Implementing the Quantum Von Neumann Architecture with Superconducting Circuits

Total Page:16

File Type:pdf, Size:1020Kb

Implementing the Quantum Von Neumann Architecture with Superconducting Circuits Implementing the Quantum von Neumann Architecture with Superconducting Circuits Matteo Mariantoni1;4;x, H. Wang1;∗, T. Yamamoto1;2, M. Neeley1;y, Radoslaw C. Bialczak1, Y. Chen1, M. Lenander1, Erik Lucero1, A. D. O’Connell1, D. Sank1, M. Weides1;z, J. Wenner1, Y. Yin1, J. Zhao1, A. N. Korotkov3, A. N. Cleland1;4, and John M. Martinis1;4;x 1Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA 2Green Innovation Research Laboratories, NEC Corporation, Tsukuba, Ibaraki 305-8501, Japan 3Department of Electrical Engineering, University of California, Riverside, CA 92521, USA 4California NanoSystems Institute, University of California, Santa Barbara, CA 93106-9530, USA ∗Present address: Department of Physics, Zhejiang University, Hangzhou 310027, China. yPresent address: Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02420-9108, USA. zPresent address: National Institute of Standards and Technology, Boulder, CO 80305, USA. xTo whom correspondence should be addressed. E-mail: [email protected] (M. M.); [email protected] (J. M. M.) last updated: September 16, 2011 The von Neumann architecture for a classical computer comprises a central processing unit and a memory holding instructions and data. We demonstrate a quantum central processing unit that exchanges data with a quantum random-access memory integrated on a chip, with instructions stored on a classical computer. We test our quantum machine by executing codes that involve seven quantum elements: Two superconduct- ing qubits coupled through a quantum bus, two quantum memories, and two zeroing registers. Two vital algorithms for quantum computing are demonstrated, the quantum Fourier transform, with 66 % process fidelity, and the three-qubit Toffoli OR phase gate, with 98 % phase fidelity. Our results, in combination especially with longer qubit coherence, illustrate a potentially viable approach to factoring numbers and implementing simple quantum error correction codes. Quantum processors 1–4 based on nuclear magnetic resonance 5–7, trapped ions 8–10, and semiconducting de- vices 11 were used to realize Shor’s quantum factoring algorithm 5 and quantum error correction 6,8. The quantum operations underlying these algorithms include two-qubit gates 2,3, the quantum Fourier transform 7,9, and three- qubit Toffoli gates 10,12. In addition to a quantum processor, a second critical element for a quantum machine is a quantum memory, which has been demonstrated, e.g., using optical systems to map photonic entanglement into and out of atomic ensembles 13. Superconducting quantum circuits 14 have met a number of milestones, including demonstrations of two-qubit gates 5,15–17,19,20 and the advanced control of both qubit and photonic quantum states 7,19,20,22. We demonstrate a superconducting integrated circuit that combines a processor, executing the quantum Fourier transform and a three-qubit Toffoli-class OR gate, with a memory and a zeroing register in a single device. This combination of a quantum central processing unit (quCPU) and a quantum random-access memory (quRAM), which comprise two key elements of a classical von Neumann architecture, defines our quantum von Neumann architecture. In our architecture (Fig. 1A), the quCPU performs one-, two-, and three-qubit gates that process quantum information, and the adjacent quRAM allows quantum information to be written, read out, and zeroed. The 5,7,19,22 quCPU includes two superconducting phase qubits Q1 and Q2, connected through a coupling bus provided 1 Figure 1: The quantum von Neumann architecture. (A) The quCPU (blue box) includes two qubits Q1 and Q2 and the bus resonator B. The quRAM (magenta boxes) comprises two memories M1 and M2 and two zeroing registers Z1 and Z2. The horizontal dotted lines indicate connections between computational elements. The vertical direction represents frequency, where the memory and zeroing registers are fixed 7 in frequency, while the qubit transition frequencies can be tuned via z-pulses (grey dashed double arrows). (B) Swap spectroscopy for Q1 (left) and Q2 (right): Qubit excited state jei probability Pe (color scale) vs. z-pulse amplitude (vertical axis) and delay time ∆τ (horizontal axis), after exciting the qubit with a π-pulse. At zero z-pulse amplitude the qubits are at their idle points, where they have an energy relaxation time Trel ' 400 ns. A separate Ramsey experiment yields the qubits’ dephasing time Tdeph ' 200 ns. By tuning the z-pulse amplitude, the qubit transition frequencies f and f can be varied between ' 5:5 and 8 GHz. For z-pulse amplitudes indicated by B and M for Q , and Q1 Q2 1 1 7 by B and M2 for Q2, the “chevron pattern” of a qubit-resonator interaction is observed . The transition frequencies of B, M1, and M2 are f = 6:82 GHz, f = 6:29 GHz, and f = 6:34 GHz, respectively. From the chevron oscillation we obtain the qubit-resonator coupling B M1 M2 p strengths, which for both the resonator bus and the memories are ' 20 MHz (splitting) for the jgi $ jei qubit transition, and ≈ 2 faster for 22 the jei $ jfi transition (jgi, jei, and jfi are the three lowest qubit states) . For all resonators Trel ' 4 µs. Swap spectroscopy also reveals that the qubits interact with several modes associated with spurious two-level systems. Two of them, Z1 and Z2, are used as zeroing registers. Their transition frequencies are f = 6:08 GHz and f = 7:51 GHz, respectively, with coupling strength to the qubits of ' 17 MHz. Z1 Z2 by a superconducting microwave resonator B. The quRAM comprises two superconducting resonators M1 and M2 that serve as quantum memories, as well as a pair of zeroing registers Z1 and Z2, two-level systems that are used to dump quantum information. The chip geometry is similar to that in Refs. 7,22, with the addition of the two zeroing registers. Figure 1B shows the characterization of the device by means of swap spectroscopy 7. The computational capability of our architecture is displayed in Fig. 2A, where a 7-channel quantum circuit, yielding a 128 dimensional Hilbert space, executes a prototypical algorithm. First, we create a Bell state between p 22 Q1 and Q2 using a series of π-pulse, iSWAP, and iSWAP operations (step I, a to c) . The corresponding density matrix ρ^(I) [Fig. 2C (I)] is measured by quantum state tomography. The Bell state is then written into the quantum 22 memories M1 and M2 by an iSWAP pulse (step II) , leaving the qubits in their ground state jgi, with density matrix ρ^(II) [Fig. 2C (II)]. While storing the first Bell state in M1 and M2, a second Bell state with density matrix 2 Figure 2: Programming the quantum von Neumann architecture. (A) Quantum algorithm comprising 7 independent channels interacting through five computational steps. Dotted and solid lines represent channels inp the ground and excited/superposition states, respectively. A black rectangle represents a π-pulse; two crosses connected by a solid line a iSWAP; an open and a closed circle connected by a single arrow an iSWAP; oblique arrows indicate decay from a zeroing register. (B) Calibration of the zeroing gates. Each qubit is prepared in jei, interacts on resonance with its zeroing register for a time τz, and its probability Pe measured, with Pe plotted vs. τz (large and small blue circles). The solid green line is a decaying cosine fit to the data. The black arrows indicate the zeroing time for each qubit. (C) Density matrices ρ^(I); ρ^(II);:::; ρ^(V) of the Q1-Q2 state for each step in A (scale key on bottom left). Grey arrows: Ideal state. Red and black arrows and black dots: Measured state (black arrows indicate errors). The off-diagonal elements of ρ^(I), ρ^(III), and ρ^(V) have different angles because 26 of dynamic phases . Fidelities: F(I) = 0:772 ± 0:003, F(II) = 0:916 ± 0:002, F(III) = 0:689 ± 0:003, F(IV) = 0:913 ± 0:002, and F(V) = 0:606 ± 0:003. Concurrences: C(I) = 0:593 ± 0:006, C(II) = 0:029 ± 0:005, C(III) = 0:436 ± 0:007, C(IV) = 0:019 ± 0:005, and C(V) = 0:345 ± 0:008.(D) Comparison of fidelity F as a function of storage time τst for a Bell state stored in Q1 and Q2 (blue circles) vs. that stored in M1 and M2 (magenta squares; error bars smaller than symbols). The solid lines are exponential fits to data. (E) As in D, but for the concurrence C. In D and E the vertical black dotted line indicates the time delay (' 59 ns) associated with memory storage, with respect to storage in the qubits, due to the writing and reading operations (II) and (V) in A. ρ^(III) [Fig. 2C (III)] is created between the qubits, using a sequence similar to the first operation (step III, a to c). In order to re-use the qubits Q1 and Q2, for example to read out the quantum information stored in the mem- 23 ories M1 and M2, the second Bell state has to be dumped . This is accomplished using two zeroing gates, by bringing Q1 on resonance with Z1 and Q2 with Z2 for a zeroing time τz, corresponding to a full iSWAP (step IV). Figure 2B shows the corresponding dynamics, where each qubit, initially in the excited state jei, is measured in the ground state jgi after ' 30 ns. The density matrix ρ^(IV) of the zeroed two-qubit system is shown in Fig. 2C (IV). Once zeroed, the qubits can be used to read the memories (step V), allowing us to verify that, at the end of the algorithm, the stored state is still entangled. This is clearly demonstrated by the density matrix shown in Fig.
Recommended publications
  • S9 S Flughafen Bln-Schönefeld Bhf — S Ostkreuz —S+U Pankow > S9
    S9 S Flughafen Bln-Schönefeld Bhf — S Ostkreuz —S+U Pankow > S9 S-Bahn Berlin GmbH Alle Züge 2. Klasse und f (Tarif des Verkehrsverbundes Berlin-Brandenburg [VBB]) montags bis freitags, nicht an Feiertagen Verkehrshinweise S Grünau ab 5 02 F20 F20 S Flughafen Bln-Schönefeld Bhf ab 0 13 0 33 0 53 3 53 4 13 4 33 4 53 | 5 13 20 13 20 33 23 53 S Grünbergallee 0 16 0 36 0 56 3 56 4 16 4 36 4 56 | 5 16 20 16 20 36 23 56 S Altglienicke 0 19 0 39 0 59 3 59 4 19 4 39 4 59 | 5 19 20 19 20 39 23 59 S Adlershof 0 24 0 44 1 04 4 04 4 24 4 44 5 04 5 06 5 24 20 24 20 44 0 04 S Betriebsbahnhof Schöneweide 0 26 0 46 1 06 4 06 4 26 4 46 5 06 5 09 5 26 20 26 20 46 0 06 S Schöneweide Bhf 0 28 0 48 1 08 3 48 4 08 4 28 4 48 5 08 5 11 5 28 20 28 20 48 0 08 S Baumschulenweg 0 31 0 51 1 11 3 51 4 11 4 31 4 51 5 11 5 14 5 31 20 31 20 51 0 11 S Plänterwald 0 33 0 53 1 13 3 53 4 13 4 33 4 53 5 13 5 16 5 33 20 33 20 53 0 13 S Treptower Park O 0 36 0 56 1 16 3 56 4 16 4 36 4 56 5 16 5 18 5 36 20 36 20 56 0 16 S Treptower Park ab 0 36 0 56 3 56 4 16 4 36 4 56 5 16 5 36 20 36 20 56 0 16 S Ostkreuz 0 39 0 59 3 59 4 19 4 39 4 59 5 19 5 39 20 39 20 59 0 19 S+U Frankfurter Allee 0 41 1 01 4 01 4 21 4 41 5 01 5 21 5 41 20 41 21 01 0 21 S Storkower Str.
    [Show full text]
  • Berlin Metro Map by Zuti
    Hohen Mühlenbeck Bernau Borgsdorf Neuendorf Bergfelde Schönfließ Mönchmühle Karow Röntgental Friedenstal Oranienburg Bernau Lehnitz Birkenwerder Hugenotten Navarrapl Buch Zepernick Guyotstr bei Bernau Rosenthal Nord Arnoux HAVEL Französisch Hauptstr Buchholz Kirche Frohnau Friedrich Engels 50 HAVEL Wiesenwinkel Blankenfelder Berlin Angerweg © Copyright Visual IT Ltd Nordendstr Rosenthaler ® Zuti and the Zuti logo are registered trademarks Hermsdorf www.zuti.co.uk Nordend Schillerstr Marienstr BERLIN WALL BERLIN Uhlandstr Pasewalker Blankenburg Hennigsdorf Waldemar Waidmannslust Pasewalker Platanenstr Heinrich Böll Blankenburger Weg Heiligensee Pankower Am Iderfenngraben Kuckhoffstr Pastor Niemöller Platz Schulzendorf Galenusstr Wittenau Hermann Hesse Grabbeallee Waldstr Pastor Niemöller Ahrensfelde REINICKENDORF Ahrensfelde Tschaikowskistr HAVEL Rathaus Würtzstr Wartenberg Reinickendorf Mendelstr Tegel Wilhelmsruh M1 Pankow Zingster Falkenberger Karl B Heinersdorf Prendener Welsestr Nerven Bürgerpark Stiftsweg Heinersdorf Falkenberg Barnimplatz Alt Tegel klinik Alt Reinickendorf Pankow Rathaus Zingster Ribnitzer Schönholz Pankow PANKOW Hohenschönhausen Eichborn Ahrenshooper Niemegker Borsigwerke damm Pankow Rothenbachstr Paracelsus Bad Kirche Prerower U8 Mehrower Holzhauser Lindauer Hansastr Malchower Wuhletalstr HAVEL Heinersdorf Kirche Otisstr Allee Wollankstr JUNGFERNHEIDE Residenzstr Pankow Feldtmannstr Rüdickenstr Max Hermann TEGELER SEE Am Wasserturm M5 Scharnweber Masurenstr M2 Pasedagplatz Berliner Allee Franz Neumann Am Steinberg
    [Show full text]
  • Berlin, Capital of the Federal Republic of Germany, Is Located at the Heart of Europe and Also, After EU Enlargement in 2004, at the Centre of the European Community
    Berlin, Capital of the Federal Republic of Germany, is located at the heart of Europe and also, after EU enlargement in 2004, at the centre of the European Community. With about 3,400,000 inhabitants, Berlin is the largest City in Germany. It is 38 kilometres long and 45 kilometres wide and covers an area of 889 square kilometres. In the middle of the Brandenburg region, the city occupies the flatlands on the banks of the Havel and Spree rivers and is criss-crossed with numerous canals. BY AIRPLANE: You can fly to Berlin from 167 airports in 53 countries. Aircrafts operated by over 67 different airlines land in Berlin. If charter flights are included, that figure rises to 99. The largest of Berlin's three airports are Tegel and Schönefeld. Tegel continues to function as the gateway to western Europe. Most of the flights to eastern Europe and Asia are handled by Schönefeld. Airport Tegel (TXL) 13405 Berlin (Reinickendorf) Tegel is situated in north-west Berlin, approximately 8 km from the city-centre. The airport is located conveniently within Berlin, in ca. 15 minutes the western city centre can be reached. Apart from the buses 109 and 128 the bus X9 which leaves from the train station Zoologischer Garten connects the airport to the city centre, this bus stops only at the main subway stations, therefore the ride doesn't take long. There is also the JetExpressBus TXL which links the avenue Unter den Linden, in the eastern city centre, with the airport. The bus or undergound ticket costs € 2.10 (or € 2.60 for trips to the surroundings, zone ABC).
    [Show full text]
  • Studie Zu ÖPNV Engpässen Und Lösungen
    Studie zu aktuellen und prognosti- Auftraggeber: schen Engpässen und Lösungen im IHK Industrie- und Handelskammer Berliner ÖPNV Berlin Fasanenstraße 85 10623 Berlin https://www.ihk-berlin.de/ Bericht, April 2018 Auftragnehmer: VCDB VerkehrsConsult Dresden-Berlin GmbH Uhlandstraße 97 10715 Berlin Könneritzstraße 31 01067 Dresden Tel.: 0351 / 4 82 31 00 Fax: 0351 / 4 82 31 09 E-Mail: [email protected] Web: http://www.vcdb.de Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Institut für Verkehrsforschung Rutherfordstraße 2 12489 Berlin Tel.: 030 67055-681 Fax: 030 67055-283 Web: www.DLR.de/vf Ansprechpartner: Lutz Richter E-Mail: [email protected] Dr. Matthias Heinrichs E-Mail: [email protected] Studie zu aktuellen und prognostischen Engpässen und Lösungen im Berliner ÖPNV Inhaltsverzeichnis Inhaltsverzeichnis 1 Ausgangslage und Zielstellung ................................... 7 2 ÖPNV-Analyse ............................................................. 8 2.1 Aufbau des Verkehrsmodells ................................................ 8 2.2 Fahrzeuganalyse ................................................................... 9 2.3 Prognosenullfall 2030 .......................................................... 11 3 Prognose der Nachfrageentwicklung absehbarer Engpässe im Berliner ÖPNV ..................................... 13 3.1 Methodik .............................................................................. 13 3.2 Verkehrsumlegung 2030...................................................... 17 4 Empfehlungen zur Lösung der
    [Show full text]
  • Transit Systems in the Us and Germany
    TRANSIT SYSTEMS IN THE US AND GERMANY - A COMPARISON A Thesis Presented to The Academic Faculty by Johannes von dem Knesebeck In Partial Fulfillment of the Requirements for the Degree Master of Science in Civil Engineering in the School of Civil and Environmental Engineering Georgia Institute of Technology August 2011 TRANSIT SYSTEMS IN THE US AND GERMANY - A COMPARISON Approved by: Dr. Michael D. Meyer, Advisor School of Civil and Environmental Engineering Georgia Institute of Technology Dr. Adjo Akpene Amekudzi School of Civil and Environmental Engineering Georgia Institute of Technology Dr. Frank Southworth School of Civil and Environmental Engineering Georgia Institute of Technology Date Approved: July 5, 2011 ACKNOWLEDGEMENTS I wish to thank my advisor Dr. Michael D. Meyer for his help and constant support during the writing of this thesis. I also wish to thank the members of my thesis committee Dr. Adjo A. Amekudzi and Dr. Frank Southworth for their helpful comments and input. Furthermore, I would like to thank all the respective transit agencies in Germany and the US for making data available to me and helping me with hints and comments about my research. iii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS iii LIST OF TABLES vii LIST OF FIGURES viii LIST OF SYMBOLS AND ABBREVIATIONS ix SUMMARY xi CHAPTER 1 Introduction and Methodology 12 1.1 Introduction 12 1.2 Methodology 13 1.2.1 Choice of Cities 13 1.2.2 Choice of Transit Systems 14 1.2.3 Collected Data 16 1.2.4 Definition of Rail System-Terms 19 1.2.5 Data Interpretation 21 1.3 Organization
    [Show full text]
  • Information for Participating Shareholders
    Information for participating shareholders Here is some information to assist you with your travel arrangements: The annual general meeting will be held in the CityCube Berlin, Messedamm 26, 14055 Berlin, Germany. Travel arrangements have to be organized by the participating shareholders themselves and outside of local public transport at their own expense. As parking space is limited, please use local public transport if possible. The admission ticket is a valid day ticket for public transport throughout the Verkehrsverbund Berlin-Brandenburg (VBB – Berlin-Brandenburg Transport Network) A,B,C ticket area. It can be used for free travel to and from the meeting on May 14, 2019. The ticket is only valid in conjunction with a photo ID or passport and is not transferable. Additional information is available at www.bvg.de/de. Travelling by train and local public transport The CityCube Berlin can be reached from Berlin Central Station by the S-Bahn. Please take the S-Bahn S3 or S9 (direction S Spandau) from station S+U Berlin Hauptbahnhof to station S Messe Süd. After a short walk (about 150 m) you will reach the convention center [duration of travel: approximately 20 minutes]. Please pay attention to announcements about short-term changes. Further information is also available at www.bvg.de/de. Traveling by plane and local public transport From Tegel Airport (Flughafen Tegel (Airport) stop) take bus No. 109 (direction S+U Zoologischer Garten) and get off at station S Charlottenburg/Gervinusstraße. Change the station to S Charlottenburg Bhf (tram station – short walk approximately 335m). There continue with the S-Bahn S3 or S9 (direction S Spandau) to station S Messe Süd.
    [Show full text]
  • Zukunftsstrategien Der S-Bahn Berlin Gmbh
    Neue Direktverbindung mit Linie S9 vom Flughafen Schönefeld über die Stadtbahn nach Spandau . Die S9 wird über die neu erbaute Südringkurve und über die Stadtbahn (ohne Halt in Ostkreuz) zwischen Flughafen Schönefeld und Spandau verkehren . Regionalverkehrslinien RE 1, RE 2, RE 7 und RB 14 halten neu in Ostkreuz 1 S-Bahn Berlin | 17.11.2017 Die Linien der Stadtbahn werden neu geordnet – und verkehren nach Spandau, S5 nach Westkreuz Spandau – Erkner . übernimmt zusammen mit S9 Linienast nach Spandau . Erkner – Ostbahnhof alle 10 Minuten, weiter nach Spandau alle 20 Oranienburg Birkenwerder Minuten Bernau . im Nachtverkehr Ostkreuz – Erkner alle 30 Minuten . Neue Abfahrzeiten im gesamten Linienverlauf Hennigsdorf Tegel Wartenberg Westkreuz – Strausberg Nord Ahrensfelde 5 Schönholz Strausberg Nord 3 9 Gesundbr. S5 beginnt und endet neu in Westkreuz Hbf Spandau Zoo Ostkreuz . Westkreuz – Mahlsdorf/Hoppegarten alle 10 Minuten, weiter nach Strausberg Strausberg/Strausberg Nord alle 20 Minuten 5 Ostbf . im Nachtverkehr Ostbahnhof – Strausberg Nord Südkreuz . neue Abfahrzeiten im gesamten Linienverlauf (jeweils 5 Minuten früher Wannsee Spindlersfeld Erkner in beiden Richtungen) Adlershof Grünau 3 Teltow Stadt 9 Potsdam Hbf Flughafen Berlin Brandenburg Spandau – Flughafen Schönefeld Königs Wusterhausen Blankenfelde . neue Direktverbindung aus dem Berliner Südosten auf die Stadtbahn und weiter nach Spandau . in Baumschulenweg günstiger Übergang von und nach Königs Wusterhausen mit S46 . verkehrt alle 20 Minuten, im Nachtverkehr alle 30 Minuten . neue Abfahrzeiten im gesamten Linienverlauf 2 S-Bahn Berlin | 17.11.2017 verbindet unverändert Potsdam mit Berlin, kann baubedingt nur bis Ostkreuz verkehren Potsdam Hbf – Ahrensfelde . tagsüber 10-Minuten-Takt auf gesamtem Laufweg Oranienburg . Ausweitung des Angebots auf der Stadtbahn im Abendverkehr: neu Birkenwerder zwischen Westkreuz und Ahrensfelde und zusätzlich auch an Samstagen Bernau 10-Minuten-Takt bis ca.
    [Show full text]
  • 'Teaming up for Transformation: Improving Municipal Energy
    ‘Teaming up for transformation: improving municipal energy management for integrated climate action’ Compete4SECAP European Conference and Award Ceremony Travel and Hotel Information 18 June 2020, 09:30 - 18:00 VKU Forum, Invalidenstraße 91, Berlin, Germany Contents The Venue ............................................................................................................................................. 3 Travel to / from Berlin .......................................................................................................................... 3 By train .................................................................................................................................................. 3 By plane ................................................................................................................................................. 4 Airportshuttle ........................................................................................................................................ 4 Public transportation ............................................................................................................................. 4 Arriving the venue ................................................................................................................................. 5 Driving restrictions in Berlin .................................................................................................................. 5 Hotels ...................................................................................................................................................
    [Show full text]
  • Fahrplan-S9.Pdf
    Flughafen BER - Terminal 1-2 — S+U Berlin Hauptbahnhof — > S9 SSpandauBhf (gültig ab 09.08.2021) S9 S-Bahn Berlin GmbH Alle Züge 2. Klasse und f (Tarif des Verkehrsverbundes Berlin-Brandenburg [VBB]) montags bis freitags, nicht an Feiertagen Mo/Di- Verkehrshinweise a Fr/Sa Do/Fr Flughafen BER - Terminal 1-2 ab 0 09 0 29 0 49 1 09 1 29 3 35 4 09 F20 23 29 23 49 23 49 S Waßmannsdorf 0 13 0 33 0 53 1 13 1 33 3 39 4 13 23 33 23 53 23 53 Flughafen BER - Terminal 5 0 18 0 38 0 58 1 18 1 38 3 43 3 58 4 18 23 38 23 58 23 58 S Grünbergallee 0 21 0 41 1 01 1 21 1 41 4 01 4 21 23 41 0 01 0 01 S Altglienicke 0 23 0 43 1 03 1 23 1 43 4 03 4 23 23 43 0 03 0 03 S Adlershof 0 27 0 47 1 07 1 27 1 47 4 07 4 27 23 47 0 07 0 07 S Johannisthal 0 30 0 50 1 10 1 30 1 50 4 10 4 30 23 50 0 10 0 10 S Schöneweide Bhf O 0 32 0 52 1 12 1 32 1 52 4 12 4 32 23 52 0 12 0 12 S Schöneweide Bhf ab 0 33 0 53 1 13 1 33 1 53 3 53 4 13 4 33 23 53 0 13 0 13 S Baumschulenweg 0 35 0 55 1 15 1 35 1 55 3 55 4 15 4 35 23 55 0 15 0 15 S Plänterwald 0 38 0 58 1 18 1 38 1 58 3 58 4 18 4 38 23 58 0 18 0 18 S Treptower Park O 0 41 1 01 1 21 1 41 2 01 4 01 4 21 4 41 0 01 0 21 0 21 S Treptower Park ab 0 43 1 03 1 23 1 43 2 03 4 03 4 23 4 43 0 03 0 23 0 23 S+U Warschauer Str.
    [Show full text]
  • Flughafen Schönefeld
    xrT xrZ Flughafen Schönefeld/ xrU Grünau/Spindlersfeld <> Baumschulenweg x8 xiT 19. 6. 2019 (Mi) – 5. 7. 2019 (Fr) x9 4 Uhr 1.30 Uhr Ersatzverkehr mit Bussen Replacement service by bus Kalender Einschränkungen Juni 2019 Juli 2019 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr B Schönefeld/Grünau <> Schöneweide kein S-Bahnverkehr Spindlersfeld <> Schöneweide kein S-Bahnverkehr Schöneweide <> Baumschulenweg kein S-Bahnverkehr Baumschulenweg <> Treptower Park 0s -Bahn-Pendelverkehr im 10-Minutentakt mit Umsteigen in Plänterwald b 0 S45, S9 Express BSchönefeld (Terminal) <> Baumschulenweg 0b S45, S9 Lokal Schönefeld (Bahnhof) <> Baumschulenweg b 0 S46, S8 Grünau <> Baumschulenweg b 0 S47 Spindlersfeld <> Plänterwald Treptower Park <> Warschauer Straße kein direkter S-Bahnverkehr, bitte über Ostkreuz (mit Umstieg) umfahren :dE > Südkreuz und :dF > Westend/Gesundbrunnen fahren in Baumschulenweg von Gleis 5 (Bahnsteig stadtauswärts) :dG / :8 fährt Spindlersfeld <> Schöneweide <> Birkenwerder :hE fährt Schöneweide <> Pankow :9 fährt Schöneweide <> Spandau :5 fährt Mahlsdorf <> Spandau Inhalt Seite 2 Umfahrungsmöglichkeiten mit dem Bahn-Regionalverkehr Seite 3 Übersichtsgrafiken Seite 4 Sehr geehrte Fahrgäste, Seite 5 Dear Passengers, Seite 6 Einschränkungen vom 19.6. (Mi) 4 Uhr bis 1.7.2019 (Mo) 1:30 Uhr Seite 7 Einschränkungen vom 1.7. (Mo) 4 Uhr bis 5.7.2019 (Fr) 1:30 Uhr Seite 8 Linienführung und Haltestellen des Ersatzverkehr mit Bussen Seite 10 weitere Bauarbeiten bei S-Bahn und TRAM Seite
    [Show full text]
  • Wir Bleiben in Bewegung Kommen Auch Sie Mit!
    Wir bleiben in Bewegung Einladung zum 3. Aktionstag Bewegung in Treptow-Köpenick Wann ? am 01. Oktober 2015 von 10 - 14 Uhr anlässlich des Weltseniorentages Wo? Veranstaltungsort wird noch bekannt gegeben Was? 3 geführte Wanderrouten (für Menschen mit Behinderungen geeignet; Rollstuhl oder Rollator sind kein Hinderungs- grund) 10 Bewegungsstationen auf dem Sportplatz für diejenigen, die nicht laufen wollen Für musikalische Unterhaltung und das leibliche Wohl ist gesorgt. © Schock Verlag 2014 Verlag © Schock Kommen auch Sie mit! Die Veranstaltung ist kostenfrei – Obst und ein Getränk – inclusive. Ines Feierabend stellvertretende Bezirksbürgermeisterin und Bezirksstadträtin für Arbeit, Soziales und Gesundheit im Bezirk Treptow-Köpenick Vorwort Seite 3 Inhaltsverzeichnis Vorwort der Stellvertretenden Bezirksbürgermeisterin und Bezirksstadträtin für Arbeit, Soziales und Gesundheit Seite 3 Inhaltsverzeichnis Seite 4 bis 5 Karte der Prognoseräume von 1 bis 5 Seite 6 bis 7 Bewegungsangebote in Alt-Treptow, Plänterwald, Baumschulenweg, und Johannisthal Seite 8 bis 21 Park Geschichten Der Treptower Park Seite 12 und 21 Bewegungsangebote in Oberschöneweide, Niederschöneweide, Adlershof, Köllnische Vorstadt / Spindlersfeld, Seite 22 bis 53 Park Geschichten Der Natur und Landschaftspark Johannisthal Seite 27 Von Oberschöneweide über die Spree nach Niederschöneweide Seite 33 Von Oberschöneweide über die Spree nach Niederschöneweide Seite 40 Der Volkspark Wuhlheide Seite 47 Skaterbahn im Volkspark Wuhlheide Seite 53 Bewegungsangebote in Altglienicke, Bohnsdorf, Grünau, Schmöckwitz / Karolinenhof / Rauchfangswerder Seite 54 bis 69 Park Geschichten Naturdenkmal Blutbuche in Grünau Seite 58 Entlang der Regattastraße Seite 64 Entlang der Regattastraße und Sportpromenade Seite 69 Seite 4 Inhaltsverzeichnis Bewegungsangebote in Köpenick-Süd, Allende-Viertel, Altstadt-Kietz und Müggelheim Seite 70 bis 85 Park Geschichten Volkspark Köpenick Seite 74 Schloß Köpenick Seite 81 Platz des 23.
    [Show full text]
  • Logistic Information Directions VDA Headquarters Berlin
    Verband der Automobilindustrie (VDA) Directions to our Berlin Headquarters V D A - DIRECTIONS 1. Address: Verband der Automobilindustrie e.V. Behrenstrasse 35 10117 Berlin 2. Arriving by car: Please aim for the above address. The following fee-paying parking options are available: underground car park directly in front of our main entrance, managed parking spaces in the surrounding streets. Fig. 1: Pedestrian routes to the VDA’s Berlin Headquarters VERSION 1.0 P A G E 2 V D A - ANFAHRT 3. Arriving by rail In Berlin Hauptbahnhof (central station) change to the S-Bahn (suburban train) and travel two stops, as far as “Friedrichstrasse”. The following lines will take you there: S3 signed for “Erkner” / S5 signed for “Strausberg Nord” / S7 signed for “Ahrensfelde” / S75 signed for “Wartenberg”. From the stop “Friedrichstrasse” you can follow the green line shown on the map in Fig. 1. It takes 8 to 10 minutes to walk the approx. 600 m. 4. Arriving by air: 4.1 From Berlin’s Tegel Airport (TXL) Option 1: No changes necessary, takes about 40 minutes (if the roads are clear). Take the bus “TXL” – you will need an AB single ticket costing EUR 2.80. Get off at the stop “Unter den Linden / Friedrichstrasse”. From there walk the approx. 250 m, following the brown line shown on the map in Fig. 1. Option 2: One change, takes about 40 minutes. Take the bus 128 as far as the stop “Kurt Schumacher Platz” (approx. 5 min.). You will need an AB single ticket costing EUR 2.80.
    [Show full text]