Ultrastructural Studies on the Cultivation Processes and Growth and Development of the Cultivated Mushroom Agaricus Bisporus

Total Page:16

File Type:pdf, Size:1020Kb

Ultrastructural Studies on the Cultivation Processes and Growth and Development of the Cultivated Mushroom Agaricus Bisporus Food Structure Volume 4 Number 1 Article 17 1985 Ultrastructural Studies on the Cultivation Processes and Growth and Development of the Cultivated Mushroom Agaricus Bisporus D. A. Wood G. D. Craig P. T. Atkey R. J. Newsam K. Gull Follow this and additional works at: https://digitalcommons.usu.edu/foodmicrostructure Part of the Food Science Commons Recommended Citation Wood, D. A.; Craig, G. D.; Atkey, P. T.; Newsam, R. J.; and Gull, K. (1985) "Ultrastructural Studies on the Cultivation Processes and Growth and Development of the Cultivated Mushroom Agaricus Bisporus," Food Structure: Vol. 4 : No. 1 , Article 17. Available at: https://digitalcommons.usu.edu/foodmicrostructure/vol4/iss1/17 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Food Structure by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. FOOD MICROSTRUCfURE, Vol. 4 (1985). pp. 143-164 0730-5419/85$1 . 00+.05 SEM Inc .. AMF O'Hare (Chicago) , IL 60666-0507 U.S.A. ULTRASTRUCTURAL STUDIES ON THE CULTIVATION PROCESSES AND GROWTH AND DEVELOPMENI' OF THE CULTIVATED MUSHROOM AGARICUS BISPORUS 1 2 1 3 3 D.A. Wood *, G.D. Craig , P. T. Atkey , R.J. Newsarn and K. G.Jll 1 Dept. of Plant Pathology & Microbiology , Glasshouse Crops Research Institute, Littlehampton, 2 West Sussex, BN17 6LP, UK 3 Dept. of Life Sciences, Nottingham Polytechnic, Nottingham, UK Biological Laboratory, University of Kent, canterbury, Kent, UK Abstract Introduction Scanning electron microscopy (SEM) , The production of the cultivated mushroom is transmission electron microscopy and light carried out on a large scale in North America, microscopy have been used t o study various Europe, Australasia and parts of Asia . World processes in the cultivation of the edible production now exceeds 1.0 million t onnes per mushroom Agaricus bisporus . Mushrooms are annum. Production is carried out by growing the cultured on composted wheat straw. The microbial mycelium of the fungus in composted substrates, degradation processes during composting have been such as manure-straw mixtures , a nd then harvest­ visualised by TEM and SEM and correlated with ing the mushroom fruit bodies prior t o marketing microbiological studies. Various modes of attack (Wood, 1984, Wood et al., 1984). In the United by the microorganisms on the plant cell walls can Kingdom the consumer preference is f or fresh be seen. Most rapid degradation occurred on the mushrooms but in North America, France and Asia cuticle and phloem and spread to other cell considerable quantitites of mushrooms are canned types. Microbial attack was found to be non­ before marketing . uniform between tissue types and individual Many microbiological studies have been cells. The mycelium of Agaricus bisporus carried out on the composting process used for colonised the compost straw surface and the lumen the growth substrote on which mushrooms are of straw cells, and also degraded microbial cells cultivated (Fermor and Wood, 1979) . A large and therein. taxonomically diverse microbial flora has been The cellular organisation and ultrastructure shown to be involved in composting . These of the rhizomorphs and of the developing stipe microbes include bacteria, actinomycetes and and gill tissue were examined. The development fungi and both mesophilic and thermophilic and branching patterns of the hyphae generating microbial g roups a re found. The soluble the sub-hymenium and hymenium l ayer s of the gill materials a nd certain of the insoluble materials tissue were examined . Light and electron of the substrate are utilised during composting microscope autoradiography were used t o locate (Fermor and Wood, 1979 , Fermor a nd Wood, 1981). the site of synthesis of cell wall chitin and to After composting , the growth substrate demonstrate evidence for cell division in the (compost) is inoculated with mushroom mycelium upper stipe region. and the compos t is subsequently extensively colonised by the mycelium . Mushrooms arise as small knots or aggregates of hyphal cells and differentiate into the 3 tissue types of the Initial paper received February 18, 1985. mature structure, stipe, cap and gills. Final manuscript received May 21, 1985. We investigated the ultrastructure of the Direct inquiries to D.A. Wood. composting process and colonisation stages of Telephone number: (0903) 716123. mushroom production t o determine the organisation and mode of attack of the microorganisms in the compost and t o study the colonisation by the hyphae of the mushroom into the substrate. The ~ey_~-r~: ITRlShrcx:rn, Agar~~, scanning electron development of the mushroom from the earliest microscopy, transmission electron microscopy, stages to mature fruit bodies was examined by ultrastructure, ccrrp::Jst, growth, developrent, transmission e lec tron microscopy (TEM) and autoradiography, cell division. scanning electron microscopy (SEM). Auto­ radiographic techniques were used to examine cell division and chitin synthesis in stipe tissue of the mushrooms. 143 D. A. Wood , G. D. Craig , P. T. Atkey, et al . Pha se 1 - Composting of straw/manures ~ 3 Phase 2 - Composting, high temperature stage + In oculation o f compost Colonisation Application of casing material ~ First fruit bodies nC ~ Primordium Set of fruiting cycles ~ End of crop G Fig . 1 A simplified schematic f l ow chart of the main stages in mushroom cultivation Fig. 4 Day 0 . SEM of raw straw surface. Note B silica l:x:xlies (arrows) . Bar 50 11m . ~h_ Hyphal Fig. 5 Day 0. Sil1 of straw surface fran stable ITI3Ilure. tJote diverse microbial population. Bar 50 11m . -- knot Fig. 6 Day 0 . SEM of cut end of straw internode / from stable ITI3Ilure showing microbial concentration in phloan. Bar 50 11rn. Fig. 7 Day 7. 'IEM of variety of microorganisms Initiation within a straw cell. Bar 2 . 5 1111' . Fig. 8 Day 7 . Til1 of straw showing absence of microbial colonisation. Bar 5 11m . Fig. 9 Day 7 . SEM of col ony of coccoid bacterial Fruiting of cells on the straw surface. Bar 5 l.llll. Fig. 10 Day 7 . SEM of microorganisms on straw ~garicus bisr:2orus cuticle. Note erosion aroW1d silica l:x:xly (arrow). Bar 25 l.llll. Morphology Fig. ll Day 14 . Til'l of bacteria within straw cells. Note erosion (W , cell wall) and glycocalyx Fig . 3 Diagram of morphogenesis of the mushroom rraterial anchoring bacteria (g) . Bar 1 11m . Agaricus bisporus Fi g . 2 Diagram of growth a nd cropping of the edible mushroom Agaricus bisporus on composted substrates Development of the Cultivated Mushroom Open cup (section) pileus (cap) 2 144 Ultrastructural Studies on Mushroom Cultivation 145 D.A. Wood, G.D. Craig, P.T. Atkey, et al. Materials and Methods T20 scanning microscope at 20 kV accelerating voltage. Samples from mushroom cultivation processes A schemat1c flow chart of the major steps in Samples from mushroom tissue mushroom cultivation is shown in Figure 1. A A diagram of the morphogenesis of Agaricus more detailed description of the process and the bisporus is shown in Figure 3. Samples for environmental and cultural parameters controlling microscopy were taken from stages c, E, F, G. it and their purpose can be found in Wood (1984). A summary of the growing procedure for mushrooms Light microscopy is shown in Fig. 2. Samples of straw internode -----Small pieces of stipe tissue were removed at material were taken from the bulk of the compost stages F and G, and fixed in 2.5% glutaraldehyde at each of the following stages of the in sodium cacodylate pH 7.4. The samples were cultivation process. Raw straw + stable manure post fixed in 1% osmium tetroxide in veronal­ at 0 d , first phase of composting at 7 d, acetate buffer pH 7.2 and then dehydrated in an pasteurization at 14 d; mycelial inoculation at ethanol series and embedded in Spurr's resin 21 d, application of casing material at 35 d, (Spurr, 1969). The tissue was embedded so first appearance of fruit bodies at 56 d and end longitudinal sections could be cut to reveal the of fruiting at 112 d. orientation of the hyphae. Sections (0.5 pm) Transmission electron microscopy (TEM) of straw were cut with glass knives with a Reichert OMU3 samples ultratome, stained with 1% toludine blue and Pieces of tissue ca 0.5 mm x 2 mm were cut examined in a Zeiss Universal light microscope. from the internode region of the straw. These were fixed for 2 h in Karnovsky's fixative TEM of mushroom tissue (Karnovsky, 1965) using half strength para­ ----samples of the material embedded for light formaldehyde. Samples were fixed in embedding microscopy were sectioned as described above and tubes as described by Pegler and Atkey (1978). then post-stained with uranyl acetate and lead The tissues were thoroughly rinsed in 0.2 M citrate. The sections were examined in an AEI sodium cacodylate buffer pH 7.2; and post-fixed 801 transmission microscope at 60 kV accelerating for 2 h in 2% osmium tetroxide. The tissue was voltage. then washed and dehydrated through a graded ethanol series and embedded in Spurr's resin SEM of mushroom tissue (Spurr, 1969) after infiltration at 24 h for 3 ---~ngitudinal and trans~erse sections of increasing concentrations and a final 48 h in stipe and gill tissue (5 mm ) were removed and 100% resin. Fixation and dehydration was carried fixed for 18 h in 2.5% glutaraldehyde in sodium out at room temperature. Sections were cut with cacodylate pH 7.4. The specimens were dehydrated an LKB Ultratome III using glass knives, and then through a graded acetone series each at 30 stained with aqueous uranyl acetate for 30 minutes and finally into 100% acetone . The minutes and post-stained with Reynolds lead specimens were then critical point dried with citrate solution (Reynolds , 1963) and examined in liquid carbon dioxide with a Polaron model E300 a JSM 100 S transmission microscope at 80 kV drier.
Recommended publications
  • PLP427R/527R 11-1-05 NAME: QUIZ # 3 1. Described the Common Features of the Organisms Placed in the Deuteromycota, and How
    PLP427R/527R 11-1-05 NAME: QUIZ # 3 1. Described the common features of the organisms placed in the Deuteromycota, and how the classes and orders within this phylum are based on form? Explain why this phylum is decreasing in size even though more fungal species are being identified. The organisms in the phylum Deuteromycota are those higher fungi that only have an anamorphic (asexual) stage. They lack a known sexual (teleomorphic) stage. The Deuteromycota is often referred to as a Form-phylum because the organisms are grouped based on form, and may not be the most closely related. As such, groupings are polyphyletic. The classes are defined based on first whether they produce hyphae (Coelomycetes and Hyphomycetes) or are yeast-like (Blastomycetes), and if they do produce hyphae, whether the conidiophores and conidia occur in structures (pycnidia and acervuli) (the Coelomycetes) or not the Hyphomycetes). Orders are based on the type of structure for one class (the Coelomycetes), and on whether or not they produce conidia, or only hyphae for the class lacking asexual spore-bearing structures (the Hyphomycetes). The phylum is decreasing in size primarily because organisms are being re- classified into the Ascomycetes, or some into the Basidiomycetes, based on their molecular phylogenetic relatedness to other species already in those phyla. Some already do not recognize this group as a separate phylum (eg. Kendrick, author of the Fifth Kingdom).. 2. Draw and compare an ascocarp vs. a basidiocarp, included the nuclear content of the hypha forming these sporocarps, name the fertile layer where their respective sexual spores are formed.
    [Show full text]
  • Field Guide to Common Macrofungi in Eastern Forests and Their Ecosystem Functions
    United States Department of Field Guide to Agriculture Common Macrofungi Forest Service in Eastern Forests Northern Research Station and Their Ecosystem General Technical Report NRS-79 Functions Michael E. Ostry Neil A. Anderson Joseph G. O’Brien Cover Photos Front: Morel, Morchella esculenta. Photo by Neil A. Anderson, University of Minnesota. Back: Bear’s Head Tooth, Hericium coralloides. Photo by Michael E. Ostry, U.S. Forest Service. The Authors MICHAEL E. OSTRY, research plant pathologist, U.S. Forest Service, Northern Research Station, St. Paul, MN NEIL A. ANDERSON, professor emeritus, University of Minnesota, Department of Plant Pathology, St. Paul, MN JOSEPH G. O’BRIEN, plant pathologist, U.S. Forest Service, Forest Health Protection, St. Paul, MN Manuscript received for publication 23 April 2010 Published by: For additional copies: U.S. FOREST SERVICE U.S. Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073 359 Main Road Delaware, OH 43015-8640 April 2011 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ CONTENTS Introduction: About this Guide 1 Mushroom Basics 2 Aspen-Birch Ecosystem Mycorrhizal On the ground associated with tree roots Fly Agaric Amanita muscaria 8 Destroying Angel Amanita virosa, A. verna, A. bisporigera 9 The Omnipresent Laccaria Laccaria bicolor 10 Aspen Bolete Leccinum aurantiacum, L. insigne 11 Birch Bolete Leccinum scabrum 12 Saprophytic Litter and Wood Decay On wood Oyster Mushroom Pleurotus populinus (P. ostreatus) 13 Artist’s Conk Ganoderma applanatum
    [Show full text]
  • Mushroom Characterization Part I Illustrated Morphological
    Current Research in Environmental & Applied Mycology 8(5): 501–555 (2018) ISSN 2229-2225 www.creamjournal.org Article Doi 10.5943/cream/8/5/3 Mushroom Characterization: Part I – Illustrated Morphological Characteristics Senthilarasu G1, 2* and Kumaresan V3 1 The Energy and Resources Institute, 318, Raheja Arcade, Sector 11, CBD Belapur-400614, Navi Mumbai, Maharashtra, India. 2 Macrofungal Collection of India, 9/174, Gandhi Street, Senneerkuppam, Poonamallee- 600 056, Tamil Nadu, India. 3 Department of Botany, Kanchi Mamunivar Centre for Post Graduate Studies (Autonomous), Puducherry-605008, India. Senthilarasu G, Kumaresan V 2018 – Mushroom Characterization: Part I – Illustrated Morphological Characteristics. Current Research in Environmental & Applied Mycology 8(5), 501–555, Doi 10.5943/cream/8/5/3 Abstract Conventional taxonomy of mushrooms is often not very easy for amateur taxonomists and research scholars to initiate the research on taxonomy and diversity of mushrooms due to the complex morphological characteristics that is often very difficult to comprehend. We illustrate the external morphological characteristics of mushrooms through colorful photographs to facilitate the taxonomic characterization of mushrooms and to promote the research on mushrooms. In addition, a data sheet for morphological characteristics of agaric mushrooms is provided. Key words – agarics – basidiomycetes – fungi – morphology – mushrooms – polypores – taxonomy Introduction It is an endeavor to simplify the morphological characteristics of mushrooms and to make known to the amateur mycologists beyond a shadow of doubt for easy identification of mushrooms. Although, several materials and field guides in the form of drawings are available for illustrating the morphotaxonomy of mushrooms (Largent & Stuntz 1977, Singer 1986, Lodge et al. 2004), still amateur mushroom taxonomists feel it tiresome to take up initial research on mushrooms due to an array of mushroom characteristics to be recorded.
    [Show full text]
  • Wood Decay Fungi in Landscape Trees
    Pest Notes, Publication 74109 Revised August 2019 Integrated Pest Management for Home Gardeners and Landscape Professionals Wood Decay Fungi in Landscape Trees everal fungal diseases, sometimes called heart rots, Ssap rots, or canker rots, decay wood in tree trunks Figure 1. White rot of oak. and limbs (Figures 1 and 2). Under conditions favor- ing growth of specific rot fungi, extensive portions of the wood of living trees can decay in a relatively short time (i.e., months to years). Decay fungi reduce wood strength and may kill storage and conductive tissues in the sapwood. While most species of woody plants are subject to trunk and limb decay, older and weaker trees are most susceptible. DAMAGE Decay fungi destroy cell wall components; including cellulose, hemicellulose, and lignin, that make up the woody portion of a tree. Depending on the organism, decay fungi can destroy the living (sapwood) or the central core (heartwood) part of the tree. Decay isn’t always visible on the outside of the tree, except where the bark Figure 2. Heart brown rot in a conifer trunk. has been cut or injured, when a cavity is present, or when rot fungi produce reproductive structures. Wood decay can make trees hazardous, of wood weight can result in 70 to 90% as infected trunks and limbs become loss in wood strength. Many branches unable to support their own weight and that fall from trees appear sound, but fall, especially when stressed by wind, upon analysis, they were colonized by Authors: heavy rain, or other conditions. Decay wood decay organisms.
    [Show full text]
  • MYCOTAXON Volume 103, Pp
    MYCOTAXON Volume 103, pp. 353–363 January–March 2008 A new species of Pleurocollybia (Tricholomataceae; Agaricales; Basidiomycetes) from Belize T. J. Baroni1 & N. Bocsusis2 [email protected] [email protected] Department of Biological Sciences, State University of New York – College at Cortland, Cortland, NY 13045 D J. Lodge [email protected] USDA – Forest Service, Center for Forest Mycology PO Box 1377, Luquillo, Puerto Rico, 00773 D. L. Lindner [email protected] USDA-FS Madison Field Office, Northern Research Station Center for Forest Mycology Research, One Gifford Pinchot Dr. Madison, WI 53726-2398 Abstract—A new species, Pleurocollybia imbricata, is described from the Maya Mountains of Belize and a new combination in Pleurocollybia is proposed. A key to the known species of Pleurocollybia is also provided. Keywords—agarics, Doyle’s Delight, siderophilous inclusions, taxonomy Introduction Pleurocollybia Singer was proposed as a new monotypic genus to accommodate Gymnopus praemultifolius Murrill (Murrill 1945) based on several features: eccentric stipe, clampless hyphae, minute basidiospores (very small for an agaric, e.g. “2.7-3.5 × 2.5-3.2 µm”), and lack of necropigments (Singer 1947). Singer (1947) compared Pleurocollybia to two morphologically similar genera, Callistosporium Singer and Podabrella Singer (now considered a synonym of Termitomyces, Frøslev et al. 2003), but separated Pleurocollybia from them by the eccentric stipe and very small basidiospores. Podabrella (= Termitomyces) 354 ... Baroni & al. produces a reddish/pinkish colored spore deposit while those of Pleurocollybia and Callistosporium are white. Podabrella (= Termitomyces) also produces siderophilous bodies in the basidia, while siderophilous bodies are not present in Pleurocollybia. Callistosporium has abundant brightly colored necropigments in the basidiospores, basidia and tramal hyphae, while these pigments are not present in Pleurocollybia.
    [Show full text]
  • Sporocarp Ontogeny in Panus (Basidiomycotina): Evolution and Classification
    Sporocarp Ontogeny in Panus (Basidiomycotina): Evolution and Classification David S. Hibbett; Shigeyuki Murakami; Akihiko Tsuneda American Journal of Botany, Vol. 80, No. 11. (Nov., 1993), pp. 1336-1348. Stable URL: http://links.jstor.org/sici?sici=0002-9122%28199311%2980%3A11%3C1336%3ASOIP%28E%3E2.0.CO%3B2-M American Journal of Botany is currently published by Botanical Society of America. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/botsam.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Tue Jan 8 09:54:21 2008 American Journal of Botany 80(11): 1336-1348.
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • Collecting and Recording Fungi
    British Mycological Society Recording Network Guidance Notes COLLECTING AND RECORDING FUNGI A revision of the Guide to Recording Fungi previously issued (1994) in the BMS Guides for the Amateur Mycologist series. Edited by Richard Iliffe June 2004 (updated August 2006) © British Mycological Society 2006 Table of contents Foreword 2 Introduction 3 Recording 4 Collecting fungi 4 Access to foray sites and the country code 5 Spore prints 6 Field books 7 Index cards 7 Computers 8 Foray Record Sheets 9 Literature for the identification of fungi 9 Help with identification 9 Drying specimens for a herbarium 10 Taxonomy and nomenclature 12 Recent changes in plant taxonomy 12 Recent changes in fungal taxonomy 13 Orders of fungi 14 Nomenclature 15 Synonymy 16 Morph 16 The spore stages of rust fungi 17 A brief history of fungus recording 19 The BMS Fungal Records Database (BMSFRD) 20 Field definitions 20 Entering records in BMSFRD format 22 Locality 22 Associated organism, substrate and ecosystem 22 Ecosystem descriptors 23 Recommended terms for the substrate field 23 Fungi on dung 24 Examples of database field entries 24 Doubtful identifications 25 MycoRec 25 Recording using other programs 25 Manuscript or typescript records 26 Sending records electronically 26 Saving and back-up 27 Viruses 28 Making data available - Intellectual property rights 28 APPENDICES 1 Other relevant publications 30 2 BMS foray record sheet 31 3 NCC ecosystem codes 32 4 Table of orders of fungi 34 5 Herbaria in UK and Europe 35 6 Help with identification 36 7 Useful contacts 39 8 List of Fungus Recording Groups 40 9 BMS Keys – list of contents 42 10 The BMS website 43 11 Copyright licence form 45 12 Guidelines for field mycologists: the practical interpretation of Section 21 of the Drugs Act 2005 46 1 Foreword In June 2000 the British Mycological Society Recording Network (BMSRN), as it is now known, held its Annual Group Leaders’ Meeting at Littledean, Gloucestershire.
    [Show full text]
  • Sequestrate Fungi from Patagonian Nothofagus Forests: Cystangium (Russulaceae, Basidiomycota)
    Sequestrate fungi from Patagonian Nothofagus forests: Cystangium (Russulaceae, Basidiomycota) Trierveiler-Pereira, L., Smith, M. E., Trappe, J. M., & Nouhra, E. R. (2015). Sequestrate fungi from Patagonian Nothofagus forests: Cystangium (Russulaceae, Basidiomycota). Mycologia, 107(1), 90-103. doi:10.3852/13-302 10.3852/13-302 Allen Press Inc. Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Mycologia, 107(1), 2015, pp. 90–103. DOI: 10.3852/13-302 # 2015 by The Mycological Society of America, Lawrence, KS 66044-8897 Sequestrate fungi from Patagonian Nothofagus forests: Cystangium (Russulaceae, Basidiomycota) Larissa Trierveiler-Pereira1 Ectomycorrhizal, hypogeous fungi in the Basidio- PPGBOT, Department of Botany, Universidade Federal mycota and Ascomycota are important components of do Rio Grande do Sul, Porto Alegre, Brazil 91501-970 the forest soil environment. Not only do they function Matthew E. Smith as nutrient absorbing organisms for their tree hosts, Department of Plant Pathology, University of Florida, these fungi also improve soil conditions (Perry et al. Gainesville, Florida 32611 1989) and interact with a variety of forest organisms (Trappe and Luoma 1992). In particular, they are an James M. Trappe important food source for animals in ectomycorrhizal Department of Forest Ecosystems and Society, Oregon forests (Maser et al. 1978, Claridge et al. 2002, Vernes State University, Corvallis, Oregon 97331 et al. 2004, Claridge and Trappe 2005, Trappe et al. Eduardo R. Nouhra 2006, Vernes 2010, Katarzˇyte˙ and Kutorga 2011, Instituto Multidisciplinario de Biologı´a Vegetal Schickmann et al. 2012), including those of Argentina (CONICET), Universidad Nacional de Co´rdoba, (Perez Calvo et al. 1989, Nouhra et al. 2005).
    [Show full text]
  • The Protists
    The Protists (160,000 living & extinct species; estimates to 200,000 actual species) mostly single-celled, eukaryotes restricted to aquatic, or moist environments: oceans, ponds, lakes, rivers, damp soil, tree bark, snow, etc.; some species are colonial or multicellular; autotrophs & heterotrophs; with or without cell walls; most motile. Genetic analyses have dramatically changed the classification scheme if this group of organisms. In this course we will discuss examples of three main types of protists; algae, protozoa and slime & water molds. Algae [Plant-Like Protists] (22,000 living species) diverse group of mostly unicellular protists, some colonial or multicellular; restricted to aquatic or moist environments: oceans, ponds, lakes, rivers, soil, bark, snow, etc.; photosynthetic with chloroplasts containing chlorophyll and other pigments, most motile; most with cell wall; cell walls of cellulose, proteins,, silica or other materials classified according to their kinds of photosynthetic pigments and composition of cell wall Fire Algae (Dinoflagellates; Phylum Pyrrhophyta, 2100 species) unicellular, many symbiotic as zooxanthellae; some produce cell walls of armored plates, blooms produce toxic red tides, bioluminescent Diatoms (Glass Algae; Phylum Chrysophyta, 28000 living & extinct species) most abundant group of algae; unicellular, radial symmetry, cell walls contain silica; common in freshwater and oceans; source of diatomaceous earth; gliding movement, Euglenas (Phylum Euglenophyta, 1000 species) unicellular, only algae without
    [Show full text]
  • Basidiomycotina
    BASIDIOMYCOTINA General Characters • Most advanced group of all fungal classes • Comprises of about 500 genera and 15,000 species • Includes both saprophytic and parasitic species (Mushrooms, Puffballs, Toad stools, Rusts, Smuts etc.) • Parasitic genera spread on stem, leaves, wood or inflorescence (Ustilago, Puccinia, Polyporus, Ganoderma etc.) • Saprophytic species live in decaying wood, logs, dung, dead leaves and humus rich soil (Agaricus, Lycoperdon, Pleurotus, Cyathus, Geastrum etc.) • Characteristics spores are basidiospores, produced on basidia Mycelium • Mycelium is branched, well developed and perennial • Spreading in a fan shaped manner – forming fairy rings in mushrooms • Mycelium spread on the substratum and absorb food • In few genera mycelium form rhizomorphs • Hyphae are septate, septal pore is surrounded by a swollen rim or crescent shaped cap – parenthesome – such septa are called dolipore septum • Not seen in rusts and smuts • Cell wall is made up of chitin • Mycelium occur in three stages • Primary mycelium: Monokaryotic, short lived, formed by germination of basidiospores, represent haplophase, does not bear any sex organs • Secondary mycelium: Dikaryotic, perennial, formed by the fusion (dikaryotisation) of two dissimilar primary mycelium. Represent dikaryotic phase, produce fruiting bodies and show clamp connections • Tertiary mycelium: In higher members, secondary mycelium get organised into specialized tissues forming fruiting bodies. Dikaryotic in nature Clamp Connections • Dikaryotic secondary mycelium grow by
    [Show full text]
  • Pleosporales, Dothideomycetes)
    Mycosphere 5 (3): 411–417 (2014) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2014 Online Edition Doi 10.5943/mycosphere/5/3/3 A new species, Lophiostoma versicolor, from Japan (Pleosporales, Dothideomycetes) Hirayama K1, Hashimoto A2, 3 and Tanaka K2 1 Apple Experiment Station, Aomori Prefectural Agriculture and Forestry Research Center, 24 Fukutami, Botandaira, Kuroishi, Aomori 036-0332, Japan 2 Faculty of Agriculture and Life Sciences, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan 3The United Graduate School of Agricultural Sciences, Iwate University, 18-8 Ueda 3 chome, Morioka 020-8550, Japan Hirayama K, Hashimoto A, Tanaka K 2014 – A new species, Lophiostoma versicolor, from Japan (Pleosporales, Dothideomycetes). Mycosphere 5(3), 411–417, Doi 10.5943/mycosphere/5/3/3 Abstract Lophiostoma versicolor sp. nov. was found on Acer sp. in Japan. This species is characterized by ascomata with a laterally compressed apex; clavate, 2(–4)-spored asci with a long stipe; and verruculose, 3-septate, versicolored ascospores without a sheath or appendages. Phylogenetic analyses based on LSU nrDNA sequences supported the generic placement and species validity of L. versicolor. Key words – ITS – Lophiostomataceae – Lophiotrema – LSU nrDNA – Pleosporomycetidae – Systematics – Taxonomy Introduction During an investigation of bitunicate ascomycetes in Japan, an unidentified fungus was found on dead twigs of Acer sp. The morphological characteristics of the fungus, such as the presence of ascomata with a compressed beak and clavate asci, recall those of Lophiostoma (Hirayama & Tanaka 2011) belonging to the Lophiostomataceae. This fungus, however, is different from any of the existing species of the genus because it possesses 2(–4)-spored asci and verruculose, 3-septate, versicolored ascospores without a sheath or appendages.
    [Show full text]