Microbial Community Composition and Activities in Wet Flue Gas

Total Page:16

File Type:pdf, Size:1020Kb

Microbial Community Composition and Activities in Wet Flue Gas MICROBIAL COMMUNITY COMPOSITION AND ACTIVITIES IN WET FLUE GAS DESULFURIZATION SYSTEMS A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Gregory D. Martin May, 2017 MICROBIAL COMMUNITY COMPOSITION AND ACTIVITIES IN WET FLUE GAS DESULFURIZATION SYSTEMS Gregory D. Martin Thesis Approved: Accepted: ______________________________________ _______________________________________ Advisor Dean of the College Dr. John M. Senko Dr. John Green ______________________________________ _______________________________________ Faculty Reader Dean of the Graduate School Dr. Teresa J. Cutright Dr. Chand Midha ______________________________________ _______________________________________ Faculty Reader Date Dr. Hazel A. Barton ______________________________________ Department Chair Dr. Stephen C. Weeks ii ABSTRACT This project was conducted to characterize microbial communities and slurry in wet flue gas desulfurization (wFGD) units at coal burning power plants. An additional objective of this research was to ascertain microbial activity and the potential for microbial mercury metabolism. Coal fired power plants in the U.S. alone are responsible for emitting over 50 tons per year of Hg0 into the atmosphere. A consequence of this microbially produced MeHg is increased toxicity with distance in food webs, eventually reaching humans where it can damage nervous systems and impair fetal development. Therefore, Hg bioaccumulation as a direct result of increased anthropogenic Hg0 emissions is a global concern. To address the chemistry and microbial activities of wFGD slurry, I determined the physiochemisty of three wFGD systems. I then quantified the activity of microorganisms in the wFGD slurry using live/dead cell counts, respirometry experiments monitoring O2 consumption over time, a Hg reduction experiment monitoring total Hg loss over time, and total RNA sequencing reads. Microbial community composition was established by evaluation of 16S rRNA gene sequences recovered from the systems. I found live cells and increased aerobic respiration in live slurry incubations when compared to deactivated slurry samples. When comparing the 16S rRNA gene sequencing data, the wFGD communities all possessed lower relative abundances than the more physiochemically moderate river ecosystems, which provide the iii source water. However, they differed between sites in physiochemisty and predominant genera recovered through DNA analysis, as well as RNA sequencing and culturability. Two of the sites contained high percentages of the thermophilic taxa, Hydrogenophilaceae Hydrogenophilus and Hydrogenophilaceae Thiobacillus. This research strongly indicates microbial activity in the physiochemically extreme wFGD environment and suggests that microorganisms introduced from the moderate source water can adapt to the more extreme wFGD environment. Research goals of this thesis a. Determine the general physiochemisty and microbial communities of wFGD slurry. b. Establish the presence of active microbial communities in wFGD and elucidate the potential for these active communities to contribute to mercury reduction in wFGD slurry. iv ACKNOWLEDGMENTS I would like to acknowledge my advisor, Dr. John Senko for his guidance and patience over the last two years. His unflagging support and thoughtful insight into experimental design, data analysis and interpretation were invaluable. I would also like to thank Dr. Teresa Cutright, Dr. Hazel Barton, Tom Quick, Anne Marie Hartwell, Robert Miller, Shagun Sharma, Ceth Parker, and Olivia Hershey for their insight, support, and technical expertise, and Mark Golightly for his assistance in procuring samples and expertise in all aspects of wFGD system chemistry and operation. I would like to thank the Electric Power Research Institute (EPRI) for so generously supporting my research. Finally I would like to thank Dr. Francisco Moore for encouraging me to pursue a graduate degree, as well as the many friends and colleagues who have assisted me along the way. v TABLES OF CONTENTS Page LIST OF FIGURES ...................................................................................................................................... ix LIST OF TABLES ........................................................................................................................................ xi CHAPTER I. INTRODUCTION AND BACKGROUND ........................................................................................... 1 Core Concept ........................................................................................................................................... 1 Significance of Coal Burning in Global Mercury Cycles ........................................................ 2 Overview of Flue Gas Desulfurization Units ............................................................................. 3 wFGD Chemistry ................................................................................................................................... 6 Significance of Coal Combustion in Mercury Speciation ..................................................... 7 Significance of Environmental Mercury ................................................................................... 10 Environmental Mercury Speciation ............................................................................................ 10 Mercury Emission Control Methods ........................................................................................... 11 wFGD Mercury Speciation .............................................................................................................. 11 Microorganisms in wFGDs .............................................................................................................. 12 Microbial Mercury Metabolism .................................................................................................... 14 Mercury Reemission and Retention ........................................................................................... 15 Research Questions ........................................................................................................................... 16 vi Hypotheses ............................................................................................................................................ 17 Approach ................................................................................................................................................ 17 II. MATERIALS AND METHODS ......................................................................................................... 19 Site Descriptions and Characterizations ................................................................................... 19 Sample Collection Protocol ............................................................................................................. 19 Experimental Design ......................................................................................................................... 20 Chemical Characterization of wFGD Slurry and Source Water .................................. 20 Microbial Enumerations ............................................................................................................. 21 wFGD Slurry Incubations: Oxygen Consumption Experiment ................................... 21 wFGD Slurry Incubations: Mercury Loss Experiment ................................................... 22 Nucleic Acid-Based Microbial Community Characterization ...................................... 22 III. RESULTS ............................................................................................................................................... 26 Chemical Characteristics of wFGD Slurries and Source Water ....................................... 26 Microbial Enumerations .................................................................................................................. 30 wFGD Slurry Incubations: Oxygen Consumption Experiment ........................................ 32 wFGD Slurry Incubations: Mercury Loss Experiment ........................................................ 38 Nucleic Acid-Based Microbial Community Characterization ........................................... 41 16S rRNA gene transcript characterization ....................................................................... 58 IV. DISCUSSION ......................................................................................................................................... 63 Microbial Adaptability to Extreme Environments ............................................................... 64 Implications of Findings .................................................................................................................. 69 wFGD Microbial Mercury Metabolism ....................................................................................... 70 vii Future Directions ................................................................................................................................ 72 V. CONCLUSION ........................................................................................................................................ 74 REFERENCES ............................................................................................................................................. 75 APPENDIX ..................................................................................................................................................
Recommended publications
  • Changes in Bacterioplankton Communities Resulting from Direct and Indirect Interactions with Trace Metal Gradients in an Urbaniz
    Changes in Bacterioplankton Communities Resulting From Direct and Indirect Interactions With Trace Metal Gradients in an Urbanized Marine Coastal Area Clément Coclet, Cédric Garnier, Gaël Durrieu, Dario Omanović, Sébastien d’Onofrio, Christophe Le Poupon, Jean-Ulrich Mullot, Jean-François Briand, Benjamin Misson To cite this version: Clément Coclet, Cédric Garnier, Gaël Durrieu, Dario Omanović, Sébastien d’Onofrio, et al.. Changes in Bacterioplankton Communities Resulting From Direct and Indirect Interactions With Trace Metal Gradients in an Urbanized Marine Coastal Area. Frontiers in Microbiology, Frontiers Media, 2019, 10, 10.3389/fmicb.2019.00257. hal-02049263 HAL Id: hal-02049263 https://hal.archives-ouvertes.fr/hal-02049263 Submitted on 26 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fmicb-10-00257 February 20, 2019 Time: 17:14 # 1 ORIGINAL RESEARCH published: 22 February 2019 doi: 10.3389/fmicb.2019.00257 Changes in Bacterioplankton Communities Resulting From Direct and Indirect Interactions With Trace Metal Gradients in an Urbanized
    [Show full text]
  • Thiobacillus Denitrificans
    Nitrate-Dependent, Neutral pH Bioleaching of Ni from an Ultramafic Concentrate by Han Zhou A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Chemical Engineering and Applied Chemistry University of Toronto © Copyright by Han Zhou 2014 ii Nitrate-Dependent, Neutral pH Bioleaching of Ni from an Ultramafic Concentrate Han Zhou Master of Applied Science Chemical Engineering and Applied Chemistry University of Toronto 2014 Abstract This study explores the possibility of utilizing bioleaching techniques for nickel extraction from a mixed sulfide ore deposit with high magnesium content. Due to the ultramafic nature of this material, well-studied bioleaching technologies, which rely on acidophilic bacteria, will lead to undesirable processing conditions. This is the first work that incorporates nitrate-dependent bacteria under pH 6.5 environments for bioleaching of base metals. Experiments with both defined bacterial strains and indigenous mixed bacterial cultures were conducted with nitrate as the electron acceptor and sulfide minerals as electron donors in a series of microcosm studies. Nitrate consumption, sulfate production, and Ni released into the aqueous phase were used to track the extent of oxidative sulfide mineral dissolution; taxonomic identification of the mixed culture community was performed using 16S rRNA gene sequencing. Nitrate-dependent microcosms that contained indigenous sulfur- and/or iron-oxidizing microorganisms were cultured, characterized, and provided a proof-of-concept basis for further bioleaching studies. iii Acknowledgments I would like to extend my most sincere gratitude toward both of my supervisors Dr. Vladimiros Papangelakis and Dr. Elizabeth Edwards. This work could not have been completed without your brilliant and patient guidance.
    [Show full text]
  • Downloaded 13 April 2017); Using Diamond
    bioRxiv preprint doi: https://doi.org/10.1101/347021; this version posted June 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 3 4 5 Re-evaluating the salty divide: phylogenetic specificity of 6 transitions between marine and freshwater systems 7 8 9 10 Sara F. Pavera, Daniel J. Muratorea, Ryan J. Newtonb, Maureen L. Colemana# 11 a 12 Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA 13 b School of Freshwater Sciences, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA 14 15 Running title: Marine-freshwater phylogenetic specificity 16 17 #Address correspondence to Maureen Coleman, [email protected] 18 bioRxiv preprint doi: https://doi.org/10.1101/347021; this version posted June 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract 20 Marine and freshwater microbial communities are phylogenetically distinct and transitions 21 between habitat types are thought to be infrequent. We compared the phylogenetic diversity of 22 marine and freshwater microorganisms and identified specific lineages exhibiting notably high or 23 low similarity between marine and freshwater ecosystems using a meta-analysis of 16S rRNA 24 gene tag-sequencing datasets. As expected, marine and freshwater microbial communities 25 differed in the relative abundance of major phyla and contained habitat-specific lineages; at the 26 same time, however, many shared taxa were observed in both environments. 27 Betaproteobacteria and Alphaproteobacteria sequences had the highest similarity between 28 marine and freshwater sample pairs.
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • Evaluating the Biogeochemistry and Microbial Function in the Athabasca Oil Sands Region: Understanding Natural Baselines for Reclamation End-Points
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2019 Evaluating the biogeochemistry and microbial function in the Athabasca Oil Sands region: Understanding natural baselines for reclamation end-points Thomas Reid University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Reid, Thomas, "Evaluating the biogeochemistry and microbial function in the Athabasca Oil Sands region: Understanding natural baselines for reclamation end-points" (2019). Electronic Theses and Dissertations. 7732. https://scholar.uwindsor.ca/etd/7732 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Evaluating the biogeochemistry and microbial function in the Athabasca Oil Sands
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • An Oligotrophic Deep-Subsurface Community Dependent on Syntrophy
    An oligotrophic deep-subsurface community PNAS PLUS dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers Maggie C. Y. Laua,1, Thomas L. Kieftb, Olukayode Kuloyoc,2, Borja Linage-Alvarezc,3, Esta van Heerdenc, Melody R. Lindsaya,4, Cara Magnaboscoa,5, Wei Wangd, Jessica B. Wigginsd, Ling Guod, David H. Perlmane,6, Saw Kyine, Henry H. Shwee, Rachel L. Harrisa, Youmi Ohf,7, Min Joo Yig, Roland Purtscherth, Greg F. Slateri, Shuhei Onoj, Siwen Weik, Long Lik,l, Barbara Sherwood Lollarl, and Tullis C. Onstotta aDepartment of Geosciences, Princeton University, Princeton, NJ 08544; bDepartment of Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801; cDepartment of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein 9301, South Africa; dHigh Throughput Sequencing and Microarray Facility, Lewis–Sigler Institute for Integrative Genomics, Princeton University, NJ 08544; eProteomics and Mass Spectrometry Core, Department of Molecular Biology, Princeton University, NJ 08544; fAtmospheric and Oceanic Sciences, Princeton University, Princeton, NJ 08544; gDepartment of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544; hClimate and Environmental Physics, Physics Institute, University of Bern, 3012 Bern, Switzerland; iSchool of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada L8S 4K1; jDepartment of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; kDepartment of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E3; and lDepartment of Earth Sciences, University of Toronto, Toronto, ON, Canada M5S 3B1 Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved October 26, 2016 (received for review August 10, 2016) Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under reasonable to hypothesize that subsurface inhabitants with diverse oligotrophic conditions are typically supported by H2.
    [Show full text]
  • Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment
    antibiotics Article Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment Alicia Sorgen 1, James Johnson 2, Kevin Lambirth 2, Sandra M. Clinton 3 , Molly Redmond 1 , Anthony Fodor 2 and Cynthia Gibas 2,* 1 Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (A.S.); [email protected] (M.R.) 2 Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (J.J.); [email protected] (K.L.); [email protected] (A.F.) 3 Department of Geography & Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-704-687-8378 Abstract: Bacterial resistance to antibiotics is a growing global concern, threatening human and environmental health, particularly among urban populations. Wastewater treatment plants (WWTPs) are thought to be “hotspots” for antibiotic resistance dissemination. The conditions of WWTPs, in conjunction with the persistence of commonly used antibiotics, may favor the selection and transfer of resistance genes among bacterial populations. WWTPs provide an important ecological niche to examine the spread of antibiotic resistance. We used heterotrophic plate count methods to identify Citation: Sorgen, A.; Johnson, J.; phenotypically resistant cultivable portions of these bacterial communities and characterized the Lambirth, K.; Clinton,
    [Show full text]
  • SIP Metagenomics Identifies Uncultivated Methylophilaceae As Dimethylsulphide Degrading Bacteria in Soil and Lake Sediment
    The ISME Journal (2015) 9, 2336–2348 © 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 OPEN www.nature.com/ismej ORIGINAL ARTICLE SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment Özge Eyice1, Motonobu Namura2, Yin Chen1, Andrew Mead1,3, Siva Samavedam1 and Hendrik Schäfer1 1School of Life Sciences, University of Warwick, Coventry, UK and 2MOAC Doctoral Training Centre, University of Warwick, Coventry, UK Dimethylsulphide (DMS) has an important role in the global sulphur cycle and atmospheric chemistry. Microorganisms using DMS as sole carbon, sulphur or energy source, contribute to the cycling of DMS in a wide variety of ecosystems. The diversity of microbial populations degrading DMS in terrestrial environments is poorly understood. Based on cultivation studies, a wide range of bacteria isolated from terrestrial ecosystems were shown to be able to degrade DMS, yet it remains unknown whether any of these have important roles in situ. In this study, we identified bacteria using DMS as a carbon and energy source in terrestrial environments, an agricultural soil and a lake sediment, by DNA stable isotope probing (SIP). Microbial communities involved in DMS degradation were analysed by denaturing gradient gel electrophoresis, high-throughput sequencing of SIP gradient fractions and metagenomic sequencing of phi29-amplified community DNA. Labelling patterns of time course SIP experiments identified members of the Methylophilaceae family, not previously implicated in DMS degradation, as dominant DMS-degrading populations in soil and lake sediment. Thiobacillus spp. were also detected in 13C-DNA from SIP incubations. Metagenomic sequencing also suggested involvement of Methylophilaceae in DMS degradation and further indicated shifts in the functional profile of the DMS-assimilating communities in line with methylotrophy and oxidation of inorganic sulphur compounds.
    [Show full text]
  • Enhanced Nitrogen Removal of Steel Rolling Wastewater by Constructed Wetland Combined with Sulfur Autotrophic Denitrification
    sustainability Article Enhanced Nitrogen Removal of Steel Rolling Wastewater by Constructed Wetland Combined with Sulfur Autotrophic Denitrification Tao Zheng 1,2, Xiaohu Lin 1 , Jingcheng Xu 1,3,*, Jie Ren 1,4, Danyan Sun 1, Yunhui Gu 1 and Juwen Huang 1,3 1 State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; [email protected] (T.Z.); [email protected] (X.L.); [email protected] (J.R.); [email protected] (D.S.); [email protected] (Y.G.); [email protected] (J.H.) 2 Tongji Architectural Design (Group) Co., Ltd., Shanghai 200092, China 3 Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China 4 East China Architectural Design & Research Institute Co., Ltd., Shanghai 200011, China * Correspondence: [email protected]; Tel.: +86-021-6598-2010 Abstract: Constructed wetlands (CWs), an ecological treatment technology, is suitable for advanced treatment, but has an unsatisfying denitrification performance for steel rolling wastewater with low C/N ratio. This study combined sulfur autotrophic denitrification (SAD) with conventional constructed horizontal subsurface flow wetlands to treat steel rolling wastewater, exploring the feasibility of applying SAD to enhance the denitrification performance of CWs. The reactor consists of two sections, one filled with manganese sand and gravel (HF ) and another filled with ceramic, sulfur, C and lime (HFSAD). Results showed that HFC had a good performance on removing turbidity, DO, COD, and TP, while the average removal efficiency of total nitrogen (TN) in HF was just 25.6%.
    [Show full text]
  • Activated Sludge Microbial Community and Treatment Performance of Wastewater Treatment Plants in Industrial and Municipal Zones
    International Journal of Environmental Research and Public Health Article Activated Sludge Microbial Community and Treatment Performance of Wastewater Treatment Plants in Industrial and Municipal Zones Yongkui Yang 1,2 , Longfei Wang 1, Feng Xiang 1, Lin Zhao 1,2 and Zhi Qiao 1,2,* 1 School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; [email protected] (Y.Y.); [email protected] (L.W.); [email protected] (F.X.); [email protected] (L.Z.) 2 China-Singapore Joint Center for Sustainable Water Management, Tianjin University, Tianjin 300350, China * Correspondence: [email protected]; Tel.: +86-22-87402072 Received: 14 November 2019; Accepted: 7 January 2020; Published: 9 January 2020 Abstract: Controlling wastewater pollution from centralized industrial zones is important for reducing overall water pollution. Microbial community structure and diversity can adversely affect wastewater treatment plant (WWTP) performance and stability. Therefore, we studied microbial structure, diversity, and metabolic functions in WWTPs that treat industrial or municipal wastewater. Sludge microbial community diversity and richness were the lowest for the industrial WWTPs, indicating that industrial influents inhibited bacterial growth. The sludge of industrial WWTP had low Nitrospira populations, indicating that influent composition affected nitrification and denitrification. The sludge of industrial WWTPs had high metabolic functions associated with xenobiotic and amino acid metabolism. Furthermore, bacterial richness was positively correlated with conventional pollutants (e.g., carbon, nitrogen, and phosphorus), but negatively correlated with total dissolved solids. This study was expected to provide a more comprehensive understanding of activated sludge microbial communities in full-scale industrial and municipal WWTPs. Keywords: activated sludge; industrial zone; metabolic function; microbial community; wastewater treatment 1.
    [Show full text]
  • Supplementary Information the Biodiversity and Geochemistry Of
    Supplementary Information The Biodiversity and Geochemistry of Cryoconite Holes in Queen Maud Land, East Antarctica Figure S1. Principal component analysis of the bacterial OTUs. Samples cluster according to habitats. Figure S2. Principal component analysis of the eukaryotic OTUs. Samples cluster according to habitats. Figure S3. Principal component analysis of selected trace elements that cause the separation (primarily Zr, Ba and Sr). Figure S4. Partial canonical correspondence analysis of the bacterial abundances and all non-collinear environmental variables (i.e., after identification and exclusion of redundant predictor variables) and without spatial effects. Samples from Lake 3 in Utsteinen clustered with higher nitrate concentration and samples from Dubois with a higher TC abundance. Otherwise no clear trends could be observed. Table S1. Number of sequences before and after quality control for bacterial and eukaryotic sequences, respectively. 16S 18S Sample ID Before quality After quality Before quality After quality filtering filtering filtering filtering PES17_36 79285 71418 112519 112201 PES17_38 115832 111434 44238 44166 PES17_39 128336 123761 31865 31789 PES17_40 107580 104609 27128 27074 PES17_42 225182 218495 103515 103323 PES17_43 219156 213095 67378 67199 PES17_47 82531 79949 60130 59998 PES17_48 123666 120275 64459 64306 PES17_49 163446 158674 126366 126115 PES17_50 107304 104667 158362 158063 PES17_51 95033 93296 - - PES17_52 113682 110463 119486 119205 PES17_53 126238 122760 72656 72461 PES17_54 120805 117807 181725 181281 PES17_55 112134 108809 146821 146408 PES17_56 193142 187986 154063 153724 PES17_59 226518 220298 32560 32444 PES17_60 186567 182136 213031 212325 PES17_61 143702 140104 155784 155222 PES17_62 104661 102291 - - PES17_63 114068 111261 101205 100998 PES17_64 101054 98423 70930 70674 PES17_65 117504 113810 192746 192282 Total 3107426 3015821 2236967 2231258 Table S2.
    [Show full text]