Titanium Dioxide Nanomaterials, Synthesis, Stability and Mobility in Natural and Synthetic Porous Media

Total Page:16

File Type:pdf, Size:1020Kb

Titanium Dioxide Nanomaterials, Synthesis, Stability and Mobility in Natural and Synthetic Porous Media TITANIUM DIOXIDE NANOMATERIALS, SYNTHESIS, STABILITY AND MOBILITY IN NATURAL AND SYNTHETIC POROUS MEDIA by Ghulam Raza A Thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Geography, Earth and Environmental Sciences The University of Birmingham December 2016 i University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Titanium oxide (TiO2) nanomaterials (NMs) improve potential value to commercial products like sun creams, cosmetics, paints, self-cleaning products, textiles, sports equipment etc. Research on the fabrication of NMs to develop or invent probable new methods and functionalities is an ongoing process. Stabilization of these NMs to retain their nanometric scale is a major issue: and to accomplish this goal, different surfactants and coating agents are used to modify NMs properties. Synthesis of highly ordered, stable, reproducible and cost effective TiO2 NMs remains a challenge. A need of further research still exists in order to develop an in depth understanding of synthesis, aggregation kinetics and transport through porous media, and to determine the ultimate fate and interactions of these NMs with environmental constituents after their release in the natural ecosystem. This research work was typically divided into three phases; synthesis, stabilization and transport. Synthesis was accomplished with sol-gel, hydrothermal and a mix of both methods. The effects of pH, precursors, temperature and different alcohol concentrations were studied in detail. Stability was achieved after extensive research on different surfactants including polyethylene glycol (PEG), Polyvinylpyrrolidone (PVP), Sodium citrate, Sodium Dodecyl Sulfate (SDS), Suwannee River fulvic acid (SRFA). Aggregation kinetics of stabilized NMs was evaluated in detail in the presence of mono and divalent electrolytes (NaNO3, NaCl, CaN2O6, CaCl2). Two different types of morphologies of TiO2 NMs were used during these studies i.e. round anatase NPs and rutile ellipsoids. The stabilized NMs were checked for their mobility through different natural and synthetic porous media (sandstone and glass bead columns) in the third and final phase of this research work. i Different forms of Titanium dioxide nanomaterials including nano-powders and stabilized suspensions were synthesized. The effect of pH, precursors, temperature and zeta potential on nanoparticles nucleation, agglomeration, shape, size, and phase transformation was investigated. Initially the variation of pH from 1 to 11 was systematically studied at different temperatures (25-700oC). The morphological differences as a function of pH were studied in detail. A temperature of 400oC was considered best for crystalline growth while a pH value of 4 gave round and well dispersed TiO2 with a shape factor of >0.9. From the data generated it is obvious that with an increase in pH there is a decrease in agglomeration and increase in dispersion and vice versa. Stable titania suspensions were fabricated by controlling the synthesis solution chemistry. Titanium trichloride and tetrachloride were used to fabricate NPs at room or near room temperature. Different alcohols and alcohol water ratios helped to control the NPs morphology at room or very low temperatures. TiCl4 was evaluated as the best precursor in controlling shape and size in low temperature synthesis processes. Various shapes of TiO2 including spherical NPs with shape factor of 0.9 or more, nanocubes, nanorods and ellipsoids were synthesised with different alcohols and water mixture ratios. In the next phase a couple of synthesized NPs were checked for their stability with 5 different surfactants; PEG, PVP, SDS, SRFA and sodium citrate. The stability of anatase spherical attenuated as sodium citrate, SRFA, PVP, PEG and SDS while this attenuation was SRFA, sodium citrate, PEG, SDS and PVP for rutile ellipsoids. SRFA and sodium citrate at 0.3% weight concentration proved to be the best stabilising agents without any change in the hydrodynamic diameter over a period of 2 weeks. These two types of NPs stabilized with two different types of surfactants i.e. SRFA and sodium citrate were further used for aggregation kinetics and transport studies through natural and artificial porous media. The aggregation kinetic studies showed that rutile ellipsoids behaved well against different mono and divalent ii cations. The critical coagulation concentrations (CCC’s) observed for sodium citrate stabilized NMs were significantly higher than SRFA stabilized NMs, showing that sodium citrate is a better stabilizing agent than SRFA. TEM analysis of aggregated samples in slow and fast regime of aggregation showed different morphologies of aggregates which were analysed with fractal dimension analysis. Most of the aggregating salts gave a fractal dimension of more than 1.5 which means presence of consolidated aggregates after addition of different salts. In the last phase the stabilized NMs with SRFA and sodium citrate were studied for porous media column transport by using glass bead as an artificial and sandstone as more complex natural environmental media. The transport of the rutile ellipsoids is greater than spherical anatase. Bare anatase NPs gave no breakthrough and the NPs clogged both the sandstone and glass bead columns; while bare rutile ellipsoids gave nearly 100% breakthrough curves. In most of the cases for glass beads the C’/Co values remained above 80% and after retention NPs release gave more than 80% of retained NPs. Only 40% or less NPs were released from sandstone columns and rest of injected NPs were retained within the columns. For both sandstone and glass bead media SRFA proved a better flushing agent than sodium citrate. Stabilized anatase showed no difference in mobility as compared to stabilized rutile but bare rutile NPs behaved entirely different from bare anatase. Bare anatase showed difficulty in movement through both sandstone and glass bead media. Both stabilizers i.e. have different effects on mobility of nanomaterials as SRFA gave steric while sodium citrate gave electrostatic stabilization. Tailing was seen in all runs and it is more physical in glass bead followed by sandstone columns while a little tailing is seen in fluorescein. This tailing behaviour shows probably a non-equilibrium attachment process which suggests that colloid filtration theory (CFT) not likely to be correct. The total release in case of glass bead columns was nearly 100% which was much greater than the total release from sandstone columns. Only iii 40% or less NPs were released from sandstone columns and rest of injected NPs were retained within the columns. From overall experimental results it is concluded that glass bead columns are analogous to sandstone columns, in style, though not in degree. So it is encouraging for laboratory experimentation. More release of NPs with SRFA flush is also important as it reflects the ultimate fate and behaviour of TiO2 NPs in natural environment which is rich in humic substances. iv Dedication I dedicate this study to my son, Muhammad Hassan Raza and my daughter, Pakiza Raza v Acknowledgements I would like to take this opportunity to acknowledge the people who have been tremendously helpful, patient and kind during this exciting journey of my second PhD. To my advisors, Professor Jamie Lead and Eva Valsami Jones, I would like to express my sincerest thanks for their unwavering support: this thesis would simply not have been possible without their assistance. A special thank you is due to my co-supervisors, Professor John Tellam and Dr Mohammed Baalousha, for their guidance and technical support during my laboratory work and the writing up of this dissertation. Thank you to my colleagues, Dr. Yusuf Nur, Dr. Mila Tejamaya, Indrani Mahapatra, Inder Kaur, Dr. Auwal Farouk Abdussalam and Isaac Aidoo for their help, moral support, and above all, friendship. To Hasan Shikoh, I extend my most sincere gratitude for being there for me when I needed it most: his kind words and constructive criticism will forever be appreciated. I am grateful to the National Environmental Research Council (NERC), United Kingdom and Natural History Museum (NHM) London, for funding my PhD research project. I would like to thank my extended family, especially my parents, for continuously reminding me that the journey towards my PhD was indeed worth it. I pray for their good health and long vi life because the foundations of my achievements to date are a direct result of their ardent prayers and guidance. Finally, I would like to thank my beloved wife, Sobia Raza, my son, Muhammad Hassan Raza, and daughter, Pakiza Raza, for their unconditional love and support. I could not possibly have reached this landmark without their continuous patience and encouragement throughout my research. On occasions, when I felt it was too difficult to continue, it was only their love and the sparkle in their eyes which helped me carry on with renewed zest to achieve this success. vii Table
Recommended publications
  • Accomplishments in Nanotechnology
    U.S. Department of Commerce Carlos M. Gutierrez, Secretaiy Technology Administration Robert Cresanti, Under Secretaiy of Commerce for Technology National Institute ofStandards and Technolog}' William Jeffrey, Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment used are necessarily the best available for the purpose. National Institute of Standards and Technology Special Publication 1052 Natl. Inst. Stand. Technol. Spec. Publ. 1052, 186 pages (August 2006) CODEN: NSPUE2 NIST Special Publication 1052 Accomplishments in Nanoteciinology Compiled and Edited by: Michael T. Postek, Assistant to the Director for Nanotechnology, Manufacturing Engineering Laboratory Joseph Kopanski, Program Office and David Wollman, Electronics and Electrical Engineering Laboratory U. S. Department of Commerce Technology Administration National Institute of Standards and Technology Gaithersburg, MD 20899 August 2006 National Institute of Standards and Teclinology • Technology Administration • U.S. Department of Commerce Acknowledgments Thanks go to the NIST technical staff for providing the information outlined on this report. Each of the investigators is identified with their contribution. Contact information can be obtained by going to: http ://www. nist.gov Acknowledged as well,
    [Show full text]
  • Nanomaterial Safety
    Nanomaterial Safety What are Nanomaterials? Nanomaterials or nanoparticles are human engineered particles with at least one dimension in the range of one to one hundred nanometers. They can be composed of many different base materials (carbon, silicon, and various metals). Research involving nanomaterials ranges from nano-particle synthesis to antineoplastic drug implants to cell culture work. Material Scientists, Chemists, Biologists, Biochemists, Physicists, Microbiologists, Medical-related disciplines and many engineering disciplines (Mechanical, Chemical, Biological and Environmental, etc.) perform research using nanomaterials. Naturally created particles of this size range are normally called ultra-fine particles. Examples are welding fumes, volcanic ash, motor vehicle exhaust, and combustion products. Nanomaterials come in many different shapes and dimensions, such as: • 0-dimensional: quantum dots • 1-dimensional: nanowires, nanotubes, • 2-dimensional: nanoplates, nanoclays • 3-dimensional: Buckyballs, Fullerenes, nanoropes, crystalline structures Nanoparticles exhibit very different properties than their respective bulk materials, including greater strength, conductivity, fluorescence and surface reactivity. Health Effects Results from studies on rodents and in cell cultures exposed to ultrafine and nanoparticles have shown that these particles are more toxic than larger ones on a mass-for-mass basis. Animal studies indicate that nanoparticles cause more pulmonary inflammation, tissue damage, and lung tumors than larger particles Solubility, shape, surface area and surface chemistry are all determinants of nanoparticle toxicity There is uncertainty as to the levels above which these particles become toxic and whether the concentrations found in the workplace are hazardous Respiratory Hazards: • Nanoparticles are deposited in the lungs to a greater extent than larger particles • Based on animal studies, nanoparticles may enter the bloodstream from the lungs and translocate to other organs and they are able to cross the blood brain barrier.
    [Show full text]
  • Best Practices for Handling Nanoparticles in Laboratories
    Best Practices for Handling Nanoparticles in Laboratories Introduction The purpose of this document is to provide a readily-accessible summary of information currently available on safe work practices for research laboratories working with engineered nanomaterials at Missouri State University. This interim guidance has been compiled from guidance from governmental agencies and universities currently engaged in nanomaterial research sources such as: The Center for Disease Control (CDC), The National Institute for Occupational Safety and Health (NIOSH), The Occupational Safety and Health Administration (OSHA), Department of Energy (DOE), Massachusetts Institute of Technology (MIT), Virginia Tech, and University of Florida. A list of sources can be found in the References section at the end of this document. It should be recognized that rapid changes in the understanding of these risks and management techniques may occur in this field, and researchers are strongly encouraged to stay abreast of these developments. It is anticipated that the internal MSU documents will be used in conjunction with the researcher’s Departmental (or University general) Chemical Hygiene Plan (CHP), and that this guidance is subject to revision as new information or regulatory guidance becomes available. Nanomaterial Definitions Nanoparticles are particles having a diameter of 1 to 100 nanometers (nm) that may or may not have size-related intensive properties. The precise definition of particle diameter depends on particle shape as well as how the diameter is measured. These materials often exhibit unique physical and chemical properties as compared to their parent compounds. They may be suspended in a gas as a nanoaerosol, suspended in a liquid as a colloid or nanohydrosol, or embedded in a matrix as a nanocomposite.
    [Show full text]
  • Enhancing the Thermal Stability of Carbon Nanomaterials with DNA
    University of Rhode Island DigitalCommons@URI Chemical Engineering Faculty Publications Chemical Engineering 2019 Enhancing the Thermal Stability of Carbon Nanomaterials with DNA Mohammad Moein Safee University of Rhode Island Mitchell Gravely University of Rhode Island Adeline Lamothe University of Rhode Island Megan McSweeney University of Rhode Island Daniel E. Roxbury University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/che_facpubs Part of the Chemical Engineering Commons Citation/Publisher Attribution Safaee, M.M., Gravely, M., Lamothe, A. et al. Enhancing the Thermal Stability of Carbon Nanomaterials with DNA. Sci Rep 9, 11926 (2019). https://doi.org/10.1038/s41598-019-48449-x Available at: https://doi.org/10.1038/s41598-019-48449-x This Article is brought to you for free and open access by the Chemical Engineering at DigitalCommons@URI. It has been accepted for inclusion in Chemical Engineering Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. www.nature.com/scientificreports OPEN Enhancing the Thermal Stability of Carbon Nanomaterials with DNA Mohammad Moein Safaee , Mitchell Gravely, Adeline Lamothe, Megan McSweeney & Daniel Roxbury Received: 31 January 2019 Single-walled carbon nanotubes (SWCNTs) have recently been utilized as fllers that reduce the Accepted: 6 August 2019 fammability and enhance the strength and thermal conductivity of material composites. Enhancing Published: xx xx xxxx the thermal stability of SWCNTs is crucial when these materials are applied to high temperature applications. In many instances, SWCNTs are applied to composites with surface coatings that are toxic to living organisms.
    [Show full text]
  • Carbon Nanomaterials: Building Blocks in Energy Conversion Devices
    Mimicking Photosynthesis Carbon nanostructure-based donor- acceptor molecular assemblies can be engineered to mimic natural photo- synthesis. Fullerene C60 is an excellent electron acceptor for the design of donor-bridge-acceptor molecular systems. Photoinduced charge transfer processes in fullerene-based dyads and triads have been extensively investigated by several research groups during the last decade. In these cases the excited C60 accepts an electron from the linked donor group Carbon Nanomaterials: to give the charge-separated state under visible light excitation. Photoinduced charge separation in these dyads has Building Blocks in Energy been achieved using porphyrins, phtha- locyanine, ruthenium complexes, ferro- cene, and anilines as electron donors. Conversion Devices The rate of electron transfer and by Prashant Kamat charge separation efficiency is dependent on the molecular configuration, redox Carbon nanotubes, fullerenes, and mesoporous carbon potential of the donor, and the medium. Clustering the fullerene-donor systems structures constitute a new class of carbon nanomaterials with provides a unique way to stabilize properties that differ signifi cantly from other forms of carbon electron transfer products. The stability of C anions in cluster forms opens such as graphite and diamond. The ability to custom synthesize 60 up new ways to store and transport nanotubes with attached functional groups or to assemble photochemically harnessed charge. fullerene (C60 and analogues) clusters into three-dimensional Novel organic solar cells have (3D) arrays has opened up new avenues to design high surface been constructed by quaternary area catalyst supports and materials with high photochemical self-organization of porphyrin and fullerenes with gold nanoparticles. and electrochemical activity.
    [Show full text]
  • Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine
    nanomaterials Review Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine Daniel Ziental 1 , Beata Czarczynska-Goslinska 2, Dariusz T. Mlynarczyk 3 , Arleta Glowacka-Sobotta 4, Beata Stanisz 5, Tomasz Goslinski 3,* and Lukasz Sobotta 1,* 1 Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] 2 Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] 3 Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] 4 Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; [email protected] 5 Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; [email protected] * Correspondence: [email protected] (T.G.); [email protected] (L.S.) Received: 4 January 2020; Accepted: 19 February 2020; Published: 23 February 2020 Abstract: Metallic and metal oxide nanoparticles (NPs), including titanium dioxide NPs, among polymeric NPs, liposomes, micelles, quantum dots, dendrimers, or fullerenes, are becoming more and more important due to their potential use in novel medical therapies. Titanium dioxide (titanium(IV) oxide, titania, TiO2) is an inorganic compound that owes its recent rise in scientific interest to photoactivity. After the illumination in aqueous media with UV light, TiO2 produces an array of reactive oxygen species (ROS). The capability to produce ROS and thus induce cell death has found application in the photodynamic therapy (PDT) for the treatment of a wide range of maladies, from psoriasis to cancer.
    [Show full text]
  • Nanoscience and Nanotechnologies: Opportunities and Uncertainties
    ISBN 0 85403 604 0 © The Royal Society 2004 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of reprographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to: Science Policy Section The Royal Society 6–9 Carlton House Terrace London SW1Y 5AG email [email protected] Typeset in Frutiger by the Royal Society Proof reading and production management by the Clyvedon Press, Cardiff, UK Printed by Latimer Trend Ltd, Plymouth, UK ii | July 2004 | Nanoscience and nanotechnologies The Royal Society & The Royal Academy of Engineering Nanoscience and nanotechnologies: opportunities and uncertainties Contents page Summary vii 1 Introduction 1 1.1 Hopes and concerns about nanoscience and nanotechnologies 1 1.2 Terms of reference and conduct of the study 2 1.3 Report overview 2 1.4 Next steps 3 2 What are nanoscience and nanotechnologies? 5 3 Science and applications 7 3.1 Introduction 7 3.2 Nanomaterials 7 3.2.1 Introduction to nanomaterials 7 3.2.2 Nanoscience in this area 8 3.2.3 Applications 10 3.3 Nanometrology
    [Show full text]
  • Nanotoxicology: Toxicological and Biological Activities of Nanomaterials - Yuliang Zhao, Bing Wang, Weiyue Feng, Chunli Bai
    NANOSCIENCE AND NANOTECHNOLOGIES - Nanotoxicology: Toxicological and Biological Activities of Nanomaterials - Yuliang Zhao, Bing Wang, Weiyue Feng, Chunli Bai NANOTOXICOLOGY: TOXICOLOGICAL AND BIOLOGICAL ACTIVITIES OF NANOMATERIALS Yuliang Zhao, CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, The Chinese Academy of Sciences, Beijing 100049, & National Center for Nanoscience and Technology of China, Beijing 100190, China Bing Wang, CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, The Chinese Academy of Sciences, Beijing 100049 Weiyue Feng, CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, The Chinese Academy of Sciences, Beijing 100049 Chunli Bai National Center for Nanoscience and Technology of China, Beijing 100190, China The Chinese Academy of Sciences, Beijing 100864, China Keywords: Nanotoxicology, Nanosafety, Nanomaterials, Nanoparticles, Contents 1. Introduction 2. Target organ toxicity of nanoparticles 2.1. Respiratory System 2.1.1. Deposition of Nanoparticles in the Respiratory Tract 2.1.2. Clearance of Nanoparticles in the Respiratory Tract 2.1.3. Nanotoxic Response of Respiratory System 2.2. Gastrointestinal System 2.3. Cardiovascular System 2.4. Central Nervous System 2.5. Skin 3. Absorption,UNESCO distribution, metabolism and excretion– EOLSS of nanoparticles (ADME) 3.1. ADME of Nanoparticle Following Inhalation Exposure 3.1.1. Absorption and Retention of Nanoparticles Following Respiratory Tract Exposure 3.1.2. Translocation and Distribution of Nanoparticles Following Respiratory Tract Exposure SAMPLE CHAPTERS 3.1.3. Metabolism and Excretion of Nanoparticles in the Lung 3.2. ADME of Nanoparticle via Gastrointestinal Tract 3.3. ADME of Nanoparticles via Skin 4.
    [Show full text]
  • Nanoelectronics
    Highlights from the Nanoelectronics for 2020 and Beyond (Nanoelectronics) NSI April 2017 The semiconductor industry will continue to be a significant driver in the modern global economy as society becomes increasingly dependent on mobile devices, the Internet of Things (IoT) emerges, massive quantities of data generated need to be stored and analyzed, and high-performance computing develops to support vital national interests in science, medicine, engineering, technology, and industry. These applications will be enabled, in part, with ever-increasing miniaturization of semiconductor-based information processing and memory devices. Continuing to shrink device dimensions is important in order to further improve chip and system performance and reduce manufacturing cost per bit. As the physical length scales of devices approach atomic dimensions, continued miniaturization is limited by the fundamental physics of current approaches. Innovation in nanoelectronics will carry complementary metal-oxide semiconductor (CMOS) technology to its physical limits and provide new methods and architectures to store and manipulate information into the future. The Nanoelectronics Nanotechnology Signature Initiative (NSI) was launched in July 2010 to accelerate the discovery and use of novel nanoscale fabrication processes and innovative concepts to produce revolutionary materials, devices, systems, and architectures to advance the field of nanoelectronics. The Nanoelectronics NSI white paper1 describes five thrust areas that focus the efforts of the six participating agencies2 on cooperative, interdependent R&D: 1. Exploring new or alternative state variables for computing. 2. Merging nanophotonics with nanoelectronics. 3. Exploring carbon-based nanoelectronics. 4. Exploiting nanoscale processes and phenomena for quantum information science. 5. Expanding the national nanoelectronics research and manufacturing infrastructure network.
    [Show full text]
  • Carbon-Based Nanomaterials/Allotropes: a Glimpse of Their Synthesis, Properties and Some Applications
    materials Review Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications Salisu Nasir 1,2,* ID , Mohd Zobir Hussein 1,* ID , Zulkarnain Zainal 3 and Nor Azah Yusof 3 1 Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia 2 Department of Chemistry, Faculty of Science, Federal University Dutse, 7156 Dutse, Jigawa State, Nigeria 3 Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; [email protected] (Z.Z.); [email protected] (N.A.Y.) * Correspondence: [email protected] (S.N.); [email protected] (M.Z.H.); Tel.: +60-1-2343-3858 (M.Z.H.) Received: 19 November 2017; Accepted: 3 January 2018; Published: 13 February 2018 Abstract: Carbon in its single entity and various forms has been used in technology and human life for many centuries. Since prehistoric times, carbon-based materials such as graphite, charcoal and carbon black have been used as writing and drawing materials. In the past two and a half decades or so, conjugated carbon nanomaterials, especially carbon nanotubes, fullerenes, activated carbon and graphite have been used as energy materials due to their exclusive properties. Due to their outstanding chemical, mechanical, electrical and thermal properties, carbon nanostructures have recently found application in many diverse areas; including drug delivery, electronics, composite materials, sensors, field emission devices, energy storage and conversion, etc. Following the global energy outlook, it is forecasted that the world energy demand will double by 2050. This calls for a new and efficient means to double the energy supply in order to meet the challenges that forge ahead.
    [Show full text]
  • Review on Carbon Nanomaterials-Based Nano-Mass and Nano-Force Sensors by Theoretical Analysis of Vibration Behavior
    sensors Review Review on Carbon Nanomaterials-Based Nano-Mass and Nano-Force Sensors by Theoretical Analysis of Vibration Behavior Jin-Xing Shi 1, Xiao-Wen Lei 2 and Toshiaki Natsuki 3,4,* 1 Department of Production Systems Engineering and Sciences, Komatsu University, Nu 1-3 Shicyomachi, Komatsu, Ishikawa 923-8511, Japan; [email protected] 2 Department of Mechanical Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; [email protected] 3 Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi 386-8567, Japan 4 Institute of Carbon Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan * Correspondence: [email protected] Abstract: Carbon nanomaterials, such as carbon nanotubes (CNTs), graphene sheets (GSs), and carbyne, are an important new class of technological materials, and have been proposed as nano- mechanical sensors because of their extremely superior mechanical, thermal, and electrical perfor- mance. The present work reviews the recent studies of carbon nanomaterials-based nano-force and nano-mass sensors using mechanical analysis of vibration behavior. The mechanism of the two kinds of frequency-based nano sensors is firstly introduced with mathematical models and expressions. Af- terward, the modeling perspective of carbon nanomaterials using continuum mechanical approaches as well as the determination of their material properties matching with their continuum models are concluded. Moreover, we summarize the representative works of CNTs/GSs/carbyne-based Citation: Shi, J.-X.; Lei, X.-W.; nano-mass and nano-force sensors and overview the technology for future challenges.
    [Show full text]
  • Carbon Nanotubes (Cnts): a Potential Nanomaterial for Water Purification
    Review ReviewCarbon Nanotubes (CNTs): A Potential CarbonNanomaterial Nanotubes for Water (CNTs): Purification A Potential Nanomaterial forBharti WaterArora 1,* and Purification Pankaj Attri 2,* Bharti1 Department Arora 1, *of and Applied Pankaj Sciences, Attri The2,* NorthCap University, Sector-23-A, Gurugram, Haryana-122017, 1 IndiaDepartment of Applied Sciences, The NorthCap University, Sector-23-A, Gurugram, Haryana 122017, India 2 2 CenterCenter of of Plasma Plasma Nano-Interface Nano-Interface Engineer Engineering,ing, Kyushu Kyushu University, University, Fukuoka Fukuoka 819-0395, 819-0395, Japan Japan ** Correspondence:Correspondence: [email protected] [email protected] (B.A.); (B.A.); [email protected] [email protected] (P.A.) (P.A.) Received: 23 July 2020; Accepted: 3 Sept Septemberember 2020; Published: 10 10 September September 2020 Abstract: Nanomaterials such as carbon nanotubes (CNTs) have been used as an excellent material for catalysis, separation, separation, adsorption adsorption and and disinfecti disinfectionon processes. processes. CNTs CNTs have have grabbed grabbed the the attention attention of ofthe the scientific scientific community community and and they they have have the potentia the potentiall to adsorb to adsorb most most of the of organic the organic compounds compounds from fromwater. water. Unlike, Unlike, reverse reverse osmosis osmosis (RO), nanofiltration (RO), nanofiltration (NF) and (NF) ultrafiltration and ultrafiltration (UF) membranes (UF) membranes aligned alignedCNT membranes CNT membranes can act canas high-flow act as high-flow desalination desalination membranes. membranes. CNTs CNTsprovide provide a relatively a relatively safer saferelectrode electrode solution solution for biosensors. for biosensors. The Thearticle article is of is ofthe the utmost utmost importance importance for for the the scientists scientists and technologists working in water purification purification technologies to eliminate the the water water crisis crisis in in the the future.
    [Show full text]