................................................3 MARINE SEDIMENT.......................................................................................................................................4 NATURAL PRODUCT DISCOVERY.................................................................................................................7 ACTINOBACTERIA.........................................................................................................................................8 SALINISPORA ..................................................................................................................................................9 HISTORY OF EVOLUTIONARY BIOLOGY ................................................................................................... 10 MICROBIAL ECOLOGY AND EVOLUTION .................................................................................................. 12 CONCLUSION.............................................................................................................................................. 13 REFERENCES .............................................................................................................................................. 14 CHAPTER 2: GENOMIC ISLANDS LINK SECONDARY METABOLISM TO FUNCTIONAL ADAPTATION IN MARINE ACTINOBACTERIA ............................................................................ 21 INTRODUCTION .......................................................................................................................................... 22 METHODS................................................................................................................................................... 24 RESULTS AND DISCUSSION........................................................................................................................ 28 CONCLUSIONS............................................................................................................................................ 36 ACKNOWLDEGEMENTS.............................................................................................................................. 36 REFERENCES .............................................................................................................................................. 37 CHAPTER 3: COMPARATIVE GENOMICS REVEALS EVIDENCE OF MARINE ADAPTATION IN SALINISPORA SPECIES........................................................................................ 58 INTRODUCTION .......................................................................................................................................... 59 METHODS................................................................................................................................................... 63 RESULTS..................................................................................................................................................... 68 vi DISCUSSION ............................................................................................................................................... 76 CONCLUSIONS............................................................................................................................................ 80 ACKNOWLEDGMENTS................................................................................................................................ 81 REFERENCES .............................................................................................................................................. 81 FIGURES ..................................................................................................................................................... 87 TABLES....................................................................................................................................................... 92 CHAPTER 4: THE ABUNDANCE AND EXPRESSION OF SECONDARY METABOLISM GENES IN MARINE PLANKTON REVEALS NEW PHYLOGENETIC DIVERSITY OF PROTISTAN LIKE KETOSYNTHASE DOMAINS.......................................................................... 102 ABSTRACT................................................................................................................................................ 102 INTRODUCTION ........................................................................................................................................ 103 METHODS................................................................................................................................................. 107 RESULTS................................................................................................................................................... 109 DISCUSSION ............................................................................................................................................. 119 CONCLUSIONS.......................................................................................................................................... 127 ACKNOWLEDGEMENTS............................................................................................................................ 129 REFERENCES ............................................................................................................................................ 130 FIGURES ..................................................................................................................................................
Recommended publications
  • Comparative Genomic Analysis of Three Pseudomonas
    microorganisms Article Comparative Genomic Analysis of Three Pseudomonas Species Isolated from the Eastern Oyster (Crassostrea virginica) Tissues, Mantle Fluid, and the Overlying Estuarine Water Column Ashish Pathak 1, Paul Stothard 2 and Ashvini Chauhan 1,* 1 Environmental Biotechnology Laboratory, School of the Environment, 1515 S. Martin Luther King Jr. Blvd., Suite 305B, FSH Science Research Center, Florida A&M University, Tallahassee, FL 32307, USA; [email protected] 2 Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-850-412-5119; Fax: +1-850-561-2248 Abstract: The eastern oysters serve as important keystone species in the United States, especially in the Gulf of Mexico estuarine waters, and at the same time, provide unparalleled economic, ecological, environmental, and cultural services. One ecosystem service that has garnered recent attention is the ability of oysters to sequester impurities and nutrients, such as nitrogen (N), from the estuarine water that feeds them, via their exceptional filtration mechanism coupled with microbially-mediated denitrification processes. It is the oyster-associated microbiomes that essentially provide these myriads of ecological functions, yet not much is known on these microbiota at the genomic scale, especially from warm temperate and tropical water habitats. Among the suite of bacterial genera that appear to interplay with the oyster host species, pseudomonads deserve further assessment because Citation: Pathak, A.; Stothard, P.; of their immense metabolic and ecological potential. To obtain a comprehensive understanding on Chauhan, A. Comparative Genomic this aspect, we previously reported on the isolation and preliminary genomic characterization of Analysis of Three Pseudomonas Species three Pseudomonas species isolated from minced oyster tissue (P.
    [Show full text]
  • Three New Genome Assemblies Support a Rapid Radiation in Musa Acuminata (Wild Banana)
    GBE Three New Genome Assemblies Support a Rapid Radiation in Musa acuminata (Wild Banana) Mathieu Rouard1,*, Gaetan Droc2,3, Guillaume Martin2,3,JulieSardos1, Yann Hueber1, Valentin Guignon1, Alberto Cenci1,Bjo¨rnGeigle4,MarkS.Hibbins5,6, Nabila Yahiaoui2,3, Franc-Christophe Baurens2,3, Vincent Berry7,MatthewW.Hahn5,6, Angelique D’Hont2,3,andNicolasRoux1 1Bioversity International, Parc Scientifique Agropolis II, Montpellier, France 2CIRAD, UMR AGAP, Montpellier, France 3AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, France 4Computomics GmbH, Tuebingen, Germany 5Department of Biology, Indiana University 6Department of Computer Science, Indiana University 7LIRMM, Universite de Montpellier, CNRS, Montpellier, France *Corresponding author: E-mail: [email protected]. Accepted: October 10, 2018 Data deposition: Raw sequence reads for de novo assemblies were deposited in the Sequence Read Archive (SRA) of the National Center for Biotechnology Information (NCBI) (BioProject: PRJNA437930 and SRA: SRP140622). Genome Assemblies and gene annotation data are available on the Banana Genome Hub (Droc G, Lariviere D, Guignon V, Yahiaoui N, This D, Garsmeur O, Dereeper A, Hamelin C, Argout X, Dufayard J-F, Lengelle J, Baurens F–C, Cenci A, Pitollat B, D’Hont A, Ruiz M, Rouard M, Bocs S. The Banana Genome Hub. Database (2013) doi:10.1093/ database/bat035) (http://banana-genome-hub.southgreen.fr/species-list). Cluster and gene tree results are available on a dedicated database (http://panmusa.greenphyl.org) hosted on the South Green Bioinformatics Platform (Guignon et al. 2016). Additional data sets are made available on Dataverse: https://doi.org/10.7910/DVN/IFI1QU. Abstract Edible bananas result from interspecific hybridization between Musa acuminata and Musa balbisiana,aswellasamongsubspeciesin M.
    [Show full text]
  • CV Page 1 THOMAS JEFFERSON SHARPTON Rank
    THOMAS JEFFERSON SHARPTON Rank: Associate Professor Department: Department of Microbiology, Oregon State University Department of Statistics, Oregon State University Date Hired: October 15, 2013 Address: 226 Nash Hall, Corvallis, OR 97331 Phone: (541) 737-8623 Email: [email protected] Web: lab.sharpton.org A. EDUCATION AND EMPLOYMENT INFORMATION Education 2009 Ph.D. Microbiology, Designated Emphasis in Computational Biology, University of California, Berkeley, CA, USA Dissertation: “Investigations of Natural Genomic Variation in the Fungi” Advisors: John W. Taylor & Sandrine Dudoit 2003 B.S. (Cum Laude) Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA Employment history 2019- Associate Professor Department of Microbiology, Oregon State University Department of Statistics, Oregon State University 2016- Founding Director Oregon State University Microbiome Initiative 2013-2019 Assistant Professor Department of Microbiology, Oregon State University Department of Statistics, Oregon State University 2013- Center Investigator Center for Genome Research and Biocomputing, Oregon State University 2009-2013 Bioinformatics Fellow Gladstone Institute of Cardiovascular Disease, Gladstone Institutes Advisors: Katherine Pollard & Jonathan Eisen (UC Davis) 2003-2009 Graduate Student Researcher Department of Microbiology, University of California, Berkeley Advisors: John Taylor & Sandrine Dudoit 2005 Bioinformatics Research Intern The Broad Institute Advisor: James Galagan Additional Affiliations 2017-2018 Scientific Advisory Board Member Thomas J. Sharpton – CV Page 1 Resilient Biotics, Inc. B. AWARDS 2019 Phi Kappa Phi Emerging Scholar Award 2018 OSU College of Science Research and Innovation Seed Program Award 2017 OSU College of Science Early Career Impact Award 2014 Finalist: Carter Award in Outstanding & Inspirational Teaching in Science 2013 Gladstone Scientific Leadership Award 2007 Dean’s Council Student Research Representative 2007 Effectiveness in Teaching Award, UC Berkeley 2006-2008 Chang-Lin Tien Graduate Research Fellowship C.
    [Show full text]
  • Jonathan Eisen at AAAS 2012 206 Items
    Created by JonathanEisen Powered by Jonathan Eisen at AAAS 2012 206 Items Notes from my trip to the AAAS Meeting in Vancouver 2012 Try #1 - heading to AAAS in Vancouver. My first time at AAAS. Going up to session on the Earth Microbiome Project organized by Jack Gilbert. Session: The Earth Microbiome Project: Modeling the Microbial Planet (2012 AAAS… Confex Jonathan Eisen @phylogenomics On my way to Vancouver for my first #AAASmtg - not sure if tweeting is embargoed or not - phylogenomics.blogspot.com/2012/01/aaas-m… 5:54 PM - Feb 16, 2012 · California, USA See Jonathan Eisen's other Tweets AAAS meeting - is this one for embargo watch? Phylogenomics Giving a talk at the AAAS meeting in February in Vancouver. I have avoided AAAS meetings previously because I do not like AAAS's position on open access issues. Given that AAAS is at least… Jonathan Eisen @phylogenomics · Feb 16, 2012 On my way to Vancouver for my first #AAASmtg - not sure if tweeting is embargoed or not - phylogenomics.blogspot.com/2012/01/aaas-m… DNLee @DNLee5 @phylogenomics I've tweeted and live blogged in the past. As long as you can get a wifi signal you should be fine #AAASmtg 5:56 PM - Feb 16, 2012 See DNLee's other Tweets Ginger Pinholster @gingerpin Replying to @mrgunn @mrgunn @phylogenomics Tweet away, guys. Watch our live webcasts! Pass it on. eurekalert.org/aaasnewsroom #aaasmtg 1 7:22 PM - Feb 16, 2012 See Ginger Pinholster's other Tweets Jonathan Eisen @phylogenomics Well I may be stuck in an airport but at least I have Jack #AAASmtg cc: @gilbertjacka 8:54 PM - Feb 16, 2012 · California, USA See Jonathan Eisen's other Tweets Jennifer Gardy @jennifergardy · Feb 14, 2012 Replying to @phylogenomics @phylogenomics Awesome! My weekend is a bit crazy but late Thurs (9pm-10ish) is good, Fri early PM, Sat and Sun late afternoon.
    [Show full text]
  • CASSANDRA LANE ETTINGER [email protected] • ORCID: 0000-0001-7334-403X • Casett.Github.Io
    CASSANDRA LANE ETTINGER [email protected] • ORCID: 0000-0001-7334-403X • casett.github.io EDUCATION & TRAINING UNIVERSITY OF CALIFORNIA, RIVERSIDE 2020 – present • Postdoctoral scholar, Dept. of Microbiology & Plant Pathology • Advisor: Dr. Jason Stajich UNIVERSITY OF CALIFORNIA, DAVIS 2013 – 2020 • Ph.D., Integrative Genetics & Genomics • Dissertation: Taxonomic diversity of the bacterial and fungal communities associated with the seagrass, Zostera marina • Advisor: Dr. Jonathan Eisen UNIVERSITY OF CALIFORNIA, BERKELEY 2009 – 2013 • B.A., Molecular & Cell Biology – Genetics, Genomics & Development Emphasis • Honors thesis: Genetic variation in abiotic tolerance and symbiotic quality among wild rhizobium bacteria • Advisor: Dr. Ellen Simms UNIVERSITY OF YORK, UNITED KINGDOM 2012 • Visiting Scholar, Biology & Archaeology Departments • Research project: Investigation of the role of dopamine in Drosophila vision and its relation to Parkinson’s disease • Advisor: Dr. Christopher Elliot PUBLICATIONS IN REVIEW LaForgia ML, Kang H* & Ettinger CL. Submitted. Competitive outcomes between native and invasive plants are linked to shifts in the bacterial rhizosphere microbiome. Available on bioRxiv; DOI: 10.1101/2021.01.07.425800 *undergraduate author Ettinger CL, Vann LE & Eisen JA. Submitted. Global diversity and biogeography of the Zostera marina mycobiome. Available on bioRxiv; DOI: 10.1101/2020.10.29.361022 PEER-REVIEWED PUBLICATIONS Ettinger CL & Eisen JA. 2020. Fungi, bacteria and oomycota opportunistically isolated from the seagrass, Zostera marina. PLoS One. DOI: 10.1371/journal.pone.0236135 Selbmann S, Coleine C, de Hoog S, Donati C, Druzhinina I, Ettinger CL, Gladfelter AS, Gorbushina AA, Grigoriev IV, Grube M, Gunde-Cimerman N, Muggia L, Northen T, Pennacchio C, Pòcsi I, Prigione V, Riquelme M, Segata N, Schumacher J, Shelest E, CASSANDRA LANE ETTINGER Sterflinger K, Tesei D, U’Ren J, Varese GC, Vázquez- Campos X, Vicente VA, Souza EM, Walker AL & Stajich JE.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • 2018 Annual Report Alfred P
    2018 Annual Report Alfred P. Sloan Foundation $ 2018 Annual Report Contents Preface II Mission Statement III From the President IV The Year in Discovery VI About the Grants Listing 1 2018 Grants by Program 2 2018 Financial Review 101 Audited Financial Statements and Schedules 103 Board of Trustees 133 Officers and Staff 134 Index of 2018 Grant Recipients 135 Cover: The Sloan Foundation Telescope at Apache Point Observatory, New Mexico as it appeared in May 1998, when it achieved first light as the primary instrument of the Sloan Digital Sky Survey. An early set of images is shown superimposed on the sky behind it. (CREDIT: DAN LONG, APACHE POINT OBSERVATORY) I Alfred P. Sloan Foundation $ 2018 Annual Report Preface The ALFRED P. SLOAN FOUNDATION administers a private fund for the benefit of the public. It accordingly recognizes the responsibility of making periodic reports to the public on the management of this fund. The Foundation therefore submits this public report for the year 2018. II Alfred P. Sloan Foundation $ 2018 Annual Report Mission Statement The ALFRED P. SLOAN FOUNDATION makes grants primarily to support original research and education related to science, technology, engineering, mathematics, and economics. The Foundation believes that these fields—and the scholars and practitioners who work in them—are chief drivers of the nation’s health and prosperity. The Foundation also believes that a reasoned, systematic understanding of the forces of nature and society, when applied inventively and wisely, can lead to a better world for all. III Alfred P. Sloan Foundation $ 2018 Annual Report From the President ADAM F.
    [Show full text]
  • Compact Graphical Representation of Phylogenetic Data and Metadata with Graphlan
    Compact graphical representation of phylogenetic data and metadata with GraPhlAn The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Asnicar, Francesco, George Weingart, Timothy L. Tickle, Curtis Huttenhower, and Nicola Segata. 2015. “Compact graphical representation of phylogenetic data and metadata with GraPhlAn.” PeerJ 3 (1): e1029. doi:10.7717/peerj.1029. http://dx.doi.org/10.7717/ peerj.1029. Published Version doi:10.7717/peerj.1029 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:17820708 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Compact graphical representation of phylogenetic data and metadata with GraPhlAn Francesco Asnicar1, George Weingart2, Timothy L. Tickle3, Curtis Huttenhower2,3 and Nicola Segata1 1 Centre for Integrative Biology (CIBIO), University of Trento, Italy 2 Biostatistics Department, Harvard School of Public Health, USA 3 Broad Institute of MIT and Harvard, USA ABSTRACT The increased availability of genomic and metagenomic data poses challenges at multiple analysis levels, including visualization of very large-scale microbial and microbial community data paired with rich metadata. We developed GraPhlAn (Graphical Phylogenetic Analysis), a computational tool that produces high-quality, compact visualizations of microbial genomes and metagenomes. This includes phylogenies spanning up to thousands of taxa, annotated with metadata ranging from microbial community abundances to microbial physiology or host and environmental phenotypes. GraPhlAn has been developed as an open-source command-driven tool in order to be easily integrated into complex, publication- quality bioinformatics pipelines.
    [Show full text]
  • A Genomic Journey Through a Genus of Large DNA Viruses
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Virology Papers Virology, Nebraska Center for 2013 Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses Adrien Jeanniard Aix-Marseille Université David D. Dunigan University of Nebraska-Lincoln, [email protected] James Gurnon University of Nebraska-Lincoln, [email protected] Irina V. Agarkova University of Nebraska-Lincoln, [email protected] Ming Kang University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/virologypub Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, Cell and Developmental Biology Commons, Genetics and Genomics Commons, Infectious Disease Commons, Medical Immunology Commons, Medical Pathology Commons, and the Virology Commons Jeanniard, Adrien; Dunigan, David D.; Gurnon, James; Agarkova, Irina V.; Kang, Ming; Vitek, Jason; Duncan, Garry; McClung, O William; Larsen, Megan; Claverie, Jean-Michel; Van Etten, James L.; and Blanc, Guillaume, "Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses" (2013). Virology Papers. 245. https://digitalcommons.unl.edu/virologypub/245 This Article is brought to you for free and open access by the Virology, Nebraska Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Virology Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Adrien Jeanniard, David D. Dunigan, James Gurnon, Irina V. Agarkova, Ming Kang, Jason Vitek, Garry Duncan, O William McClung, Megan Larsen, Jean-Michel Claverie, James L. Van Etten, and Guillaume Blanc This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ virologypub/245 Jeanniard, Dunigan, Gurnon, Agarkova, Kang, Vitek, Duncan, McClung, Larsen, Claverie, Van Etten & Blanc in BMC Genomics (2013) 14.
    [Show full text]
  • Comparative and Genetic Analysis of the Four Sequenced Paenibacillus
    Eastman et al. BMC Genomics 2014, 15:851 http://www.biomedcentral.com/1471-2164/15/851 RESEARCH ARTICLE Open Access Comparative and genetic analysis of the four sequenced Paenibacillus polymyxa genomes reveals a diverse metabolism and conservation of genes relevant to plant-growth promotion and competitiveness Alexander W Eastman1,2, David E Heinrichs2 and Ze-Chun Yuan1,2* Abstract Background: Members of the genus Paenibacillus are important plant growth-promoting rhizobacteria that can serve as bio-reactors. Paenibacillus polymyxa promotes the growth of a variety of economically important crops. Our lab recently completed the genome sequence of Paenibacillus polymyxa CR1. As of January 2014, four P. polymyxa genomes have been completely sequenced but no comparative genomic analyses have been reported. Results: Here we report the comparative and genetic analyses of four sequenced P. polymyxa genomes, which revealed a significantly conserved core genome. Complex metabolic pathways and regulatory networks were highly conserved and allow P. polymyxa to rapidly respond to dynamic environmental cues. Genes responsible for phytohormone synthesis, phosphate solubilization, iron acquisition, transcriptional regulation, σ-factors, stress responses, transporters and biomass degradation were well conserved, indicating an intimate association with plant hosts and the rhizosphere niche. In addition, genes responsible for antimicrobial resistance and non-ribosomal peptide/polyketide synthesis are present in both the core and accessory genome of each strain. Comparative analyses also reveal variations in the accessory genome, including large plasmids present in strains M1 and SC2. Furthermore, a considerable number of strain-specific genes and genomic islands are irregularly distributed throughout each genome. Although a variety of plant-growth promoting traits are encoded by all strains, only P.
    [Show full text]
  • Isolation, Identification and Investigation of Their Bioactive Potential Inês Filipa Coelho Ribeiro
    M DISSERTAÇÃO DE MESTRADO DE DISSERTAÇÃO AMBIENTAIS CONTAMINAÇÃO E TOXICOLOGIA Marine Actinobacteria from the Northern isolation, Coast: Portuguese of their and investigation identification bioactive potential Inês Filipa Coelho Ribeiro 2017 Inês Filipa Coelho Ribeiro. Marine Actinobacteria from the Northern Portuguese Coast: isolation, identification and M.ICBAS 2017 investigation of their bioactive potential Marine Actinobacteria from the Northern Portuguese Coast: isolation, identification and investigation of their bioactive potential Inês Filipa Coelho Ribeiro SEDE ADMINISTRATIVA INSTITUTO DE CIÊNCIAS BIOMÉDICAS ABEL SALAZAR FACULDADE DE CIÊNCIAS INÊS FILIPA COELHO RIBEIRO MARINE ACTINOBACTERIA FROM THE NORTHERN PORTUGUESE COAST: ISOLATION, IDENTIFICATION AND INVESTIGATION OF THEIR BIOACTIVE POTENTIAL Dissertação de Candidatura ao grau de Mestre em Toxicologia e Contaminação Ambientais submetida ao Instituto de Ciências Biomédicas de Abel Salazar da Universidade do Porto. Orientadora – Doutora Maria de Fátima Carvalho Categoria – Investigadora Auxiliar Afiliação – Centro Interdisciplinar de Investigação Marinha e Ambiental da Universidade do Porto Co-orientador – Doutor Filipe Pereira Categoria – Investigador Auxiliar Afiliação – Centro Interdisciplinar de Investigação Marinha e Ambiental da Universidade do Porto ACKNOWLEDGEMENTS First of all, I would like to thank my supervisor, Dr. Fátima Carvalho, who received me and made possible the work done in this thesis. My genuine thanks for all the shared knowledge, for all the trust and dedication and for all you provided me so that my goals were achieved. Thank you for being part of a very important phase for my personal and professional development. I would also like to thank my co-advisor, Dr. Filipe Pereira for his trust, for the support he provided me and for his contribution in the tools of molecular biology that were used in this work.
    [Show full text]
  • CV 2015 Sharpton, Thomas.Pdf
    THOMAS JEFFERSON SHARPTON Department of Microbiology [email protected] Oregon State University lab.sharpton.org 226 Nash Hall, Corvallis, OR 97331 @tjsharpton tel: (541) 737-8623 fax: (541) 737-0496 github.com/sharpton EDUCATION 2009 University of California, Berkeley, CA Ph.D., Microbiology, Designated Emphasis in Computational Biology 2003 Oregon State University, Corvallis, OR B.S. (Cum Laude), Biochemistry and Biophysics. APPOINTMENTS 2013- Assistant Professor Departments of Microbiology and Statistics, Oregon State University 2009-2013 Bioinformatics Fellow Gladstone Institute of Cardiovascular Disease, Gladstone Institutes Mentors: Katherine Pollard & Jonathan Eisen (UC Davis) 2003-2009 Graduate Student Researcher Department of Microbiology, University of California, Berkeley Mentors: John Taylor & Sandrine Dudoit 2005 Bioinformatics Research Intern The Broad Institute Mentor: James Galagan 2002-2003 Research Assistant Department of Zoology, Oregon State University 2001 Research Assistant International Arctic Research Center, University of Alaska, Fairbanks, AK HONORS & AWARDS 2013 Gladstone Scientific Leadership Award 2007 Dean’s Council Student Research Representative 2007 Effectiveness in Teaching Award, UC Berkeley 2006-2008 Chang-Lin Tien Graduate Research Fellowship 2002 Student Leadership Fellowship 2002 HHMI Undergraduate Research Fellowship 2002-2003 Dr. Donald MacDonald Excellence in Science Scholarship 2002 OSU College of Science's Excellence in Science Scholarship 1999-2003 Provost Scholarship 1999 American Legion Student Ethics Award PUBLICATIONS Refereed Journal Articles 17. O’Dwyer JP, Kembel SW, Sharpton TJ (In Review) Backbones of Evolutionary History Test Biodiversity Theory for Microbes 16. Quandt AC, Kohler A, Hesse C, Sharpton TJ, Martin F, Spatafora JW. (In Print) Metagenomic sequence of Elaphomyces granulatus from sporocarp tissue reveals Ascomycota ectomycorrhizal fingerprints of genome expansion and a Proteobacteria rich microbiome.
    [Show full text]