Universidad Nacional Autónoma De México

Total Page:16

File Type:pdf, Size:1020Kb

Universidad Nacional Autónoma De México UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS QUÍMICAS ESTUDIO FITOQUÍMICO DE Wigandia urens (HYDROPHYLLACEAE) TESIS PARA OPTAR POR EL GRADO DE MAESTRO EN CIENCIAS PRESENTA Q.I. JUAN CAMILO VARGAS GALLEGO TUTOR: Dr. LEOVIGILDO QUIJANO INSTITUTO DE QUÍMICA MÉXICO, D.F. MAYO DE 2014 Este trabajo se desarrolló en el laboratorio 2-6 del Instituto de Química de la UNAM bajo la asesoría del Doctor Leovigildo Quijano. Este trabajo fue presentado en los siguientes eventos en la modalidad de cartel: 9na Reunión Internacional de Investigación de Productos Naturales Dra. Luisa Urania Román Marín realizada en Pachuca-Hidalgo entre el 29-31 de mayo de 2013. QuimiUNAM realizado entre el 13-15 noviembre de 2013. Simposio Interno del Instituto de Química realizado entre el 15-17 de enero de 2014. DEDICATORIA A mi madre Ofelia y mis hermanas Melisa y Vanessa las cuales han sido la luz en los momentos más difíciles y la guía para llevar un buen camino. A la memoria de mis tias Aura y María Cristina las cuales me brindaron el amor de una madre. A toda mi familia que siempre me acompaña desde la distancia. AGRADECIMIENTOS Al Dr. Leovigildo Quijano por su asesoría y paciencia, por brindarme la oportunidad de trabajar junto a él, enseñarme el gusto por la investigación, además de todas sus enseñanzas a nivel académico y personal. A los jurados Dra. Rachel Mata, Dr. Rogelio Pereda, Dr. Mariano Martínez, M. en C. Emma Maldonado y Dra. Yolanda Rios por sus correcciones, disposición y sugerencias en pro de mejorar la calidad del trabajo. A la Q. Ma. De los Ángeles Peña, la M. en C. Elizabeth Huerta, el M. en C. Héctor Ríos, la Dra. Beatriz Quiroz y el Dr. Rubén Gaviño por la determinación de los espectros de RMN. Al Ing. Q. Luis Velasco y al Dr. Francisco Javier Pérez por al determinación de los espectros de masas. A la Q.F.B. Rocio Patiño por la determinación de los espectros de IR, Rotación óptica, UV y dicroísmo circular. Al M. en C. Antonio Nieto Camacho y la M. en C. Maria Teresa Ramírez Apan por los resultados de pruebas biológicas, por su asesoría y enseñanzas. Al CONACYT por la beca otorgada con número de becario: 475926 Al Insituto de Química, al Posgrado en Ciencias químicas y a la UNAM, ya que me brindaron la oportunidad de realizar los estudios de posgrado y de compartir experiencias muy satisfactorias en mi proceso de formación. A mi novia Catalina Frias por su apoyo incondicional durante este tiempo. A mis amigos que están cerca y los que me acompañan en la distancia, con los que se han compartido gratos momentos. Y a todo aquel que haya ayudado de alguna manera en la realización de este trabajo. CONTENIDO RESUMEN 1 ABSTRACT 3 INTRODUCCIÓN 4 GENERALIDADES 5 o Taxonomía, descripción botánica y distribución de Wigandia urens 5 o Antecedentes químicos de la familia Hydrophyllaceae 8 o Estructura y actividad biológica de compuestos fenólicos prenilados 9 JUSTIFICACIÓN 14 OBJETIVOS 15 o Generales 15 o Específicos 15 PARTE EXPERIMENTAL 16 o Materiales y métodos 16 o Equipos utilizados 16 o Preparación de los extractos 17 o Aislamiento y purificación 18 o Preparación de derivados 31 o Pruebas biológicas 32 o Compuestos aislados 34 o Derivados obtenidos 36 o Resumen datos espectroscópicos 37 DISCUSIÓN DE RESULTADOS 39 o Identificación espectroscópica 39 o Pruebas biológicas 84 CONCLUSIONES 88 BIBLIOGRAFÍA 89 ANEXOS 96 LISTA DE CUADROS Cuadro 1. Sinonimia de Wigandia urens. 6 Cuadro 2. Fracciones primarias obtenidas del extracto hexánico (Wu-Hx). 18 Cuadro 3. Fracciones secundarias obtenidas de la recromatografía de la fracción 19 Wu-Hx-H. Cuadro 4. Fracciones secundarias obtenidas de la recromatografía de la fracción 20 Wu-Hx-I. Cuadro 5. Fracciones terciarias obtenidas de la recromatografía de la fracción 21 Wu-Hx-IB. Cuadro 6. Fracciones secundarias obtenidas de la recromatografía de la fracción 22 Wu-Hx-J. Cuadro 7. Fracciones secundarias obtenidas de la recromatografía de la fracción 23 Wu-Hx-K. Cuadro 8. Fracciones primarias obtenidas del extracto de diclorometanico (Wu-DCM). 24 Cuadro 9. Fracciones secundarias obtenidas de la recromatografía de la fracción 25 Wu-DCM-C. Cuadro 10. Fracciones secundarias obtenidas de la recromatografía de la fracción 26 Wu-DCM-F. Cuadro 11. Fracciones secundarias obtenidas de la recromatografía de la fracción 27 Wu-DCM-G. Cuadro 12. Fracciones primarias obtenidas del extracto acetónico (Wu-Ace). 28 Cuadro 13. Fracciones secundarias obtenidas de la recromatografía de la fracción 29 Wu-Ace-F-AcO. Cuadro 14. Fracciones primarias obtenidas del extracto metanolico (Wu-MeOH). 30 LISTA DE TABLAS Tabla 1. Datos espectroscópicos de RMN (400 MHz, CDCl3) para el compuesto 1. 43 1 Tabla 2. Datos comparativos de RMN H en CDCl3 entre el compuesto 1 y 1a aislado 45 de P. ixodes. Tabla 3. Datos espectroscópicos de RMN (400 MHz, CDCl3) del compuesto 2. 49 Tabla 4. Datos espectroscópicos de RMN en CDCl3 para el desacetilwigandol (3). 54 Tabla 5. Datos comparativos del desacetilwigandol aislado y el producto de reducción 55 de la globiferina en acetona-d6. Tabla 6. Datos comparativos de RMN en CDCl3 de la globiferina aislada de W. urens y 57 el compuesto de Cordia globifera. 1 Tabla 7. Datos de RMN H en CDCl3 de los benzociclodecadienos aislados de W. urens. 58 Tabla 8. Datos comparativos de RMN 13C de los benzociclodecadienos aislados. 59 Tabla 9. Datos espectroscópicos de RMN a 400 MHz en CDCl3 para el compuesto 4 y 62 el compuesto aislado de Cordia alliodora. Tabla 10. Datos de RMN 1H y RMN 13C de la rhamnazina aislada de W. urens y la 66 obtenida de G. repens en CDCl3 y acetona-d6. Tabla 11. Datos comparativos del compuesto (17) y el compuesto aislado de 73 I. warburgii en D2O. Tabla 12. Datos comparativos de los peracetatos del compuesto aislado de W. urens y 75 del compuesto de I. warburgii sintético en CDCl3. 1 13 Tabla 13. Datos espectroscópicos de RMN en D2O para H (400 MHz) y C (100 MHz) 76 para el compuesto 17. 1 Tabla 14. Datos espectroscópicos de RMN en DMSO-d6 para H (400 MHz) y 77 13C (100 MHz) para el compuesto 17. Tabla 15. Datos espectroscópicos de RMN 400 MHz en CDCl3 para las verapliquinonas 79 A y B. Tabla 16. Datos espectroscópicos de RMN 400 MHz en C6D6 para las verapliquinonas 80 A y B. Tabla 17. Tabla comparativa de los compuestos aislados de W. urens. 83 Tabla 18. Evaluación preliminar de la actividad captadora del radical DPPH. 84 Tabla 19. Valores de IC50 de los tres compuestos evaluados y los estándares. 85 Tabla 20. Evaluación preliminar de la actividad inhibitoria de la proliferación celular. 86 Tabla 21. Evaluación preliminar de la actividad antiinflamatoria. 87 LISTA DE FIGURAS Figura 1. Wigandia urens, ejemplar en el Campus UNAM 6 Figura 2. Flores y tallos de W. urens. 7 Figura 3. Tricomas presentes en tallos y hojas. 7 Figura 4. Compuestos fenólicos prenilados aislados de especies de los géneros Phacelia 8 y Wigandia. Figura 5. Compuestos fenólicos prenilados aislados de especies del género Nama. 8 Figura 6. Flavonoides aislados de especies de la familia Hydrophyllaceae. 9 Figura 7. Prenilquinona (XXIV), prenilhidroquinona (XXV), y 10 6-hidroxi-2,2-dimetilcromeno (XXVI). Figura 8. Geranilhidroquinona (XXVII), geranilbenzoquinona (XXIX) y derivados con 10 actividad citotóxica. Figura 9. Longitoronas y longitoroles de Aplidium longithorax. 11 Figura 10. Derivados cíclicos de la geranilhidroquinona (XXVII) aislados del hongo 11 Tricholoma terreum. Figura 11. Farnesilhidroquinona (XLIV) y derivados de la geranilhidroquinona (XXVII) 12 con actividad antioxidante. Figura 12. Flavidulol A (XLV) y sus derivados dihidro y tetrahidro. 12 Figura 13. Globiferina (XLVIII) y sus derivados bioactivos. 13 Figura 14. Wigandol (LI). 13 Figura 15. Sorgoleona (LII). 13 Figura 16. Esquema de extracción. 17 Figura 17. Representación de los protones aromáticos del anillo tetrasustituido en 39 el espectro de protón del compuesto 1. Figura 18. Correlaciones observadas en el experimento COSY del geranilo. 40 Figura 19. Efecto NOE observado entre el protón aromático H-6 y el metoxilo. 41 Figura 20. Efectos NOE observados en el protón aromático H-2 y determinación de la 41 configuración E del doble enlace 2’ del compuesto 1. Figura 21. Correlaciones 1H-13C observadas en el espectro HMBC del compuesto 1. 42 Figura 22. Fragmentos de masas del compuesto 1. 44 Figura 23. Isómero 1a aislado de Phacelia ixodes. 44 Figura 24. Patrón de sustitución del anillo aromático en el compuesto 2. 46 Figura 25. Correlaciones NOE observadas entre el anillo aromático y el doble enlace Z. 47 Figura 26. Efectos NOE observados en la cadena prenilada y determinación de la 47 configuración E del doble enlace C-6’. Figura 27. Correlaciones HMBC entre los protones del doble enlace cis y los carbonos 48 del anillo aromático. Figura 28. Correlaciones HMBC entre los protones a dos y tres enlaces con el carbono 48 cuaternario base de oxígeno. Figura 29. Estructura compuesto (2). 48 Figura 30. Fragmentos del espectro de masas por IE del compuesto (2). 50 Figura 31. Correlaciones 1H-1H en el experimento COSY del desacetilwigandol. 51 Figura 32. Efecto NOE entre el metilo 15 y el protón vinílico H-7 que establece la 52 configuración Z del doble enlace en C-6. Figura 33. Correlaciones 1H- 13C (HMBC) observadas en el desacetilwigandol (3). 53 Figura 34. Fragmentos del espectro de masas por IE del desacetilwigandol (3). 53 Figura 35. Flavidulol A (7), wigandol (12) y globiferina (9). 56 Figura 36. Compuesto aislado de Cordia alliodora. 60 Figura 37. Fragmentos del espectro de masas por IE del compuesto (4).
Recommended publications
  • The Jepson Manual: Vascular Plants of California, Second Edition Supplement II December 2014
    The Jepson Manual: Vascular Plants of California, Second Edition Supplement II December 2014 In the pages that follow are treatments that have been revised since the publication of the Jepson eFlora, Revision 1 (July 2013). The information in these revisions is intended to supersede that in the second edition of The Jepson Manual (2012). The revised treatments, as well as errata and other small changes not noted here, are included in the Jepson eFlora (http://ucjeps.berkeley.edu/IJM.html). For a list of errata and small changes in treatments that are not included here, please see: http://ucjeps.berkeley.edu/JM12_errata.html Citation for the entire Jepson eFlora: Jepson Flora Project (eds.) [year] Jepson eFlora, http://ucjeps.berkeley.edu/IJM.html [accessed on month, day, year] Citation for an individual treatment in this supplement: [Author of taxon treatment] 2014. [Taxon name], Revision 2, in Jepson Flora Project (eds.) Jepson eFlora, [URL for treatment]. Accessed on [month, day, year]. Copyright © 2014 Regents of the University of California Supplement II, Page 1 Summary of changes made in Revision 2 of the Jepson eFlora, December 2014 PTERIDACEAE *Pteridaceae key to genera: All of the CA members of Cheilanthes transferred to Myriopteris *Cheilanthes: Cheilanthes clevelandii D. C. Eaton changed to Myriopteris clevelandii (D. C. Eaton) Grusz & Windham, as native Cheilanthes cooperae D. C. Eaton changed to Myriopteris cooperae (D. C. Eaton) Grusz & Windham, as native Cheilanthes covillei Maxon changed to Myriopteris covillei (Maxon) Á. Löve & D. Löve, as native Cheilanthes feei T. Moore changed to Myriopteris gracilis Fée, as native Cheilanthes gracillima D.
    [Show full text]
  • Bob Allen's OCCNPS Presentation About Plant Families.Pages
    Stigma How to identify flowering plants Style Pistil Bob Allen, California Native Plant Society, OC chapter, occnps.org Ovary Must-knows • Flower, fruit, & seed • Leaf parts, shapes, & divisions Petal (Corolla) Anther Stamen Filament Sepal (Calyx) Nectary Receptacle Stalk Major local groups ©Bob Allen 2017 Apr 18 Page !1 of !6 A Botanist’s Dozen Local Families Legend: * = non-native; (*) = some native species, some non-native species; ☠ = poisonous Eudicots • Leaf venation branched; veins net-like • Leaf bases not sheathed (sheathed only in Apiaceae) • Cotyledons 2 per seed • Floral parts in four’s or five’s Pollen apertures 3 or more per pollen grain Petal tips often • curled inward • Central taproot persists 2 styles atop a flat disk Apiaceae - Carrot & Parsley Family • Herbaceous annuals & perennials, geophytes, woody perennials, & creepers 5 stamens • Stout taproot in most • Leaf bases sheathed • Leaves alternate (rarely opposite), dissected to compound Style “horns” • Flowers in umbels, often then in a secondary umbel • Sepals, petals, stamens 5 • Ovary inferior, with 2 chambers; styles 2; fruit a dry schizocarp Often • CA: Apiastrum, Yabea, Apium*, Berula, Bowlesia, Cicuta, Conium*☠ , Daucus(*), vertically Eryngium, Foeniculum, Torilis*, Perideridia, Osmorhiza, Lomatium, Sanicula, Tauschia ribbed • Cult: Apium, Carum, Daucus, Petroselinum Asteraceae - Sunflower Family • Inflorescence a head: flowers subtended by an involucre of bracts (phyllaries) • Calyx modified into a pappus • Corolla of 5 fused petals, radial or bilateral, sometimes both kinds in same head • Radial (disk) corollas rotate to salverform • Bilateral (ligulate) corollas strap-shaped • Stamens 5, filaments fused to corolla, anthers fused into a tube surrounding the style • Ovary inferior, style 1, with 2 style branches • Fruit a cypsela (but sometimes called an achene) • The largest family of flowering plants in CA (ca.
    [Show full text]
  • Hydrophyllaceae
    FLORA CRITICA Fondazione per la Flora Italiana D’ITALIA Hydrophyllaceae Hydrophyllaceae Lorenzo Cecchi & Federico Selvi Fondazione per la Flora Italiana, Firenze FLORA CRITICA D’ITALIA Edito dalla Fondazione per la Flora Italiana con il supporto della Società Botanica Italiana e il contributo della Fondazione Internazionale pro Herbario Mediterraneo Comitato editoriale Lorenzo Peruzzi (Pisa) (Coordinatore), Lorenzo Cecchi (Firenze), Giovanni Cristofolini (Bologna), Gianniantonio Domina (Palermo), Werner Greuter (Palermo), Enio Nardi (Firenze), Francesco M. Raimondo (Palermo), Federico Selvi (Firenze), Angelo Troìa (Palermo) Hydrophyllaceae Versione 1.0, pubblicata online il 25.02.2015 Lorenzo Cecchi1 & Federico Selvi2 1Università degli Studi di Firenze, Museo di Storia Naturale, Sezione Botanica “Filippo Parlatore”, via G. La Pira 4 – 50121 Firenze, Italia. 2Università degli Studi di Firenze, Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente (DISPAA), Laboratori di Botanica, piazzale delle Cascine 28 – 50144 Firenze, Italia. FONDAZIONE PER LA FLORA ITALIANA, FIRENZE Fondazione per la Flora Italiana Atto costitutivo: Palermo, Orto Botanico, 28.09.2007 Primo Consiglio di Amministrazione (2009‐2012): Carlo Blasi, Donato Chiatante, Bruno Corrias, Giovanni Cristofolini e Francesco Maria Raimondo © 2015 Fondazione per la Flora Italiana, tutti i diritti riservati Composizione grafica Giuseppe Bazan, Lorenzo Cecchi & Angelo Troia Immagine di copertina Phacelia tanacetifolia, disegno di L. Cecchi Pubblicato online il 25/02/2015
    [Show full text]
  • Checklist of the Vascular Plants of San Diego County 5Th Edition
    cHeckliSt of tHe vaScUlaR PlaNtS of SaN DieGo coUNty 5th edition Pinus torreyana subsp. torreyana Downingia concolor var. brevior Thermopsis californica var. semota Pogogyne abramsii Hulsea californica Cylindropuntia fosbergii Dudleya brevifolia Chorizanthe orcuttiana Astragalus deanei by Jon P. Rebman and Michael G. Simpson San Diego Natural History Museum and San Diego State University examples of checklist taxa: SPecieS SPecieS iNfRaSPecieS iNfRaSPecieS NaMe aUtHoR RaNk & NaMe aUtHoR Eriodictyon trichocalyx A. Heller var. lanatum (Brand) Jepson {SD 135251} [E. t. subsp. l. (Brand) Munz] Hairy yerba Santa SyNoNyM SyMBol foR NoN-NATIVE, NATURaliZeD PlaNt *Erodium cicutarium (L.) Aiton {SD 122398} red-Stem Filaree/StorkSbill HeRBaRiUM SPeciMeN coMMoN DocUMeNTATION NaMe SyMBol foR PlaNt Not liSteD iN THE JEPSON MANUAL †Rhus aromatica Aiton var. simplicifolia (Greene) Conquist {SD 118139} Single-leaF SkunkbruSH SyMBol foR StRict eNDeMic TO SaN DieGo coUNty §§Dudleya brevifolia (Moran) Moran {SD 130030} SHort-leaF dudleya [D. blochmaniae (Eastw.) Moran subsp. brevifolia Moran] 1B.1 S1.1 G2t1 ce SyMBol foR NeaR eNDeMic TO SaN DieGo coUNty §Nolina interrata Gentry {SD 79876} deHeSa nolina 1B.1 S2 G2 ce eNviRoNMeNTAL liStiNG SyMBol foR MiSiDeNtifieD PlaNt, Not occURRiNG iN coUNty (Note: this symbol used in appendix 1 only.) ?Cirsium brevistylum Cronq. indian tHiStle i checklist of the vascular plants of san Diego county 5th edition by Jon p. rebman and Michael g. simpson san Diego natural history Museum and san Diego state university publication of: san Diego natural history Museum san Diego, california ii Copyright © 2014 by Jon P. Rebman and Michael G. Simpson Fifth edition 2014. isBn 0-918969-08-5 Copyright © 2006 by Jon P.
    [Show full text]
  • The Phylogenetic Significance of Vestured Pits in Boraginaceae
    Rabaey & al. • Vestured pits in Boraginaceae TAXON 59 (2) • April 2010: 510–516 WOOD ANATOMY The phylogenetic significance of vestured pits in Boraginaceae David Rabaey,1 Frederic Lens,1 Erik Smets1,2 & Steven Jansen3,4 1 Laboratory of Plant Systematics, Institute of Botany and Microbiology, Kasteelpark Arenberg 31, P.O. Box 2437, 3001 Leuven, Belgium 2 Netherlands Centre for Biodiversity Naturalis (section NHN), Leiden University, P.O.Box 9514, 2300 RA Leiden, The Netherlands 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, TW9 3DS, Richmond, Surrey, U.K. 4 Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany Author for correspondence: David Rabaey, [email protected] Abstract The bordered pit structure in tracheary elements of 105 Boraginaceae species is studied using scanning electron microscopy to examine the systematic distribution of vestured pits. Forty-three species out of 16 genera show a uniform pres- ence of this feature throughout their secondary xylem. Most vestures are small, unbranched and associated with the outer pit aperture of bordered intervessel pits. The feature is likely to have originated independently in the distantly related subfamilies Boraginoideae (tribe Lithospermeae) and Ehretioideae. The distribution of vestures in Ehretia agrees with recent molecular phylogenies: (1) species with vestured pits characterise the Ehretia I group (incl. Rotula), and (2) species with non-vestured pits belong to the Ehretia II group (incl. Carmona). The occurrence of vestured pits in Hydrolea provides additional support for excluding this genus from Hydrophylloideae, since Hydrolea is the only species of this subfamily with vestured pits. Functional advantages of vestured pits promoting parallel evolution of this conservative feature are suggested.
    [Show full text]
  • Research Design and General Objectives
    Forest quality in the southwest of Mexico City. Assessment towards ecological restoration of ecosystem services Thesis submitted in partial fulfilment of the requirements of the degree Doctor rer. nat. of the Faculty of Forest and Environmental Sciences, Albert-Ludwigs-Universität Freiburg im Breisgau, Germany By Víctor Ávila-Akerberg Freiburg im Breisgau, Germany 2009 Dean: Prof. Dr. Heinz Rennenberg First supervisor: Prof. Dr. Werner Konold Second supervisor: Prof. Dr. Albert Reif Date of disputation: December 9th 2009 Acknowledgements This thesis is dedicated to the forests in the area under study and to my family and friends! Thanks to Dr. Werner Konold, for accepting me as a PhD student, having trusted on my research, for always being there whenever I needed him, and for encouraging and supporting my trips to courses and conferences around the world, vielen Dank! I would like to thank Dr. Albert Reif for being my second supervisor and for the given advice and comments on the thesis. I would like to thank Dr. Lucia Almeida, for having taught me so many things, for believing in me and together having achieved so much in the Magdalena river watershed. My great appreciation goes to Dr. Jorge Meave del Castillo, for advising me and have shared part of his enormous experience and patience on scientific writing. Special thanks go to Esther Muschelknautz, for always being there to answer the administrative questions, attending and organizing the milestones and the extra- curricular courses in the International PhD Program “Forestry in transition”. During the last three years of my life, I have met and shared moments with many wonderful persons.
    [Show full text]
  • Areas of Endemism of Selected Seed Plants in Southcentral And
    Areas of Endemism of Selected Seed Plants in Southcentral and Southwestern USA Anna Saghatelyan1 1McMurry University July 8, 2021 Abstract Areas of endemism (AEs) are fundamental entities of analysis in biogeography and a key step for biogeographical regionalization. Even though many studies have contributed to the biogeographical knowledge of southern USA flora, no endemicity analysis (EA) has been conducted that would include a large number of native seed plant species from different families. A new analysis of plant spatial patterns is important as a first step for a future updated floristic regionalization of North America North of Mexico. It has become easier to accomplish owing to the increased availability of large-scale digitized distributional data and statistical methods of biogeographic analysis. Here we identify the AEs in SC/SW USA using digitized plant specimen data available from IDigBio. We built a database with 81,851-specimen point records of 400 selected mostly angiosperm species and applied the NDM/VNDM method of endemicity analysis. We then compare the established 26 AEs in the area of study with the floristic provinces in two comparatively recent regionalization systems of USA. To understand the spatial patterns, we also pay attention to the information on relationships of the endemic species found in phylogenetic literature. Posted on Authorea 8 Jul 2021 | The copyright holder is the author/funder. All rights reserved. No reuse without permission. | https://doi.org/10.22541/au.162575849.93786148/v1 | This a preprint and has not been peer reviewed. Data may be preliminary. 1 1. Introduction By defining areas of relatively homogeneous species composition, biogeographical frameworks provide spatial units of analysis that are useful in macroecological, evolutionary and systematic studies of the processes, which shaped or maintain species distributions (Morrone, 2018).
    [Show full text]
  • The Immense Diversity of Floral Monosymmetry and Asymmetry Across Angiosperms
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Bot. Rev. (2012) 78:345–397 DOI 10.1007/s12229-012-9106-3 The Immense Diversity of Floral Monosymmetry and Asymmetry Across Angiosperms Peter K. Endress1,2 1 Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland 2 Author for Correspondence; e-mail: [email protected] Published online: 10 October 2012 # The New York Botanical Garden 2012 Abstract Floral monosymmetry and asymmetry are traced through the angiosperm orders and families. Both are diverse and widespread in angiosperms. The systematic distribution of the different forms of monosymmetry and asymmetry indicates that both evolved numerous times. Elaborate forms occur in highly synorganized flowers. Less elaborate forms occur by curvature of organs and by simplicity with minimal organ numbers. Elaborate forms of asymmetry evolved from elaborate monosymme- try. Less elaborate form come about by curvature or torsion of organs, by imbricate aestivation of perianth organs, or also by simplicity. Floral monosymmetry appears to be a key innovation in some groups (e.g., Orchidaceae, Fabaceae, Lamiales), but not in others. Floral asymmetry appears as a key innovation in Phaseoleae (Fabaceae). Simple patterns of monosymmetry appear easily “reverted” to polysymmetry, where- as elaborate monosymmetry is difficult to lose without disruption of floral function (e.g., Orchidaceae). Monosymmetry and asymmetry can be expressed at different stages of floral (and fruit) development and may be transient in some taxa. The two symmetries are most common in bee-pollinated flowers, and appear to be especially prone to develop in some specialized biological situations: monosymmetry, e.g., with buzz-pollinated flowers or with oil flowers, and asymmetry also with buzz-pollinated flowers, both based on the particular collection mechanisms by the pollinating bees.
    [Show full text]
  • Phylogeny and Historical Biogeography of Hydrophyllaceae and Namaceae, with a Special Reference to Phacelia and Wigandia
    Systematics and Biodiversity ISSN: 1477-2000 (Print) 1478-0933 (Online) Journal homepage: https://www.tandfonline.com/loi/tsab20 Phylogeny and historical biogeography of Hydrophyllaceae and Namaceae, with a special reference to Phacelia and Wigandia Maria-Anna Vasile, Julius Jeiter, Maximilian Weigend & Federico Luebert To cite this article: Maria-Anna Vasile, Julius Jeiter, Maximilian Weigend & Federico Luebert (2020): Phylogeny and historical biogeography of Hydrophyllaceae and Namaceae, with a special reference to Phacelia and Wigandia, Systematics and Biodiversity, DOI: 10.1080/14772000.2020.1771471 To link to this article: https://doi.org/10.1080/14772000.2020.1771471 View supplementary material Published online: 18 Jun 2020. Submit your article to this journal Article views: 58 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tsab20 Systematics and Biodiversity (2020), 0(0):1–14 Research Article Phylogeny and historical biogeography of Hydrophyllaceae and Namaceae, with a special reference to Phacelia and Wigandia MARIA-ANNA VASILE1, JULIUS JEITER1, MAXIMILIAN WEIGEND1 & FEDERICO LUEBERT1,2 1Nees-Institut fur€ Biodiversit€at der Pflanzen, Universit€at Bonn, Meckenheimer Allee 170, 53115, Germany Bonn 2Departamento de Silvicultura y Conservacion de la Naturaleza, Universidad de Chile, Santiago, Chile (Received 25 February 2020; accepted 5 May 2020) This study aimed to examine the systematic position of South American species of Phacelia (Hydrophyllaceae) and Wigandia (Namaceae) and the historical biogeography of Hydrophyllaceae and Namaceae using molecular dating and ancestral area reconstruction. To this end, we constructed two datasets, one with a plastid (ndhF) and one with a nuclear marker (ITS), using previously published and newly generated sequences.
    [Show full text]
  • Entomological Enigmas and New Approach in Insect Morphology 9.00 Ernst A
    Systematics 2008, Göttingen 8:30 – 12:00 Room 010 Opening and Plenary Session I Progress in deep phylogeny 13:30–15:00 15:30–16:30 Session 1 Session 4 Room 009 Insect phylogeny Phylogenomics of lower Metazoa Session 2 Session 5 Room 008 Plant phylogeny I Plant phylogeny II Session 3 Session 6 Tuesday, 8 April Room 007 Speciation Reticulate evolution I Session 7 Room 006 Taxonomy and classification 8:30 – 12:00 Room 010 Plenary session II Speciation and phylogeography 13:30–15:00 15:30–16:30 Session 8 Session 12 Room 009 Animal phylogeny and Animal classification phylogeography Session 9 Session 13 Room 008 Plant Plant phylogeography I phylogeography II Session 10 Session 14 Wednesday, 9 April Room 007 Radiation Reticulate evolution II Session 11 Session 15 Room 006 Taxonomy Palaeontology and barcoding 8:30 – 12:00 Room 010 Plenary session III New trends in biological systematics 13:30–15:00 15:30–17:00 Session 16 Session 19 Room 009 Biogeography Biogeography and evolution I and evolution II Session 17 Session 20 Room 008 Structure and Structure and evolution – animals evolution – plants Thursday, 10 April Session 18 Session 21 Room 007 Phylogeny of Molecular early land plants evolution Systematics 2008 Göttingen, Programme and Abstracts This work is licensed under the Creative Commons License 2.0 “by-nc-nd”, allowing you to download, distribute and print the document in a few copies for private or educational use, given that the document stays unchanged and the creator is mentioned. Commercial use is not covered by the licence.
    [Show full text]
  • The Families and Genera of Vascular Plants of the Conterminous United States
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 11-21-2019 The Families and Genera of Vascular Plants of the Conterminous United States James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "The Families and Genera of Vascular Plants of the Conterminous United States" (2019). Botanical Studies. 99. https://digitalcommons.humboldt.edu/botany_jps/99 This Flora of the United States and North America is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. THE FAMILIES AND GENERA OF VASCULAR PLANTS IN THE CONTERMINOUS UNITED STATES Compiled by James P. Smith, Jr.
    [Show full text]
  • View This Dissertation
    Isolation, Identification, and Biological Evaluation of Potential Flavor Modulatory Flavonoids from Eriodictyon californicum Dissertation Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Joshua Nehemiah Fletcher Graduate Program in Pharmacy The Ohio State University 2011 Dissertation Committee: A. Douglas Kinghorn, Advisor Esperanza J. Carcache de Blanco Steven. J. Schwartz Werner Tjarks Copyright by Joshua Nehemiah Fletcher 2011 Abstract The avoidance of bitter-tasting substances and a preference for sweet-tasting substances have deep roots in the evolutionary history of mankind. With the advent of agriculture, and more recent advancements in food production the necessity of these preferences has diminished somewhat. In fact, the evolutionary biases of humanity can be considered responsible for certain heath problems in the modern world. It is against this backdrop that the present study of Eriodictyon californicum Decne. (Hydrophyllaceae) for bitterness-masking and sweetness-enhancing activity, in collaboration with Givaudan Flavors Corporation, Cincinnati, OH, was commenced. In this dissertation study, ten flavonoids were isolated from E. californicum, with two of these having been publisheed previously presented without defined stereochemistry and another with incomplete spectroscopic and physical data to confirm its structure. Additionally, this is the first time that the natural absolute configuration of flavanones from E. californicum has been resolved. Four of the isolated compounds and an additional purchased compound were evaluated for sweetness-enhancing activity in a chimeric cell-based assay. All ten compounds isolated were tested for bitterness-masking activity in a cell-based assay employing the bitterness receptor hTAS2R31.
    [Show full text]