MICROBIAL COMMUNITY COMPOSITION AND ACTIVITIES IN WET FLUE GAS DESULFURIZATION SYSTEMS A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Gregory D. Martin May, 2017 MICROBIAL COMMUNITY COMPOSITION AND ACTIVITIES IN WET FLUE GAS DESULFURIZATION SYSTEMS Gregory D. Martin Thesis Approved: Accepted: ______________________________________ _______________________________________ Advisor Dean of the College Dr. John M. Senko Dr. John Green ______________________________________ _______________________________________ Faculty Reader Dean of the Graduate School Dr. Teresa J. Cutright Dr. Chand Midha ______________________________________ _______________________________________ Faculty Reader Date Dr. Hazel A. Barton ______________________________________ Department Chair Dr. Stephen C. Weeks ii ABSTRACT This project was conducted to characterize microbial communities and slurry in wet flue gas desulfurization (wFGD) units at coal burning power plants. An additional objective of this research was to ascertain microbial activity and the potential for microbial mercury metabolism. Coal fired power plants in the U.S. alone are responsible for emitting over 50 tons per year of Hg0 into the atmosphere. A consequence of this microbially produced MeHg is increased toxicity with distance in food webs, eventually reaching humans where it can damage nervous systems and impair fetal development. Therefore, Hg bioaccumulation as a direct result of increased anthropogenic Hg0 emissions is a global concern. To address the chemistry and microbial activities of wFGD slurry, I determined the physiochemisty of three wFGD systems. I then quantified the activity of microorganisms in the wFGD slurry using live/dead cell counts, respirometry experiments monitoring O2 consumption over time, a Hg reduction experiment monitoring total Hg loss over time, and total RNA sequencing reads. Microbial community composition was established by evaluation of 16S rRNA gene sequences recovered from the systems. I found live cells and increased aerobic respiration in live slurry incubations when compared to deactivated slurry samples. When comparing the 16S rRNA gene sequencing data, the wFGD communities all possessed lower relative abundances than the more physiochemically moderate river ecosystems, which provide the iii source water. However, they differed between sites in physiochemisty and predominant genera recovered through DNA analysis, as well as RNA sequencing and culturability. Two of the sites contained high percentages of the thermophilic taxa, Hydrogenophilaceae Hydrogenophilus and Hydrogenophilaceae Thiobacillus. This research strongly indicates microbial activity in the physiochemically extreme wFGD environment and suggests that microorganisms introduced from the moderate source water can adapt to the more extreme wFGD environment. Research goals of this thesis a. Determine the general physiochemisty and microbial communities of wFGD slurry. b. Establish the presence of active microbial communities in wFGD and elucidate the potential for these active communities to contribute to mercury reduction in wFGD slurry. iv ACKNOWLEDGMENTS I would like to acknowledge my advisor, Dr. John Senko for his guidance and patience over the last two years. His unflagging support and thoughtful insight into experimental design, data analysis and interpretation were invaluable. I would also like to thank Dr. Teresa Cutright, Dr. Hazel Barton, Tom Quick, Anne Marie Hartwell, Robert Miller, Shagun Sharma, Ceth Parker, and Olivia Hershey for their insight, support, and technical expertise, and Mark Golightly for his assistance in procuring samples and expertise in all aspects of wFGD system chemistry and operation. I would like to thank the Electric Power Research Institute (EPRI) for so generously supporting my research. Finally I would like to thank Dr. Francisco Moore for encouraging me to pursue a graduate degree, as well as the many friends and colleagues who have assisted me along the way. v TABLES OF CONTENTS Page LIST OF FIGURES ...................................................................................................................................... ix LIST OF TABLES ........................................................................................................................................ xi CHAPTER I. INTRODUCTION AND BACKGROUND ........................................................................................... 1 Core Concept ........................................................................................................................................... 1 Significance of Coal Burning in Global Mercury Cycles ........................................................ 2 Overview of Flue Gas Desulfurization Units ............................................................................. 3 wFGD Chemistry ................................................................................................................................... 6 Significance of Coal Combustion in Mercury Speciation ..................................................... 7 Significance of Environmental Mercury ................................................................................... 10 Environmental Mercury Speciation ............................................................................................ 10 Mercury Emission Control Methods ........................................................................................... 11 wFGD Mercury Speciation .............................................................................................................. 11 Microorganisms in wFGDs .............................................................................................................. 12 Microbial Mercury Metabolism .................................................................................................... 14 Mercury Reemission and Retention ........................................................................................... 15 Research Questions ........................................................................................................................... 16 vi Hypotheses ............................................................................................................................................ 17 Approach ................................................................................................................................................ 17 II. MATERIALS AND METHODS ......................................................................................................... 19 Site Descriptions and Characterizations ................................................................................... 19 Sample Collection Protocol ............................................................................................................. 19 Experimental Design ......................................................................................................................... 20 Chemical Characterization of wFGD Slurry and Source Water .................................. 20 Microbial Enumerations ............................................................................................................. 21 wFGD Slurry Incubations: Oxygen Consumption Experiment ................................... 21 wFGD Slurry Incubations: Mercury Loss Experiment ................................................... 22 Nucleic Acid-Based Microbial Community Characterization ...................................... 22 III. RESULTS ............................................................................................................................................... 26 Chemical Characteristics of wFGD Slurries and Source Water ....................................... 26 Microbial Enumerations .................................................................................................................. 30 wFGD Slurry Incubations: Oxygen Consumption Experiment ........................................ 32 wFGD Slurry Incubations: Mercury Loss Experiment ........................................................ 38 Nucleic Acid-Based Microbial Community Characterization ........................................... 41 16S rRNA gene transcript characterization ....................................................................... 58 IV. DISCUSSION ......................................................................................................................................... 63 Microbial Adaptability to Extreme Environments ............................................................... 64 Implications of Findings .................................................................................................................. 69 wFGD Microbial Mercury Metabolism ....................................................................................... 70 vii Future Directions ................................................................................................................................ 72 V. CONCLUSION ........................................................................................................................................ 74 REFERENCES ............................................................................................................................................. 75 APPENDIX ..................................................................................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages96 Page
-
File Size-