Thiobacillus Denitrificans

Total Page:16

File Type:pdf, Size:1020Kb

Thiobacillus Denitrificans Nitrate-Dependent, Neutral pH Bioleaching of Ni from an Ultramafic Concentrate by Han Zhou A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Chemical Engineering and Applied Chemistry University of Toronto © Copyright by Han Zhou 2014 ii Nitrate-Dependent, Neutral pH Bioleaching of Ni from an Ultramafic Concentrate Han Zhou Master of Applied Science Chemical Engineering and Applied Chemistry University of Toronto 2014 Abstract This study explores the possibility of utilizing bioleaching techniques for nickel extraction from a mixed sulfide ore deposit with high magnesium content. Due to the ultramafic nature of this material, well-studied bioleaching technologies, which rely on acidophilic bacteria, will lead to undesirable processing conditions. This is the first work that incorporates nitrate-dependent bacteria under pH 6.5 environments for bioleaching of base metals. Experiments with both defined bacterial strains and indigenous mixed bacterial cultures were conducted with nitrate as the electron acceptor and sulfide minerals as electron donors in a series of microcosm studies. Nitrate consumption, sulfate production, and Ni released into the aqueous phase were used to track the extent of oxidative sulfide mineral dissolution; taxonomic identification of the mixed culture community was performed using 16S rRNA gene sequencing. Nitrate-dependent microcosms that contained indigenous sulfur- and/or iron-oxidizing microorganisms were cultured, characterized, and provided a proof-of-concept basis for further bioleaching studies. iii Acknowledgments I would like to extend my most sincere gratitude toward both of my supervisors Dr. Vladimiros Papangelakis and Dr. Elizabeth Edwards. This work could not have been completed without your brilliant and patient guidance. Your enthusiasm and curiosity in scientific pursuit and teaching is a constant source of motivation in my work; your energy and optimistic take on life will forever guide me and I will always look upon you two as role models in life. NSERC and our industrial sponsor Vale deserve recognition for providing funding and the ore material for my research. I would like to thank Susie (Endang Susilawati) and Line Lomheim in Biozone in teaching me how to work in a large microbiology lab on a daily basis and always being there to offer their help with lab related issues and where to find stuff. (It’s surprising how big a difference it makes!) I would also like to recognize Paul Jowlabar for his help in earlier stages of my project with building my first set of reactors, and George Kretschemann for his expertise in mineralogy analysis. I want to thank all my lab mates and colleagues, Georgiana, Doug, Srinath, Fei, Cheryl, Shuiquan, Chris, and everyone else in both APEC lab and Edlab, your friendship, guidance, and generosity have made the past two and a half years a memorable and rewarding experience in my life. The most sincere gratitude and love goes to my parents, Bing Zhou and Jiang Gao, for their unconditional love and support in my education and all other aspects in life. Without them, I could not have become the person I am today. Finally, I would like to dedicate this work to my grandfather, Ruju Zhou. iv Table of Contents Acknowledgments ............................................................................................................................... iii Table of Contents ................................................................................................................................. iv List of Tables ......................................................................................................................................... vii List of Figures ........................................................................................................................................ ix List of Appendices ................................................................................................................................ xi 1 Introduction ..................................................................................................................................... 1 1.1 Overview ................................................................................................................................................. 1 1.2 Objectives ............................................................................................................................................... 2 1.3 Outline of Thesis ................................................................................................................................... 3 2 The Thompson Concentrate ....................................................................................................... 4 2.1 Thompson Deposit History ............................................................................................................... 4 2.2 Mineralogy ............................................................................................................................................. 4 2.3 Processing Concerns ........................................................................................................................... 9 2.4 Incentives for the current study ................................................................................................... 10 3 Literature Review on Biohydrometallurgy ......................................................................... 11 3.1 Introduction ......................................................................................................................................... 11 3.2 Acid Bioleaching ................................................................................................................................. 11 3.3 Bioleaching at Elevated pH ............................................................................................................. 12 3.4 Nitrate-dependent Bioleaching System ...................................................................................... 13 3.4.1 Thiobacillus denitrificans ............................................................................................................................ 13 3.4.2 S oxidation by T. denitrificans ................................................................................................................... 14 3.4.3 Fe oxidation by T. denitrificans ................................................................................................................ 14 3.4.4 Nitrite reduction inhibition in T. denitrificans. ................................................................................. 15 3.4.5 Attachment to solid surface ....................................................................................................................... 15 3.4.6 Other nitrate-dependent iron- and sulfur-oxidizing bacteria .................................................... 15 4 Methodology .................................................................................................................................. 17 4.1 Ultramafic concentrate .................................................................................................................... 17 4.1.1 Material Preparation .................................................................................................................................... 17 4.1.2 UMFC Preservation ....................................................................................................................................... 17 v 4.1.3 Acid pre-leach .................................................................................................................................................. 18 4.2 Analytical techniques ....................................................................................................................... 18 4.2.1 Solid material characterization ................................................................................................................ 18 4.2.2 Aqueous Samples ........................................................................................................................................... 20 4.3 Experiments with Defined Culture – Thiobacillus denitrificans (ATCC 25259) ............ 21 4.3.1 Revitalization, Growth, and Maintenance ........................................................................................... 21 4.3.2 Experimental Setup ....................................................................................................................................... 22 4.3.3 Sample Analysis .............................................................................................................................................. 23 4.4 Experiments with Indigenous Cultures – First Enrichment ................................................ 23 4.4.1 Collection of Indigenous Sediment Samples from Thompson .................................................... 24 4.4.2 First Enrichment – Experimental Design ............................................................................................ 24 4.4.3 Microcosm Setup ............................................................................................................................................ 25 4.4.4 Sample Analysis .............................................................................................................................................. 25 4.5 Second Enrichment ...........................................................................................................................
Recommended publications
  • Changes in Bacterioplankton Communities Resulting from Direct and Indirect Interactions with Trace Metal Gradients in an Urbaniz
    Changes in Bacterioplankton Communities Resulting From Direct and Indirect Interactions With Trace Metal Gradients in an Urbanized Marine Coastal Area Clément Coclet, Cédric Garnier, Gaël Durrieu, Dario Omanović, Sébastien d’Onofrio, Christophe Le Poupon, Jean-Ulrich Mullot, Jean-François Briand, Benjamin Misson To cite this version: Clément Coclet, Cédric Garnier, Gaël Durrieu, Dario Omanović, Sébastien d’Onofrio, et al.. Changes in Bacterioplankton Communities Resulting From Direct and Indirect Interactions With Trace Metal Gradients in an Urbanized Marine Coastal Area. Frontiers in Microbiology, Frontiers Media, 2019, 10, 10.3389/fmicb.2019.00257. hal-02049263 HAL Id: hal-02049263 https://hal.archives-ouvertes.fr/hal-02049263 Submitted on 26 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fmicb-10-00257 February 20, 2019 Time: 17:14 # 1 ORIGINAL RESEARCH published: 22 February 2019 doi: 10.3389/fmicb.2019.00257 Changes in Bacterioplankton Communities Resulting From Direct and Indirect Interactions With Trace Metal Gradients in an Urbanized
    [Show full text]
  • Downloaded 13 April 2017); Using Diamond
    bioRxiv preprint doi: https://doi.org/10.1101/347021; this version posted June 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 3 4 5 Re-evaluating the salty divide: phylogenetic specificity of 6 transitions between marine and freshwater systems 7 8 9 10 Sara F. Pavera, Daniel J. Muratorea, Ryan J. Newtonb, Maureen L. Colemana# 11 a 12 Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA 13 b School of Freshwater Sciences, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA 14 15 Running title: Marine-freshwater phylogenetic specificity 16 17 #Address correspondence to Maureen Coleman, [email protected] 18 bioRxiv preprint doi: https://doi.org/10.1101/347021; this version posted June 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract 20 Marine and freshwater microbial communities are phylogenetically distinct and transitions 21 between habitat types are thought to be infrequent. We compared the phylogenetic diversity of 22 marine and freshwater microorganisms and identified specific lineages exhibiting notably high or 23 low similarity between marine and freshwater ecosystems using a meta-analysis of 16S rRNA 24 gene tag-sequencing datasets. As expected, marine and freshwater microbial communities 25 differed in the relative abundance of major phyla and contained habitat-specific lineages; at the 26 same time, however, many shared taxa were observed in both environments. 27 Betaproteobacteria and Alphaproteobacteria sequences had the highest similarity between 28 marine and freshwater sample pairs.
    [Show full text]
  • Evaluating the Biogeochemistry and Microbial Function in the Athabasca Oil Sands Region: Understanding Natural Baselines for Reclamation End-Points
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2019 Evaluating the biogeochemistry and microbial function in the Athabasca Oil Sands region: Understanding natural baselines for reclamation end-points Thomas Reid University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Reid, Thomas, "Evaluating the biogeochemistry and microbial function in the Athabasca Oil Sands region: Understanding natural baselines for reclamation end-points" (2019). Electronic Theses and Dissertations. 7732. https://scholar.uwindsor.ca/etd/7732 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Evaluating the biogeochemistry and microbial function in the Athabasca Oil Sands
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • An Oligotrophic Deep-Subsurface Community Dependent on Syntrophy
    An oligotrophic deep-subsurface community PNAS PLUS dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers Maggie C. Y. Laua,1, Thomas L. Kieftb, Olukayode Kuloyoc,2, Borja Linage-Alvarezc,3, Esta van Heerdenc, Melody R. Lindsaya,4, Cara Magnaboscoa,5, Wei Wangd, Jessica B. Wigginsd, Ling Guod, David H. Perlmane,6, Saw Kyine, Henry H. Shwee, Rachel L. Harrisa, Youmi Ohf,7, Min Joo Yig, Roland Purtscherth, Greg F. Slateri, Shuhei Onoj, Siwen Weik, Long Lik,l, Barbara Sherwood Lollarl, and Tullis C. Onstotta aDepartment of Geosciences, Princeton University, Princeton, NJ 08544; bDepartment of Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801; cDepartment of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein 9301, South Africa; dHigh Throughput Sequencing and Microarray Facility, Lewis–Sigler Institute for Integrative Genomics, Princeton University, NJ 08544; eProteomics and Mass Spectrometry Core, Department of Molecular Biology, Princeton University, NJ 08544; fAtmospheric and Oceanic Sciences, Princeton University, Princeton, NJ 08544; gDepartment of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544; hClimate and Environmental Physics, Physics Institute, University of Bern, 3012 Bern, Switzerland; iSchool of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada L8S 4K1; jDepartment of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; kDepartment of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E3; and lDepartment of Earth Sciences, University of Toronto, Toronto, ON, Canada M5S 3B1 Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved October 26, 2016 (received for review August 10, 2016) Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under reasonable to hypothesize that subsurface inhabitants with diverse oligotrophic conditions are typically supported by H2.
    [Show full text]
  • Which Organisms Are Used for Anti-Biofouling Studies
    Table S1. Semi-systematic review raw data answering: Which organisms are used for anti-biofouling studies? Antifoulant Method Organism(s) Model Bacteria Type of Biofilm Source (Y if mentioned) Detection Method composite membranes E. coli ATCC25922 Y LIVE/DEAD baclight [1] stain S. aureus ATCC255923 composite membranes E. coli ATCC25922 Y colony counting [2] S. aureus RSKK 1009 graphene oxide Saccharomycetes colony counting [3] methyl p-hydroxybenzoate L. monocytogenes [4] potassium sorbate P. putida Y. enterocolitica A. hydrophila composite membranes E. coli Y FESEM [5] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) K. pneumonia ATCC13883 P. aeruginosa BAA-1744 composite membranes E. coli Y SEM [6] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) graphene oxide E. coli ATCC25922 Y colony counting [7] S. aureus ATCC9144 P. aeruginosa ATCCPAO1 composite membranes E. coli Y measuring flux [8] (unspecified/unique sample type) graphene oxide E. coli Y colony counting [9] (unspecified/unique SEM sample type) LIVE/DEAD baclight S. aureus stain (unspecified/unique sample type) modified membrane P. aeruginosa P60 Y DAPI [10] Bacillus sp. G-84 LIVE/DEAD baclight stain bacteriophages E. coli (K12) Y measuring flux [11] ATCC11303-B4 quorum quenching P. aeruginosa KCTC LIVE/DEAD baclight [12] 2513 stain modified membrane E. coli colony counting [13] (unspecified/unique colony counting sample type) measuring flux S. aureus (unspecified/unique sample type) modified membrane E. coli BW26437 Y measuring flux [14] graphene oxide Klebsiella colony counting [15] (unspecified/unique sample type) P. aeruginosa (unspecified/unique sample type) graphene oxide P. aeruginosa measuring flux [16] (unspecified/unique sample type) composite membranes E.
    [Show full text]
  • 55Th Annual W.W.O.A. Conference October 5-8, 2021 La Crosse Convention Center, La Crosse Inside This Issue… 2021- 2022 W.W.O.A
    VOL. 241, JUNE 2021 WISCONSIN WASTEWATER OPERATORS’ ASSOCIATION, INC. Aerial view of Jefferson Wastewater Treatment Plant, Jefferson, Wisconsin 55th Annual W.W.O.A. Conference October 5-8, 2021 La Crosse Convention Center, La Crosse Inside This Issue… 2021- 2022 W.W.O.A. OFFICIAL DIRECTORY • Presidents message / Page 3 Don Lintner Jenny Pagel President Director (2021) N2511 State Rd 57 Wastewater Foreman • Tribute to Tim Nennig / Page 4 New Holstein, WI 53061 City of Clintonville Cell: 920-418-3869 N9055 Cty Road M [email protected] Shiocton WI 54170 • City of Jefferson Wastewater / Page 6 Work: 715-823-7675 Rick Mealy Cell: 920-606-4634 President Elect [email protected] Independent Contractor Lab • Board meeting minutes & Regulatory Assistance April 2 and 3, 2020 / Page 17 319 Linden Lane Marc Stephanie Delavan WI 53115 Director (2020) Cell: 608-220-9457 Director of Public Works • Collection System seminars / Page 24 [email protected] Village of Valders 1522 Puritan Rd New Holstein WI 53061 Jeremy Cramer Work: 920-629-4970 • Board meeting minutes Vice President Wastewater Treatment Cell: 920-251-8100 March 19, 2020 / Page 25 Director [email protected] City of Sun Prairie Joshua Voigt 300 E Main Street • Reminder: Director (2022) Sun Prairie WI 53590 Direct Sales Representative Awards nominations / Page 26 Work: 608-825-0731 Flygt a Xylem Brand Cell: 608-235-9280 3894 Lake Drive jcramer@ Hartford WI 53027 • Troubleshooting Corner: cityofsunprairie.com Work: 262-506-2343 Zoogloea and Thauera / Page 27 Cell: 414-719-5567 [email protected] Jeff Smudde • Index of advertisers / Page 30 Past President Nate Tillis Director of Environmental Director (2022) Programs Maintenance Supervisor NEW Water (GBMSD) City of Waukesha 2231 N Quincy St.
    [Show full text]
  • Microbial Community Composition and Activities in Wet Flue Gas
    MICROBIAL COMMUNITY COMPOSITION AND ACTIVITIES IN WET FLUE GAS DESULFURIZATION SYSTEMS A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Gregory D. Martin May, 2017 MICROBIAL COMMUNITY COMPOSITION AND ACTIVITIES IN WET FLUE GAS DESULFURIZATION SYSTEMS Gregory D. Martin Thesis Approved: Accepted: ______________________________________ _______________________________________ Advisor Dean of the College Dr. John M. Senko Dr. John Green ______________________________________ _______________________________________ Faculty Reader Dean of the Graduate School Dr. Teresa J. Cutright Dr. Chand Midha ______________________________________ _______________________________________ Faculty Reader Date Dr. Hazel A. Barton ______________________________________ Department Chair Dr. Stephen C. Weeks ii ABSTRACT This project was conducted to characterize microbial communities and slurry in wet flue gas desulfurization (wFGD) units at coal burning power plants. An additional objective of this research was to ascertain microbial activity and the potential for microbial mercury metabolism. Coal fired power plants in the U.S. alone are responsible for emitting over 50 tons per year of Hg0 into the atmosphere. A consequence of this microbially produced MeHg is increased toxicity with distance in food webs, eventually reaching humans where it can damage nervous systems and impair fetal development. Therefore, Hg bioaccumulation as a direct result of increased anthropogenic Hg0 emissions is a global concern. To address the chemistry and microbial activities of wFGD slurry, I determined the physiochemisty of three wFGD systems. I then quantified the activity of microorganisms in the wFGD slurry using live/dead cell counts, respirometry experiments monitoring O2 consumption over time, a Hg reduction experiment monitoring total Hg loss over time, and total RNA sequencing reads.
    [Show full text]
  • SIP Metagenomics Identifies Uncultivated Methylophilaceae As Dimethylsulphide Degrading Bacteria in Soil and Lake Sediment
    The ISME Journal (2015) 9, 2336–2348 © 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 OPEN www.nature.com/ismej ORIGINAL ARTICLE SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment Özge Eyice1, Motonobu Namura2, Yin Chen1, Andrew Mead1,3, Siva Samavedam1 and Hendrik Schäfer1 1School of Life Sciences, University of Warwick, Coventry, UK and 2MOAC Doctoral Training Centre, University of Warwick, Coventry, UK Dimethylsulphide (DMS) has an important role in the global sulphur cycle and atmospheric chemistry. Microorganisms using DMS as sole carbon, sulphur or energy source, contribute to the cycling of DMS in a wide variety of ecosystems. The diversity of microbial populations degrading DMS in terrestrial environments is poorly understood. Based on cultivation studies, a wide range of bacteria isolated from terrestrial ecosystems were shown to be able to degrade DMS, yet it remains unknown whether any of these have important roles in situ. In this study, we identified bacteria using DMS as a carbon and energy source in terrestrial environments, an agricultural soil and a lake sediment, by DNA stable isotope probing (SIP). Microbial communities involved in DMS degradation were analysed by denaturing gradient gel electrophoresis, high-throughput sequencing of SIP gradient fractions and metagenomic sequencing of phi29-amplified community DNA. Labelling patterns of time course SIP experiments identified members of the Methylophilaceae family, not previously implicated in DMS degradation, as dominant DMS-degrading populations in soil and lake sediment. Thiobacillus spp. were also detected in 13C-DNA from SIP incubations. Metagenomic sequencing also suggested involvement of Methylophilaceae in DMS degradation and further indicated shifts in the functional profile of the DMS-assimilating communities in line with methylotrophy and oxidation of inorganic sulphur compounds.
    [Show full text]
  • Metagenomic Insights Into Microbial Metabolisms of a Sulfur-Influenced
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929786; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Metagenomic Insights into Microbial Metabolisms of a Sulfur- 2 Influenced Glacial Ecosystem 3 4 Christopher B. Trivedi1,4, Blake W. Stamps1, Graham E. Lau2, Stephen E. Grasby3, Alexis S. 5 Templeton2, John R. Spear1,* 6 7 1Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 8 80401 USA 9 2Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, 80309 USA 10 3Geological Survey of Canada-Calgary, Calgary, AB, T2L2A7 Canada 11 4GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam, 12 Brandenburg 14473 Germany 13 *Corresponding author: 14 John R. Spear 15 Colorado School of Mines 16 Department of Civil and Environmental Engineering 17 1500 Illinois Street 18 Golden, Colorado 80401 19 [email protected] 20 21 22 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929786; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 24 Running Title: 25 Metagenomics of a Sulfur-Influenced Glacial Ecosystem 26 27 Abstract 28 Biological sulfur cycling in polar, low-temperature ecosystems is an understudied 29 phenomenon in part due to difficulty of access and the ephemeral nature of such environments. 30 One such environment where sulfur cycling plays an important role in microbial metabolisms is 31 located at Borup Fiord Pass (BFP) in the Canadian High Arctic.
    [Show full text]
  • Bacterial Diversity in South Coast of the Caspian Sea: Culture-Dependent and Culture-Independent Survey
    Caspian J. Environ. Sci. 2018, Vol. 16 No. 3 pp. 259~269 ©Copyright by University of Guilan, Printed in I.R. Iran [Research] Bacterial diversity in south coast of the Caspian Sea: Culture-dependent and culture-independent survey Makhdoumi A. Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran E-mail: [email protected] (Received: May 08. 2018 Accepted: Aug. 16. 2018) ABSTRACT Bacterial diversity in the south coast of the Caspian Sea was studied by analyzing 16S rDNA clone library and cultivation technique. Analysis of inserts of 30 clones revealed a total of 13 OTUs. All of these sequences were related to Proteobacteria including Betaproteobacteria (60%), Gammaproteobacteria (22%) and Alphaproteobacteria (18%). The majority of these sequences (40%) branched with member of Limnobacter. Within the cultivation effort, phylotypes related to Gammaproteobacteria (60%), Firmicutes (27%), Actinobacteria (9%) and Bacteroidetes (4%) were retrieved. Members of the Bacillus (14%) and Rheinheimera (18%) were the most common isolates. The secretions of eight hydrolytic enzymes and antibiotic compounds, as well as resistance to heavy metals were studied in these marine strains. Among them 46, 45, 38, 27, 19, 19, 7 and 4% of bacterial isolates were able to produce protease, pectinase, xylanase, amylase, cellulase, lipase, urease and DNase, respectively. Two strains which are phylogenetically related to Streptomyces and Stenotrophomonas produced antimicrobial compounds and could inhibit the growth of Candida albicans and Bacillus subtilis, respectively. A total of 2, 1, 2, 3 and 2 strains could survive in the presence of lead (1500 ppm), cadmium (1000 ppm), zinc (2000 ppm), copper (2000 ppm), and Chromium (2000 ppm), respectively.
    [Show full text]
  • Mitigating Biofouling on Reverse Osmosis Membranes Via Greener Preservatives
    Mitigating biofouling on reverse osmosis membranes via greener preservatives by Anna Curtin Biology (BSc), Le Moyne College, 2017 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF APPLIED SCIENCE in the Department of Civil Engineering, University of Victoria © Anna Curtin, 2020 University of Victoria All rights reserved. This Thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. Supervisory Committee Mitigating biofouling on reverse osmosis membranes via greener preservatives by Anna Curtin Biology (BSc), Le Moyne College, 2017 Supervisory Committee Heather Buckley, Department of Civil Engineering Supervisor Caetano Dorea, Department of Civil Engineering, Civil Engineering Departmental Member ii Abstract Water scarcity is an issue faced across the globe that is only expected to worsen in the coming years. We are therefore in need of methods for treating non-traditional sources of water. One promising method is desalination of brackish and seawater via reverse osmosis (RO). RO, however, is limited by biofouling, which is the buildup of organisms at the water-membrane interface. Biofouling causes the RO membrane to clog over time, which increases the energy requirement of the system. Eventually, the RO membrane must be treated, which tends to damage the membrane, reducing its lifespan. Additionally, antifoulant chemicals have the potential to create antimicrobial resistance, especially if they remain undegraded in the concentrate water. Finally, the hazard of chemicals used to treat biofouling must be acknowledged because although unlikely, smaller molecules run the risk of passing through the membrane and negatively impacting humans and the environment.
    [Show full text]