Evaluating the Biogeochemistry and Microbial Function in the Athabasca Oil Sands Region: Understanding Natural Baselines for Reclamation End-Points

Total Page:16

File Type:pdf, Size:1020Kb

Evaluating the Biogeochemistry and Microbial Function in the Athabasca Oil Sands Region: Understanding Natural Baselines for Reclamation End-Points University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2019 Evaluating the biogeochemistry and microbial function in the Athabasca Oil Sands region: Understanding natural baselines for reclamation end-points Thomas Reid University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Reid, Thomas, "Evaluating the biogeochemistry and microbial function in the Athabasca Oil Sands region: Understanding natural baselines for reclamation end-points" (2019). Electronic Theses and Dissertations. 7732. https://scholar.uwindsor.ca/etd/7732 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Evaluating the biogeochemistry and microbial function in the Athabasca Oil Sands region: Understanding natural baselines for reclamation end-points By Thomas Reid A Dissertation Submitted to the Faculty of Graduate Studies through the Great Lakes Institute for Environmental Research in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Windsor Windsor, Ontario, Canada 2019 © 2019 Thomas Reid Evaluating the biogeochemistry and microbial function in the Athabasca Oil Sands region: Understanding natural baselines for reclamation end-points By Thomas Reid APPROVED BY: ______________________________________________ G. Ferris, External Examiner University of Toronto ______________________________________________ J. Ciborowski Department of Biological Sciences ______________________________________________ S.R. Chaganti Great Lakes Institute for Environmental Research ______________________________________________ S. Mundle Great Lakes Institute for Environmental Research _______________________________________________ C. Weisener, Advisor Great Lakes Institute for Environmental Research ______________________________________________ I.G. Droppo, Co-Advisor Environment and Climate Change Canada April 26, 2019 DECLARATION OF CO-AUTHORSHIP / PREVIOUS PUBLICATION I. Co-Authorship I hereby declare that this thesis incorporates material that is result of joint research, as follows: Chapter 2 of the thesis was co-authored with S.R. Chaganti, I.G. Droppo, and C.G. Weisener, under the supervision of both I.G. Droppo and C.G. Weisener. In all cases, the key ideas, primary contributions, data analysis, interpretation, and writing were performed by the author, and the contribution of co-authors was primarily through the provision of grant funding alongside experimental design. All co-authors also provided feedback for the purpose of editing and refining the manuscript. Chapter 3 of the thesis was co-authored with S.R. Chaganti, I.G. Droppo, and C.G. Weisener, under the supervision of both I.G. Droppo and C.G. Weisener. In all cases, the key ideas, primary contributions, data analysis, interpretation, and writing were performed by the author, and the contribution of co-authors was primarily through the provision of grant funding alongside experimental design. All co-authors also provided feedback for the purpose of editing and refining the manuscript. Chapter 4 of the thesis was co-authored with S.R. Chaganti, I.G. Droppo, and C.G. Weisener, under the supervision of both I.G. Droppo and C.G. Weisener. In all cases, the key ideas, primary contributions, data analysis, interpretation, and writing were performed by the author, and the contribution of co-authors was primarily through the provision of grant funding alongside experimental design. All co-authors also provided feedback for the purpose of editing and refining the manuscript. I am aware of the University of Windsor Senate Policy on Authorship and I certify that I have properly acknowledged the contribution of other researchers to my iii thesis, and have obtained written permission from each of the co-author(s) to include the above material(s) in my thesis. I certify that, with the above qualification, this thesis, and the research to which it refers, is the product of my own work. II. Previous Publication This thesis includes 3 original papers that have been previously published/submitted for publication in peer reviewed journals, as follows: Thesis Publication title/full citation Publication status* Chapter Chapter [2] Reid, T., Chaganti, S.R., Droppo, I.G., Weisener, Published C.G., 2018. Novel insights into freshwater hydrocarbon-rich sediments using metatranscriptomics: Opening the black box. Water Res. 136, 1–11. https://doi.org/10.1016/j.watres.2018.02.039 Chapter [3] Reid, T., Droppo, I.G., Chaganti, S.R., Weisener, Published C.G., 2019. Microbial metabolic strategies for overcoming low-oxygen in naturalized freshwater reservoirs surrounding the Athabasca Oil Sands: A proxy for End-Pit Lakes? Sci. Total Environ. 665, 113–124. https://doi.org/10.1016/j.scitotenv.2019.02.032 Chapter [4] Reid, T., Droppo, I.G., Chaganti, S.R., Weisener, Submitted by mid- C.G., 2019. Tracking Functional Bacterial May 2019 Biomarkers in Response to a Gradient of Contaminant Exposure within the Oil Sands River Sediment Continuums I certify that I have obtained a written permission from the copyright owner(s) to include the above published material(s) in my thesis. I certify that the above material describes work completed during my registration as a graduate student at the University of Windsor. iv III. General I declare that, to the best of my knowledge, my thesis does not infringe upon anyone’s copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material from the work of other people included in my thesis, published or otherwise, are fully acknowledged in accordance with the standard referencing practices. Furthermore, to the extent that I have included copyrighted material that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the copyright owner(s) to include such material(s) in my thesis. I declare that this is a true copy of my thesis, including any final revisions, as approved by my thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a higher degree to any other University or Institution. v ABSTRACT Understanding the biogeochemical processes governed by the complex metabolic pathways of microbial communities is paramount in understanding overall ecosystem services. Their ability to adapt to the world’s harshest environments allows them to thrive in otherwise hostile environments. The Athabasca Oil Sands of Northern Alberta, Canada, constitutes one of the largest oil sands deposits in the world. This uniquely hydrocarbon- rich environment is a diverse and complex ecosystem governed by strong anthropogenic (i.e. industrial mine sites) and natural environmental gradients (i.e. substantial bitumen outcroppings). The economically significant oil sands deposit produces millions of barrels of bitumen daily, with waste materials (i.e. sands, clays, residual bitumen etc.) pumped into large settling basins called tailings ponds. The Government of Alberta requires oil sands operators to return their mine sites to a reclaimed landscape after mining has completed, thus leaving an enormous task of determining appropriate reclamation procedures, target end-points and water quality targets. However, what remains unknown is an understanding of the baseline biogeochemical fingerprint of the natural McMurray Formation (MF) – the geological strata constituting the mineable bitumen ore. Additionally, there has yet to be any studies focusing on the microbial function in the MF, a vital research gap that would provide insight into how the indigenous microbial communities deal with this ubiquitous, natural hydrocarbon presence. The research comprising the chapters of this dissertation, are the first to reveal the active, in-situ metabolism of the bacterial communities within the MF. Novel metatranscriptomics approaches from in-situ samples are used to characterize the microbial vi metabolic processes governing these ecosystems, to better understand what may constitute viable ecosystem reclamation end-points. Functional characterizations are compared to hydrocarbon signatures and redox state of the various study sites. Results indicate a unique microbial consortium with both energy and xenobiotic metabolic pathways tailored to the complex hydrocarbon substrate of the MF. Further, the sensitivity of this metatranscriptomics approach was tested and validated as a means of tracking hydrocarbon exposure down a river continuum. Clusters of closely related co-expressing genes revealed patterns of expression indicative of exposure to the hydrocarbons of the MF, providing interesting methodologies to track pollution exposure in a hydrodynamic
Recommended publications
  • Changes in Bacterioplankton Communities Resulting from Direct and Indirect Interactions with Trace Metal Gradients in an Urbaniz
    Changes in Bacterioplankton Communities Resulting From Direct and Indirect Interactions With Trace Metal Gradients in an Urbanized Marine Coastal Area Clément Coclet, Cédric Garnier, Gaël Durrieu, Dario Omanović, Sébastien d’Onofrio, Christophe Le Poupon, Jean-Ulrich Mullot, Jean-François Briand, Benjamin Misson To cite this version: Clément Coclet, Cédric Garnier, Gaël Durrieu, Dario Omanović, Sébastien d’Onofrio, et al.. Changes in Bacterioplankton Communities Resulting From Direct and Indirect Interactions With Trace Metal Gradients in an Urbanized Marine Coastal Area. Frontiers in Microbiology, Frontiers Media, 2019, 10, 10.3389/fmicb.2019.00257. hal-02049263 HAL Id: hal-02049263 https://hal.archives-ouvertes.fr/hal-02049263 Submitted on 26 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fmicb-10-00257 February 20, 2019 Time: 17:14 # 1 ORIGINAL RESEARCH published: 22 February 2019 doi: 10.3389/fmicb.2019.00257 Changes in Bacterioplankton Communities Resulting From Direct and Indirect Interactions With Trace Metal Gradients in an Urbanized
    [Show full text]
  • Thiobacillus Denitrificans
    Nitrate-Dependent, Neutral pH Bioleaching of Ni from an Ultramafic Concentrate by Han Zhou A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Chemical Engineering and Applied Chemistry University of Toronto © Copyright by Han Zhou 2014 ii Nitrate-Dependent, Neutral pH Bioleaching of Ni from an Ultramafic Concentrate Han Zhou Master of Applied Science Chemical Engineering and Applied Chemistry University of Toronto 2014 Abstract This study explores the possibility of utilizing bioleaching techniques for nickel extraction from a mixed sulfide ore deposit with high magnesium content. Due to the ultramafic nature of this material, well-studied bioleaching technologies, which rely on acidophilic bacteria, will lead to undesirable processing conditions. This is the first work that incorporates nitrate-dependent bacteria under pH 6.5 environments for bioleaching of base metals. Experiments with both defined bacterial strains and indigenous mixed bacterial cultures were conducted with nitrate as the electron acceptor and sulfide minerals as electron donors in a series of microcosm studies. Nitrate consumption, sulfate production, and Ni released into the aqueous phase were used to track the extent of oxidative sulfide mineral dissolution; taxonomic identification of the mixed culture community was performed using 16S rRNA gene sequencing. Nitrate-dependent microcosms that contained indigenous sulfur- and/or iron-oxidizing microorganisms were cultured, characterized, and provided a proof-of-concept basis for further bioleaching studies. iii Acknowledgments I would like to extend my most sincere gratitude toward both of my supervisors Dr. Vladimiros Papangelakis and Dr. Elizabeth Edwards. This work could not have been completed without your brilliant and patient guidance.
    [Show full text]
  • Downloaded 13 April 2017); Using Diamond
    bioRxiv preprint doi: https://doi.org/10.1101/347021; this version posted June 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 3 4 5 Re-evaluating the salty divide: phylogenetic specificity of 6 transitions between marine and freshwater systems 7 8 9 10 Sara F. Pavera, Daniel J. Muratorea, Ryan J. Newtonb, Maureen L. Colemana# 11 a 12 Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA 13 b School of Freshwater Sciences, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA 14 15 Running title: Marine-freshwater phylogenetic specificity 16 17 #Address correspondence to Maureen Coleman, [email protected] 18 bioRxiv preprint doi: https://doi.org/10.1101/347021; this version posted June 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract 20 Marine and freshwater microbial communities are phylogenetically distinct and transitions 21 between habitat types are thought to be infrequent. We compared the phylogenetic diversity of 22 marine and freshwater microorganisms and identified specific lineages exhibiting notably high or 23 low similarity between marine and freshwater ecosystems using a meta-analysis of 16S rRNA 24 gene tag-sequencing datasets. As expected, marine and freshwater microbial communities 25 differed in the relative abundance of major phyla and contained habitat-specific lineages; at the 26 same time, however, many shared taxa were observed in both environments. 27 Betaproteobacteria and Alphaproteobacteria sequences had the highest similarity between 28 marine and freshwater sample pairs.
    [Show full text]
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • An Oligotrophic Deep-Subsurface Community Dependent on Syntrophy
    An oligotrophic deep-subsurface community PNAS PLUS dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers Maggie C. Y. Laua,1, Thomas L. Kieftb, Olukayode Kuloyoc,2, Borja Linage-Alvarezc,3, Esta van Heerdenc, Melody R. Lindsaya,4, Cara Magnaboscoa,5, Wei Wangd, Jessica B. Wigginsd, Ling Guod, David H. Perlmane,6, Saw Kyine, Henry H. Shwee, Rachel L. Harrisa, Youmi Ohf,7, Min Joo Yig, Roland Purtscherth, Greg F. Slateri, Shuhei Onoj, Siwen Weik, Long Lik,l, Barbara Sherwood Lollarl, and Tullis C. Onstotta aDepartment of Geosciences, Princeton University, Princeton, NJ 08544; bDepartment of Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801; cDepartment of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein 9301, South Africa; dHigh Throughput Sequencing and Microarray Facility, Lewis–Sigler Institute for Integrative Genomics, Princeton University, NJ 08544; eProteomics and Mass Spectrometry Core, Department of Molecular Biology, Princeton University, NJ 08544; fAtmospheric and Oceanic Sciences, Princeton University, Princeton, NJ 08544; gDepartment of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544; hClimate and Environmental Physics, Physics Institute, University of Bern, 3012 Bern, Switzerland; iSchool of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada L8S 4K1; jDepartment of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; kDepartment of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E3; and lDepartment of Earth Sciences, University of Toronto, Toronto, ON, Canada M5S 3B1 Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved October 26, 2016 (received for review August 10, 2016) Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under reasonable to hypothesize that subsurface inhabitants with diverse oligotrophic conditions are typically supported by H2.
    [Show full text]
  • Microbial Community Composition and Activities in Wet Flue Gas
    MICROBIAL COMMUNITY COMPOSITION AND ACTIVITIES IN WET FLUE GAS DESULFURIZATION SYSTEMS A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Gregory D. Martin May, 2017 MICROBIAL COMMUNITY COMPOSITION AND ACTIVITIES IN WET FLUE GAS DESULFURIZATION SYSTEMS Gregory D. Martin Thesis Approved: Accepted: ______________________________________ _______________________________________ Advisor Dean of the College Dr. John M. Senko Dr. John Green ______________________________________ _______________________________________ Faculty Reader Dean of the Graduate School Dr. Teresa J. Cutright Dr. Chand Midha ______________________________________ _______________________________________ Faculty Reader Date Dr. Hazel A. Barton ______________________________________ Department Chair Dr. Stephen C. Weeks ii ABSTRACT This project was conducted to characterize microbial communities and slurry in wet flue gas desulfurization (wFGD) units at coal burning power plants. An additional objective of this research was to ascertain microbial activity and the potential for microbial mercury metabolism. Coal fired power plants in the U.S. alone are responsible for emitting over 50 tons per year of Hg0 into the atmosphere. A consequence of this microbially produced MeHg is increased toxicity with distance in food webs, eventually reaching humans where it can damage nervous systems and impair fetal development. Therefore, Hg bioaccumulation as a direct result of increased anthropogenic Hg0 emissions is a global concern. To address the chemistry and microbial activities of wFGD slurry, I determined the physiochemisty of three wFGD systems. I then quantified the activity of microorganisms in the wFGD slurry using live/dead cell counts, respirometry experiments monitoring O2 consumption over time, a Hg reduction experiment monitoring total Hg loss over time, and total RNA sequencing reads.
    [Show full text]
  • SIP Metagenomics Identifies Uncultivated Methylophilaceae As Dimethylsulphide Degrading Bacteria in Soil and Lake Sediment
    The ISME Journal (2015) 9, 2336–2348 © 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 OPEN www.nature.com/ismej ORIGINAL ARTICLE SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment Özge Eyice1, Motonobu Namura2, Yin Chen1, Andrew Mead1,3, Siva Samavedam1 and Hendrik Schäfer1 1School of Life Sciences, University of Warwick, Coventry, UK and 2MOAC Doctoral Training Centre, University of Warwick, Coventry, UK Dimethylsulphide (DMS) has an important role in the global sulphur cycle and atmospheric chemistry. Microorganisms using DMS as sole carbon, sulphur or energy source, contribute to the cycling of DMS in a wide variety of ecosystems. The diversity of microbial populations degrading DMS in terrestrial environments is poorly understood. Based on cultivation studies, a wide range of bacteria isolated from terrestrial ecosystems were shown to be able to degrade DMS, yet it remains unknown whether any of these have important roles in situ. In this study, we identified bacteria using DMS as a carbon and energy source in terrestrial environments, an agricultural soil and a lake sediment, by DNA stable isotope probing (SIP). Microbial communities involved in DMS degradation were analysed by denaturing gradient gel electrophoresis, high-throughput sequencing of SIP gradient fractions and metagenomic sequencing of phi29-amplified community DNA. Labelling patterns of time course SIP experiments identified members of the Methylophilaceae family, not previously implicated in DMS degradation, as dominant DMS-degrading populations in soil and lake sediment. Thiobacillus spp. were also detected in 13C-DNA from SIP incubations. Metagenomic sequencing also suggested involvement of Methylophilaceae in DMS degradation and further indicated shifts in the functional profile of the DMS-assimilating communities in line with methylotrophy and oxidation of inorganic sulphur compounds.
    [Show full text]
  • Enhanced Nitrogen Removal of Steel Rolling Wastewater by Constructed Wetland Combined with Sulfur Autotrophic Denitrification
    sustainability Article Enhanced Nitrogen Removal of Steel Rolling Wastewater by Constructed Wetland Combined with Sulfur Autotrophic Denitrification Tao Zheng 1,2, Xiaohu Lin 1 , Jingcheng Xu 1,3,*, Jie Ren 1,4, Danyan Sun 1, Yunhui Gu 1 and Juwen Huang 1,3 1 State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; [email protected] (T.Z.); [email protected] (X.L.); [email protected] (J.R.); [email protected] (D.S.); [email protected] (Y.G.); [email protected] (J.H.) 2 Tongji Architectural Design (Group) Co., Ltd., Shanghai 200092, China 3 Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China 4 East China Architectural Design & Research Institute Co., Ltd., Shanghai 200011, China * Correspondence: [email protected]; Tel.: +86-021-6598-2010 Abstract: Constructed wetlands (CWs), an ecological treatment technology, is suitable for advanced treatment, but has an unsatisfying denitrification performance for steel rolling wastewater with low C/N ratio. This study combined sulfur autotrophic denitrification (SAD) with conventional constructed horizontal subsurface flow wetlands to treat steel rolling wastewater, exploring the feasibility of applying SAD to enhance the denitrification performance of CWs. The reactor consists of two sections, one filled with manganese sand and gravel (HF ) and another filled with ceramic, sulfur, C and lime (HFSAD). Results showed that HFC had a good performance on removing turbidity, DO, COD, and TP, while the average removal efficiency of total nitrogen (TN) in HF was just 25.6%.
    [Show full text]
  • Activated Sludge Microbial Community and Treatment Performance of Wastewater Treatment Plants in Industrial and Municipal Zones
    International Journal of Environmental Research and Public Health Article Activated Sludge Microbial Community and Treatment Performance of Wastewater Treatment Plants in Industrial and Municipal Zones Yongkui Yang 1,2 , Longfei Wang 1, Feng Xiang 1, Lin Zhao 1,2 and Zhi Qiao 1,2,* 1 School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; [email protected] (Y.Y.); [email protected] (L.W.); [email protected] (F.X.); [email protected] (L.Z.) 2 China-Singapore Joint Center for Sustainable Water Management, Tianjin University, Tianjin 300350, China * Correspondence: [email protected]; Tel.: +86-22-87402072 Received: 14 November 2019; Accepted: 7 January 2020; Published: 9 January 2020 Abstract: Controlling wastewater pollution from centralized industrial zones is important for reducing overall water pollution. Microbial community structure and diversity can adversely affect wastewater treatment plant (WWTP) performance and stability. Therefore, we studied microbial structure, diversity, and metabolic functions in WWTPs that treat industrial or municipal wastewater. Sludge microbial community diversity and richness were the lowest for the industrial WWTPs, indicating that industrial influents inhibited bacterial growth. The sludge of industrial WWTP had low Nitrospira populations, indicating that influent composition affected nitrification and denitrification. The sludge of industrial WWTPs had high metabolic functions associated with xenobiotic and amino acid metabolism. Furthermore, bacterial richness was positively correlated with conventional pollutants (e.g., carbon, nitrogen, and phosphorus), but negatively correlated with total dissolved solids. This study was expected to provide a more comprehensive understanding of activated sludge microbial communities in full-scale industrial and municipal WWTPs. Keywords: activated sludge; industrial zone; metabolic function; microbial community; wastewater treatment 1.
    [Show full text]
  • Bibliography
    Bibliography Abella, C.A., X.P. Cristina, A. Martinez, I. Pibernat and X. Vila. 1998. on moderate concentrations of acetate: production of single cells. Two new motile phototrophic consortia: "Chlorochromatium lunatum" Appl. Microbiol. Biotechnol. 35: 686-689. and "Pelochromatium selenoides". Arch. Microbiol. 169: 452-459. Ahring, B.K, P. Westermann and RA. Mah. 1991b. Hydrogen inhibition Abella, C.A and LJ. Garcia-Gil. 1992. Microbial ecology of planktonic of acetate metabolism and kinetics of hydrogen consumption by Me­ filamentous phototrophic bacteria in holomictic freshwater lakes. Hy­ thanosarcina thermophila TM-I. Arch. Microbiol. 157: 38-42. drobiologia 243-244: 79-86. Ainsworth, G.C. and P.H.A Sheath. 1962. Microbial Classification: Ap­ Acca, M., M. Bocchetta, E. Ceccarelli, R Creti, KO. Stetter and P. Cam­ pendix I. Symp. Soc. Gen. Microbiol. 12: 456-463. marano. 1994. Updating mass and composition of archaeal and bac­ Alam, M. and D. Oesterhelt. 1984. Morphology, function and isolation terial ribosomes. Archaeal-like features of ribosomes from the deep­ of halobacterial flagella. ]. Mol. Biol. 176: 459-476. branching bacterium Aquifex pyrophilus. Syst. Appl. Microbiol. 16: 629- Albertano, P. and L. Kovacik. 1994. Is the genus LeptolynglYya (Cyano­ 637. phyte) a homogeneous taxon? Arch. Hydrobiol. Suppl. 105: 37-51. Achenbach-Richter, L., R Gupta, KO. Stetter and C.R Woese. 1987. Were Aldrich, H.C., D.B. Beimborn and P. Schönheit. 1987. Creation of arti­ the original eubacteria thermophiles? Syst. Appl. Microbiol. 9: 34- factual internal membranes during fixation of Methanobacterium ther­ 39. moautotrophicum. Can.]. Microbiol. 33: 844-849. Adams, D.G., D. Ashworth and B.
    [Show full text]
  • Standards in Genomic Sciences
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Plymouth Electronic Archive and Research Library Standards in Genomic Sciences Permanent draft genome of Thiobacillus thioparus DSM 505T, an obligately chemolithoautotrophic member of the Betaproteobacteria --Manuscript Draft-- Manuscript Number: SIGS-D-16-00109R3 Full Title: Permanent draft genome of Thiobacillus thioparus DSM 505T, an obligately chemolithoautotrophic member of the Betaproteobacteria Article Type: Short genome report Funding Information: U.S. Department of Energy Dr Nikos C Kyrpides (DE-AC02-05CH11231) Royal Society Dr Rich Boden (RG120444) Abstract: Thiobacillus thioparus DSM 505T is one of first two isolated strains of inorganic sulfur- oxidising Bacteria. The original strain of T. thioparus was lost almost 100 years ago and the working type strain is Culture CT (=DSM 505T = ATCC 8158T) isolated by Starkey in 1934 from agricultural soil at Rutgers University, New Jersey, USA. It is an obligate chemolithoautotroph that conserves energy from the oxidation of reduced inorganic sulfur compounds using the Kelly-Trudinger pathway and uses it to fix carbon dioxide It is not capable of heterotrophic or mixotrophic growth. The strain has a genome size of 3,201,518 bp. Here we report the genome sequence, annotation and characteristics. The genome contains 3,135 protein coding and 62 RNA coding genes. Genes encoding the transaldolase variant of the Calvin-Benson-Bassham cycle were also identified and an operon encoding carboxysomes, along with Smith's biosynthetic horseshoe in lieu of Krebs' cycle sensu stricto. Terminal oxidases were identified, viz. cytochrome c oxidase (cbb3, EC 1.9.3.1) and ubiquinol oxidase (bd, EC 1.10.3.10).
    [Show full text]
  • Supplement of Methane-Related Changes in Prokaryotes Along Geochemical Profiles in Sediments of Lake Kinneret
    Supplement of Biogeosciences, 12, 2847–2860, 2015 http://www.biogeosciences.net/12/2847/2015/ doi:10.5194/bg-12-2847-2015-supplement © Author(s) 2015. CC Attribution 3.0 License. Supplement of Methane-related changes in prokaryotes along geochemical profiles in sediments of Lake Kinneret (Israel) I. Bar-Or et al. Correspondence to: A. Kushmaro ([email protected]) The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence. Supplement 1 2 3 S1. Venn diagram showing archaeal sequences overlap between the different depths. The green 4 circle represents the top sample (0-3 cm), the blue circle represents the middle sample (6-9 cm) and 5 the red circle represents the bottom sample (29-32 cm). 6 7 1 8 Figure 2 9 S2. Venn diagram showing bacterial sequences overlap between the different depths. The green 10 circle represents the top sample (0-3 cm), the blue circle represents the middle sample (6-9 cm) and 11 the red circle represents the bottom sample (29-32 cm). 12 13 2 Table S1. The classification percentage and number of sequences of archaea A. phylum, B. class 14 and C. order by SILVA ngs. 15 Archaea 0-3 cm 6-9 cm 29-32 cm Phylum # seq % # seq % # seq % Euryarchaeota 283 98.3 1430 96.4 3048 98.0 Thaumarchaeota 5 1.7 53 3.6 62 2.0 16 Archaea 0-3 cm 6-9 cm 29-32 cm Class # seq % # seq % # seq % AK59 10.0 AK8 10.140.1 Group C3 2 0.1 2 0.1 Halobacteria 7 2.4 96 6.5 165 5.3 Marine Benthic Group B 2 0.7 24 1.6 30 1.0 Marine Group I 20.1 Methanobacteria 1 0.3 Methanomicrobia 266 92.4 1164 78.5 2679 86.1 Miscellaneous Crenarchaeotic Group 3 1.0 21 1.4 19 0.6 pSL12 2 0.1 3 0.1 South African Gold Mine Gp 1(SAGMCG-1) 3 0.2 1 0.0 Thermoplasmata 9 3.1 170 11.5 204 6.6 17 Archaea 0-3 cm 6-9 cm 29-32 cm Order # seq % # seq % # seq % 20a-9 5 0.3 3 0.1 ANME-1 1 0.0 Cenarchaeales 2 0.1 Halobacteriales 7 2.4 96 6.5 165 5.3 Methanobacteriales 1 0.3 Methanomicrobiales 202 70.1 422 28.5 878 28.2 Methanosarcinales 64 22.2 742 50.0 1800 57.9 Thermoplasmatales 8 2.8 165 11.1 201 6.5 WCHA1-57 1 0.3 Uncultured 5 1.7 53 3.6 60 1.9 18 Table S2.
    [Show full text]