Logistic Information Directions VDA Headquarters Berlin

Total Page:16

File Type:pdf, Size:1020Kb

Logistic Information Directions VDA Headquarters Berlin Verband der Automobilindustrie (VDA) Directions to our Berlin Headquarters V D A - DIRECTIONS 1. Address: Verband der Automobilindustrie e.V. Behrenstrasse 35 10117 Berlin 2. Arriving by car: Please aim for the above address. The following fee-paying parking options are available: underground car park directly in front of our main entrance, managed parking spaces in the surrounding streets. Fig. 1: Pedestrian routes to the VDA’s Berlin Headquarters VERSION 1.0 P A G E 2 V D A - ANFAHRT 3. Arriving by rail In Berlin Hauptbahnhof (central station) change to the S-Bahn (suburban train) and travel two stops, as far as “Friedrichstrasse”. The following lines will take you there: S3 signed for “Erkner” / S5 signed for “Strausberg Nord” / S7 signed for “Ahrensfelde” / S75 signed for “Wartenberg”. From the stop “Friedrichstrasse” you can follow the green line shown on the map in Fig. 1. It takes 8 to 10 minutes to walk the approx. 600 m. 4. Arriving by air: 4.1 From Berlin’s Tegel Airport (TXL) Option 1: No changes necessary, takes about 40 minutes (if the roads are clear). Take the bus “TXL” – you will need an AB single ticket costing EUR 2.80. Get off at the stop “Unter den Linden / Friedrichstrasse”. From there walk the approx. 250 m, following the brown line shown on the map in Fig. 1. Option 2: One change, takes about 40 minutes. Take the bus 128 as far as the stop “Kurt Schumacher Platz” (approx. 5 min.). You will need an AB single ticket costing EUR 2.80. At “Kurt Schumacher Platz”, change to the underground/subway and take the line S6 signed for “Alt-Mariendorf”. Get off at the stop “Französische Strasse” and walk the approx. 250 m, following the blue line shown on the map in Fig.1. We recommend option 2 during the rush hour, as you are less likely to be delayed if the city centre is congested. Option 3: Taxi: takes about 20 minutes, costs approx. EUR 25. S E I T E 3 VERSION 1.0 V D A - DIRECTIONS 4.2 From Berlin’s Schönefeld Airport (SXF) Option 1: No changes, takes about 45 minutes. Take a Regionalexpress train as far as the station “Friedrichstrasse”. From there you can follow the green line shown on the map in Fig. 1. It takes 8 to 10 minutes to walk the approx. 600 m. Option 2: Take the S-Bahn (suburban train) S9 signed for “Pankow” as far as the station Ostkreuz. Change to line S3/S75 signed for “Spandau” or line S5 signed for “Westkreuz”, as far as the station “Friedrichstrasse”. From there you can follow the green line shown on the map in Fig. 1. It takes 8 to 10 minutes to walk the approx. 600 m. For these two options you will need an ABC single ticket costing EUR 3.40. Option 3: Taxi: takes about 30 minutes, costs approx. EUR 35.00. 5. General information: 5.1 Berlin local public transport network: http://www.vbb.de/en/article/timetables/network-map/network-maps/897.html The VDA team wishes you a pleasant journey! VERSION 1.0 P A G E 4 .
Recommended publications
  • Untergrundbahnbau Frankfurt Am Main FH Potsdam Philipp Holzmann Archiv Prof
    Vitali Elin Untergrundbahnbau Frankfurt am Main FH Potsdam Philipp Holzmann Archiv Prof. Dr. phil. A. Kahlow Untergrundbahnbau Frankfurt am Main vom Fachbereich Bauingenieurwesen der Fachhochschule Potsdam zur Erlangung des Leistungsnachweises im Ingenieurprojekt: „Bilderarchiv der Philipp Holzmann AG“ Vitali Elin Gutachter: Prof. Dr. phil. A. Kahlow Potsdam, Januar 2017 1 Vitali Elin Untergrundbahnbau Frankfurt am Main FH Potsdam Philipp Holzmann Archiv Prof. Dr. phil. A. Kahlow Inhaltsverzeichnis 1. Allgemeines ….......................................................................................................... 3 2. Geschichte der Frankfurter U-Bahn …..................................................................... 6 3. Bauweisen ….......................................................................................................... 12 3.1 Tunnelbauten …................................................................................................. 12 4. Streckennetz …....................................................................................................... 15 4.1. Strecke A …..................................................................................................... 16 4.2. Strecke C …..................................................................................................... 19 5. Kosten …................................................................................................................. 20 6. Quellenverzeichnis …............................................................................................
    [Show full text]
  • Using Shapley Additive Explanations to Interpret Extreme Gradient Boosting Predictions of Grassland Degradation in Xilingol, China
    Geosci. Model Dev., 14, 1493–1510, 2021 https://doi.org/10.5194/gmd-14-1493-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Using Shapley additive explanations to interpret extreme gradient boosting predictions of grassland degradation in Xilingol, China Batunacun1,2, Ralf Wieland2, Tobia Lakes1,3, and Claas Nendel2,3 1Department of Geography, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany 2Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Straße 84, 15374 Müncheberg, Germany 3Integrative Research Institute on Transformations of Human-Environment Systems, Humboldt-Universität zu Berlin, Friedrichstraße 191, 10099 Berlin, Germany Correspondence: Batunacun ([email protected]) Received: 25 February 2020 – Discussion started: 9 June 2020 Revised: 27 October 2020 – Accepted: 10 November 2020 – Published: 16 March 2021 Abstract. Machine learning (ML) and data-driven ap- Land-use change includes various land-use processes, such proaches are increasingly used in many research areas. Ex- as urbanisation, land degradation, water body shrinkage, and treme gradient boosting (XGBoost) is a tree boosting method surface mining, and has significant effects on ecosystem ser- that has evolved into a state-of-the-art approach for many vices and functions (Sohl and Benjamin, 2012). Grassland is ML challenges. However, it has rarely been used in sim- the major land-use type on the Mongolian Plateau; its degra- ulations of land use change so far. Xilingol, a typical re- dation was first witnessed in the 1960s. About 15 % of the gion for research on serious grassland degradation and its total grassland area was characterised as being degraded in drivers, was selected as a case study to test whether XG- the 1970s, which rose to 50 % in the mid-1980s (Kwon et Boost can provide alternative insights that conventional land- al., 2016).
    [Show full text]
  • Stadtbahn Hannover
    Stadtbahn mit Haltestelle DB City-Ticket GVH Kombiticket 3 Bremen Soltau Tram line with stop gültig in Zone gültig in den Zonen Stadtbahn Hannover Stadtbahn mit Tunnelstation RE 1 valid in zone A valid in zones A B C RB38 Underground station RE 8 Bennemühlen Uelzen Veranstaltungslinie Hamburg 16 18 Special service S4 RE2 Abweichender Fahrweg Nienburg Hannover Flughafen / / / RE3 10 RE2 RE3 n n n im Nachtsternverkehr S2 S5 Celle Night service S6 RegionalExpress 5 Stöcken 5 Langenhage Langenhage Langenhage 1 Langenhagen 3 Altwarmbüchen RE 2 Marshof S S7 t/ Langenforther Zentrum Platz Kurt-Schumacher-Allee RB 38 RegionalBahn 4 S Langenhagen/Angerstr. Regional train 2 S S-Bahn Stöckener Markt Berliner Platz S2 8 4 Auf der HorsAuf der Horst/SkorpiongasseSchönebeckerPascalstr. AlleeWissenschaftsparkJädekampAuf Marienwerde der KlappenburgLauckerthofr Altwarmbüchen/ Garbsen 6 Nordhafen 2 Alte Heide Suburban train Zentrum Übergang zum Bus Wiesenau 1 RE Mecklenheidestr. 9 Interchange with bus Freudenthalstr. Bahnstrift Fasanenkrug Altwarmbüchen/ 38 Alter Flughafen Ernst-Grote-Str. Park+Ride Beneckeallee B RE Tempelhofweg Stufenfreier Zu-/Abgang Stadtfriedhof Stöcken Friedenauer Str. Zehlendorfweg Stadtfriedhof Step-free access Fuhsestr. Kabelkamp Bothfeld Altwarmbüchen/ RE1 RE8 RE60 Fuhse- Krepenstr. Papenwinkel Opelstr. Tarifzonen RE70 S1 S2 RE1 RE8 RE60 RE70 S1 S2 S51 str./Bhf. 2 RE3 R Kurze-Kamp-Str. A B C E Windausstr. Vahrenheider Markt Fare zones R Wunstorf Seelze Bahnhof Leinhausen Hainhölzer Reiterstadion Bothfeld Oldenburger Allee Markt Büttnerstr. S51 Bothfelder Kirchweg 7 Stand: Oktober 2020 Herrenhäuser Markt Großer Kolonnenweg gvh.de S Fenskestr. Niedersachsenring Buchholz/Bhf. Stadtfriedhof Lahe 6 S Schaumburgstr. Dragonerstr. 8 Haltenhoffstr. Bahnhof C B A Herrenhäuser Gärten Nordstadt Vahrenwalder Platz 11 Appelstr.
    [Show full text]
  • Rail Transport in the World's Major Cities
    Feature Evolution of Urban Railways (part 2) Rail Transport in The World’s Major Cities Takao Okamoto and Norihisa Tadakoshi Many of the world’s large cities grew in development, particularly with regard to American city; and Hong Kong, Seoul and conjunction with railways, and today, the following: Tokyo representing Asian cities. large cities cannot depend only on motor • The correlation between railways and vehicles for transportation. With worries urban growth over global environmental issues, public • The location of terminals for intercity London transportation systems are increasingly and intra-city transport seen as an important way to expand and • Examination of various public transit Located in southeast England near the revitalize large cities, while consuming systems, including non-infrastructure mouth of the River Thames, London less energy and other resources. • Strategic planning of rail networks expanded during the Industrial Revolution This article looks at public transportation based on urban development trends (1760–1850) and secured its dominance systems in some major cities of the world and future models as the heart of the British Empire during and identifies similarities and differences The cities selected for this comparative the Victorian era (1837–1901). It’s in areas such as history of development, study are: London as the first city to adapt population grew from about 500,000 in railway networks, and method of rail technology to public transport; Paris, the 17th century to 4.5 million by the end operation. Our aim is to explore the future Berlin and Moscow as three major of the 19th century. The modern relationship between urban and transport European cities; New York as a North- metropolis of Greater London consists of The London Railway Network King’s Cross/St.Pancras Paddington LCY Victoria Waterloo LHR R.
    [Show full text]
  • Und Informations-Dialog 2018 Baumaßnahmen Im Netz Der Berliner S-Bahn 2018 - 2020
    2. Bau- und Informations-Dialog 2018 Baumaßnahmen im Netz der Berliner S-Bahn 2018 - 2020 DB Netz AG | I.NP-O-D-BLN(BS) + I.NM-O-F(S) | Berlin | 17.07.2018 Übersicht Regionalbereich Ost – Netz Berliner S-Bahn Bauschwerpunkte 2018 Ersatzneubau SÜ Rhinstraße + ESTW+ZBS S7 Ost SEV Lichtenberg–Springpfuhl/ Wuhletal Wochenenden April bis Juni + Dezember 2018 Brückenarbeiten S2 Nord + Neubau SÜ BAB114 SEV Lichtenberg–Ahrensfelde/ Wartenberg SEV Blankenburg–Karow + Blankenburg- 19.10.–25.10.2018 Schönfließ SEV Sprinpfuhl–Wartenberg/ Ahrensfelde 26.06.–16.07.2018 20.07.–23.07.2018 SEV Blankenburg–Buch + Blankenburg- Schönfließ 16.07.–23.07.2018 SEV Blankenburg–Buch Ersatzneubau 23.07.–17.08.2018 EÜ Thälmannstr. + Entflechtung S-/F- ZBS S5 West Schienenauswechslung Bahn Bf Strausberg SEV Westkreuz–Spandau SEV Tiergarten–Charlottenburg SEV Mahlsdorf– 13.08.–16.08.2018 (in Prüfung 23.07.-03.08.2017 Strausberg Nord Verschiebung IBN nach 01/2019) 23.11.–29.11.2018 Umbau Ostkreuz – Neubau Bahnsteig Karlshorst Ibn Endzustand 4-gleisigkeit SEV Rummelsburg–Wuhlheide ZBS S7 West + Begegnungsabschn. Potsdam SEV Ostkreuz–Karlshorst 06.07.–16.07.2018 SEV Wannsee–Potsdam 02.11.–12.11.2018 kein Verkehrshalt Karlshorst 03.08.–06.08. + 10.08.–13.08. + 14.12.–17.12.2018 SEV Alexanderplatz–Lichtenberg 06.07. – 06.08.2018 SEV Westkreuz–Wannsee + Babelsberg–Potsdam 02.11.–05.11. + 09.11.–12.11.2018 eingleisig Wuhlheide – Karlshorst 31.08.–03.09.2018 06.08. – 15.08.2018 SEV Westkreuz–Grunewald 16.11.–19.11.2018 Ende Neubau EÜ Sterndamm + Neubau PT Schöneweide bis 2021 bis 20.08.2018 halbseitg.
    [Show full text]
  • S9 S Flughafen Bln-Schönefeld Bhf — S Ostkreuz —S+U Pankow > S9
    S9 S Flughafen Bln-Schönefeld Bhf — S Ostkreuz —S+U Pankow > S9 S-Bahn Berlin GmbH Alle Züge 2. Klasse und f (Tarif des Verkehrsverbundes Berlin-Brandenburg [VBB]) montags bis freitags, nicht an Feiertagen Verkehrshinweise S Grünau ab 5 02 F20 F20 S Flughafen Bln-Schönefeld Bhf ab 0 13 0 33 0 53 3 53 4 13 4 33 4 53 | 5 13 20 13 20 33 23 53 S Grünbergallee 0 16 0 36 0 56 3 56 4 16 4 36 4 56 | 5 16 20 16 20 36 23 56 S Altglienicke 0 19 0 39 0 59 3 59 4 19 4 39 4 59 | 5 19 20 19 20 39 23 59 S Adlershof 0 24 0 44 1 04 4 04 4 24 4 44 5 04 5 06 5 24 20 24 20 44 0 04 S Betriebsbahnhof Schöneweide 0 26 0 46 1 06 4 06 4 26 4 46 5 06 5 09 5 26 20 26 20 46 0 06 S Schöneweide Bhf 0 28 0 48 1 08 3 48 4 08 4 28 4 48 5 08 5 11 5 28 20 28 20 48 0 08 S Baumschulenweg 0 31 0 51 1 11 3 51 4 11 4 31 4 51 5 11 5 14 5 31 20 31 20 51 0 11 S Plänterwald 0 33 0 53 1 13 3 53 4 13 4 33 4 53 5 13 5 16 5 33 20 33 20 53 0 13 S Treptower Park O 0 36 0 56 1 16 3 56 4 16 4 36 4 56 5 16 5 18 5 36 20 36 20 56 0 16 S Treptower Park ab 0 36 0 56 3 56 4 16 4 36 4 56 5 16 5 36 20 36 20 56 0 16 S Ostkreuz 0 39 0 59 3 59 4 19 4 39 4 59 5 19 5 39 20 39 20 59 0 19 S+U Frankfurter Allee 0 41 1 01 4 01 4 21 4 41 5 01 5 21 5 41 20 41 21 01 0 21 S Storkower Str.
    [Show full text]
  • X-Ray Structural Analyses of Cyclodecasulfur (S10) and of A
    X-Ray Structural Analyses of Cyclodecasulfur (S10) and of a Cyclohexasulfur-Cyclodecasulfur Molecular Addition Compound (S6 • S10) [1] Ralf Steudel*, Jürgen Steidel Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, Sekr. C2, D-1000 Berlin 12 Richard Reinhardt** Institut für Kristallographie der Freien Universität Berlin, Takustraße 6, D-1000 Berlin 33 Dedicated to Professor Dr. Karl Winnacker on the occasion of his 80th birthday Z. Naturforsch. 38 b, 1548-1556 (1983); received August 11, 1983 Elemental Sulfur, Sulfur Rings, Molecular Structure, Crystal Structure, Vibrational Spectra Low temperature X-ray structural analyses of monoclinic single crystals of Sio and Sö • Sio (prepared from the components) show that the cyclic Sio molecule exhibits the same D2 conformation in both compounds with bond distances between 203.3 and 208.0pm, bond angles (a) between 103 and 111°, and torsional angles (r) between 73 and 124°. The Sß molecule (site symmetry Ci) in Sö • Sio is very similar to the one in pure Sö (dss = 206.2 pm, a= 103°, r = 74°). All intermolecular interactions are of van-der-Waals type. The Raman spectrum of S6 • Sio can be explained by a superposition of the Se and Sio spectra. Introduction In all cases the reason for the differing bond distances is the variation of the torsional angles The tremendous industrial importance of ele- leading to a varying degree of lone-pair-lone-pair mental sulfur and its surplus expected for the near repulsion between neighboring atoms. In fact, the future (and occasionally already experienced in the torsional angles r in sulfur rings Sre vary between 0° past) have stimulated considerable research ac- and 140° resulting in a bond length variation of tivities with the result that 19 well characterized 19 pm or 9% [18].
    [Show full text]
  • Techno-Economic Assessment of Battery Electric Trains and Recharging Infrastructure Alternatives Integrating Adjacent Renewable Energy Sources
    sustainability Article Techno-Economic Assessment of Battery Electric Trains and Recharging Infrastructure Alternatives Integrating Adjacent Renewable Energy Sources Christoph Streuling 1,* , Johannes Pagenkopf 1, Moritz Schenker 1 and Kim Lakeit 2 1 German Aerospace Center (DLR), Institute of Vehicle Concepts, 70569 Stuttgart, Germany; [email protected] (J.P.); [email protected] (M.S.) 2 Institute of Electric Power Systems, Otto von Guericke University, 39106 Magdeburg, Germany; [email protected] * Correspondence: [email protected] Abstract: Battery electric multiple units (BEMU) are an effective path towards a decarbonized regional rail transport on partly electrified rail lines. As a means of sector coupling, the BEMU recharging energy demand provided through overhead line islands can be covered from decentralized renewable energy sources (RES). Thus, fully carbon-free electricity for rail transport purposes can be obtained. In this study, we analyze cost reduction potentials of efficient recharging infrastructure positioning and the feasibility of covering BEMU energy demand by direct-use of locally produced renewable electricity. Therefore, we set up a model-based approach which assesses relevant lifecycle costs (LCC) of different trackside electrification alternatives comparing energy supply from local RES and grid consumption. The model-based approach is applied to the example of a German regional rail line. In Citation: Streuling, C.; Pagenkopf, J.; the case of an overhead line island, the direct-use of electricity from adjacent wind power plants with Schenker, M.; Lakeit, K. on-site battery storage results in relevant LCC of EUR 173.4 M/30a, while grid consumption results in Techno-Economic Assessment of EUR 176.2 M/30a whereas full electrification results in EUR 224.5 M/30a.
    [Show full text]
  • Berlin Metro Map by Zuti
    Hohen Mühlenbeck Bernau Borgsdorf Neuendorf Bergfelde Schönfließ Mönchmühle Karow Röntgental Friedenstal Oranienburg Bernau Lehnitz Birkenwerder Hugenotten Navarrapl Buch Zepernick Guyotstr bei Bernau Rosenthal Nord Arnoux HAVEL Französisch Hauptstr Buchholz Kirche Frohnau Friedrich Engels 50 HAVEL Wiesenwinkel Blankenfelder Berlin Angerweg © Copyright Visual IT Ltd Nordendstr Rosenthaler ® Zuti and the Zuti logo are registered trademarks Hermsdorf www.zuti.co.uk Nordend Schillerstr Marienstr BERLIN WALL BERLIN Uhlandstr Pasewalker Blankenburg Hennigsdorf Waldemar Waidmannslust Pasewalker Platanenstr Heinrich Böll Blankenburger Weg Heiligensee Pankower Am Iderfenngraben Kuckhoffstr Pastor Niemöller Platz Schulzendorf Galenusstr Wittenau Hermann Hesse Grabbeallee Waldstr Pastor Niemöller Ahrensfelde REINICKENDORF Ahrensfelde Tschaikowskistr HAVEL Rathaus Würtzstr Wartenberg Reinickendorf Mendelstr Tegel Wilhelmsruh M1 Pankow Zingster Falkenberger Karl B Heinersdorf Prendener Welsestr Nerven Bürgerpark Stiftsweg Heinersdorf Falkenberg Barnimplatz Alt Tegel klinik Alt Reinickendorf Pankow Rathaus Zingster Ribnitzer Schönholz Pankow PANKOW Hohenschönhausen Eichborn Ahrenshooper Niemegker Borsigwerke damm Pankow Rothenbachstr Paracelsus Bad Kirche Prerower U8 Mehrower Holzhauser Lindauer Hansastr Malchower Wuhletalstr HAVEL Heinersdorf Kirche Otisstr Allee Wollankstr JUNGFERNHEIDE Residenzstr Pankow Feldtmannstr Rüdickenstr Max Hermann TEGELER SEE Am Wasserturm M5 Scharnweber Masurenstr M2 Pasedagplatz Berliner Allee Franz Neumann Am Steinberg
    [Show full text]
  • Berlin, Capital of the Federal Republic of Germany, Is Located at the Heart of Europe and Also, After EU Enlargement in 2004, at the Centre of the European Community
    Berlin, Capital of the Federal Republic of Germany, is located at the heart of Europe and also, after EU enlargement in 2004, at the centre of the European Community. With about 3,400,000 inhabitants, Berlin is the largest City in Germany. It is 38 kilometres long and 45 kilometres wide and covers an area of 889 square kilometres. In the middle of the Brandenburg region, the city occupies the flatlands on the banks of the Havel and Spree rivers and is criss-crossed with numerous canals. BY AIRPLANE: You can fly to Berlin from 167 airports in 53 countries. Aircrafts operated by over 67 different airlines land in Berlin. If charter flights are included, that figure rises to 99. The largest of Berlin's three airports are Tegel and Schönefeld. Tegel continues to function as the gateway to western Europe. Most of the flights to eastern Europe and Asia are handled by Schönefeld. Airport Tegel (TXL) 13405 Berlin (Reinickendorf) Tegel is situated in north-west Berlin, approximately 8 km from the city-centre. The airport is located conveniently within Berlin, in ca. 15 minutes the western city centre can be reached. Apart from the buses 109 and 128 the bus X9 which leaves from the train station Zoologischer Garten connects the airport to the city centre, this bus stops only at the main subway stations, therefore the ride doesn't take long. There is also the JetExpressBus TXL which links the avenue Unter den Linden, in the eastern city centre, with the airport. The bus or undergound ticket costs € 2.10 (or € 2.60 for trips to the surroundings, zone ABC).
    [Show full text]
  • World Para Swimming World Records Long Course
    World Para Swimming World Records Long Course World Para Swimming World Records created by IPC Sport Data Management System Gender: Men | Course: Long Course Men's 50 m Freestyle Class Name NPC Birth Time Date City Country S1 Mamistvalov, Itzhak ISR 1979 01:03.80 2014-03-09 Esbjerg Denmark S2 Zou, Liankang CHN 1995 00:50.65 2016-09-11 Rio de Janeiro Brazil S3 Huang, Wenpan CHN 1995 00:38.81 2017-12-06 Mexico City Mexico S4 Leslie, Cameron NZL 1990 00:37.14 2019-09-13 London Great Britain S5 Fantin, Antonio ITA 2001 00:30.16 2019-06-01 Lignano Sabbiadoro Italy S6 Xu, Qing CHN 1992 00:28.57 2012-09-04 London Great Britain S7 Trusov, Andrii UKR 2000 00:27.07 2019-09-15 London Great Britain S8 Tarasov, Denis RUS 1993 00:25.32 2014-08-10 Eindhoven Netherlands S9 Barlaam, Simone ITA 2000 00:24.00 2019-09-15 London Great Britain S10 Brasil, Andre BRA 1984 00:23.16 2012-08-31 London Great Britain S11 Yang, Bozun CHN 1986 00:25.27 2012-09-01 London Great Britain S12 Veraksa, Maksym UKR 1984 00:22.99 2009-10-21 Reykjavik Iceland S13 Boki, Ihar BLR 1994 00:23.20 2015-07-13 Glasgow Great Britain IPC Sport Data Management System Page 1 of 22 29 September 2021 at 00:11:44 CEST World Para Swimming World Records Long Course Men's 100 m Freestyle Class Name NPC Birth Time Date City Country S1 Mamistvalov, Itzhak ISR 1979 02:15.83 2012-09-01 London Great Britain S2 Liu, Benying CHN 1996 01:46.63 2016-09-11 Rio de Janeiro Brazil S3 Lopez Diaz, Diego MEX 1994 01:32.69 2018-06-08 Berlin Germany S4 Dadaon, Ami Omer ISR 2000 01:19.77 2021-05-17 Funchal Portugal
    [Show full text]
  • Implementing the Quantum Von Neumann Architecture with Superconducting Circuits
    Implementing the Quantum von Neumann Architecture with Superconducting Circuits Matteo Mariantoni1;4;x, H. Wang1;∗, T. Yamamoto1;2, M. Neeley1;y, Radoslaw C. Bialczak1, Y. Chen1, M. Lenander1, Erik Lucero1, A. D. O’Connell1, D. Sank1, M. Weides1;z, J. Wenner1, Y. Yin1, J. Zhao1, A. N. Korotkov3, A. N. Cleland1;4, and John M. Martinis1;4;x 1Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA 2Green Innovation Research Laboratories, NEC Corporation, Tsukuba, Ibaraki 305-8501, Japan 3Department of Electrical Engineering, University of California, Riverside, CA 92521, USA 4California NanoSystems Institute, University of California, Santa Barbara, CA 93106-9530, USA ∗Present address: Department of Physics, Zhejiang University, Hangzhou 310027, China. yPresent address: Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02420-9108, USA. zPresent address: National Institute of Standards and Technology, Boulder, CO 80305, USA. xTo whom correspondence should be addressed. E-mail: [email protected] (M. M.); [email protected] (J. M. M.) last updated: September 16, 2011 The von Neumann architecture for a classical computer comprises a central processing unit and a memory holding instructions and data. We demonstrate a quantum central processing unit that exchanges data with a quantum random-access memory integrated on a chip, with instructions stored on a classical computer. We test our quantum machine by executing codes that involve seven quantum elements: Two superconduct- ing qubits coupled through a quantum bus, two quantum memories, and two zeroing registers. Two vital algorithms for quantum computing are demonstrated, the quantum Fourier transform, with 66 % process fidelity, and the three-qubit Toffoli OR phase gate, with 98 % phase fidelity.
    [Show full text]