Molecular Evidence for Mitochondrial Dysfunction in Bipolar Disorder

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Evidence for Mitochondrial Dysfunction in Bipolar Disorder ORIGINAL ARTICLE Molecular Evidence for Mitochondrial Dysfunction in Bipolar Disorder Christine Konradi, PhD; Molly Eaton, BA; Matthew L. MacDonald, BS; John Walsh, MS; Francine M. Benes, MD, PhD; Stephan Heckers, MD Background: The disease mechanism of bipolar disor- Results: The expression of nuclear messenger RNA cod- der remains unknown. Recent studies have provided evi- ing for mitochondrial proteins was significantly de- dence for abnormal gene expression in bipolar disorder. creased in the hippocampus in subjects with bipolar dis- order but not in those with schizophrenia. Subjects with Objective: To determine the expression of 12558 nuclear bipolar disorder were characterized by a pronounced and genes in the human hippocampus in healthy control sub- extensive decrease in the expression of genes regulating jects and those with bipolar disorder or schizophrenia. oxidative phosphorylation and the adenosine triphos- phate–dependent process of proteasome degradation. Design: We used gene arrays to study messenger RNA expression. Data were verified with a real-time quanti- Conclusions: These findings point toward a wide- tative polymerase chain reaction assay. spread dysregulation of mitochondrial energy metabo- lism and downstream deficits of adenosine triphosphate– Subjects: We studied 10 healthy control subjects, 9 dependent processes in bipolar disorder. subjects with bipolar disorder, and 8 subjects with schizophrenia. Arch Gen Psychiatry. 2004;61:300-308 IPOLAR DISORDER AFFECTS chondrial genes coding for mitochon- approximately 0.5% of the drial proteins.8 In this article, we report world population, often that the expression of nuclear messenger leading to recurrent illness RNA (mRNA) coding for mitochondrial and a marked decline in so- proteins is significantly decreased in the Bcial function.1 The clinical features of bi- hippocampus in bipolar disorder but not polar disorder (ie, recurrent episodes of de- in schizophrenia. pression and either full-blown mania with frank psychosis or milder bouts of hypo- METHODS mania) have long been recognized.2 How- ever, the etiologic and disease mecha- SUBJECTS nisms remain unknown. For example, We analyzed the expression of 12558 nuclear bipolar disorder shows a high degree of genes in 3 study groups: healthy controls, sub- heritability (approximately 0.8%), and sev- jects with bipolar disorder, and subjects with eral studies have reported linkage of bi- schizophrenia. Brain specimens were ob- polar disorder to chromosomal loci, but tained from the Harvard Brain Tissue Re- From the Department of not a single locus has repeatedly been source Center (McLean Hospital, Belmont, Psychiatry, Harvard Medical linked to bipolar disorder.3 Mass) and initially consisted of 10 subjects in School, Boston, Mass Recent spectroscopic studies have each diagnostic group. Each control subject was (Drs Konradi, Benes, and provided evidence for bipolar disorder as matched with 1 subject who had schizophre- Heckers); and the Laboratory of a disease of mitochondrial energy metabo- nia and 1 who had bipolar disorder for age and Neuroplasticity (Dr Konradi, lism,4 including decreased pH5 and de- postmortem interval to ensure homogeneity of Ms Eaton, and Mr MacDonald) 6,7 the groups. One subject with bipolar disorder and Laboratory for Structural creased high-energy phosphates in the and 1 subject with schizophrenia were ex- Neuroscience (Drs Benes and frontal and temporal lobes of these pa- cluded from the study because they did not pro- Heckers and Mr Walsh), tients. Such mitochondrial dysfunction in vide sufficient RNA quality, as assessed by the McLean Hospital, bipolar disorder could be due to an ab- 3Ј/5Ј ratio of glyceraldehyde-3-phosphate de- Belmont, Mass. normal expression of nuclear or mito- hydrogenase (Ͼ4), 3Ј/5Ј ratio of ␤-actin (Ͼ4), (REPRINTED) ARCH GEN PSYCHIATRY/ VOL 61, MAR 2004 WWW.ARCHGENPSYCHIATRY.COM 300 ©2004 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/25/2021 and percentage (Ͻ37%) of “gene-present calls” (the percent- GENE ARRAY DATA ANALYSIS age of genes on the array that were above the detection limit in a sample). Samples were analyzed in diagnostic groups using the dChip All diagnoses were established by 2 psychiatrists at the Har- program (http://www.dchip.org).11 Model-based expression was vard Brain Tissue Resource Center via retrospective review of performed on perfect match–only data. A control sample with all available medical records and extensive questionnaires about average intensity was chosen for normalization. We found no social and medical history completed by family members of the significant differences in the quality control criteria provided donors. We applied the criteria of Feighner et al9 for the diag- by the Data Mining Tool (Affymetrix) and dChip analyses (3Ј/5Ј nosis of schizophrenia and that of the DSM-III10 for the diag- ratios for glyceraldehyde-3-phosphate dehydrogenase and nosis of schizoaffective disorder and bipolar disorder. Pro- ␤-actin as well as scaling factor and background) or in the ra- bands with a documented history of substance dependence or tio of 28S/18S ribosomal RNA obtained with the bioanalyzer. neurological illness were excluded from the study. During our A significant difference was found in gene-present calls, which study it became evident that the documentation of 1 subject were lower (P=.04) in the bipolar disorder group (Table 1). with schizophrenia was not sufficient to verify the diagnosis, We explored expression profiles revealed by the dChip analy- and that case had to be excluded. sis further with the GenMAPP and MAPPfinder (http://www One hemisphere of each brain underwent a comprehen- .genmapp.org) programs. GenMAPP was used to draw maps of sive neuropathologic examination, which revealed no evi- genes in functionally related groups.12 The MAPPfinder pro- dence of stroke, tumor, infection, or neurodegenerative changes. gram was used to find regulation trends in groups of genes or- After exclusion of 3 cases (insufficient RNA quality in 2 cases ganized according to biological process, molecular function, or and insufficient documentation of the psychiatric history in 1 cellular component, as defined by the Gene Ontology Consor- case), the final sample sizes were 10 control subjects, 9 sub- tium (http://www.geneontology.org). The following criteria were jects with bipolar disorder, and 8 subjects with schizophrenia chosen for the MAPPfinder analysis: PϽ.02, with gene-present (Table 1). calls in more than 50% of the samples and at a fold induction higher than 1.1. For result verification, data were also com- TISSUE PREPARATION puted with Affymetrix Data Mining Tool software version 3.0. AND RNA EXTRACTION REAL-TIME QUANTITATIVE POLYMERASE All brains were transported on wet ice and dissected immedi- CHAIN REACTION ately on arrival by specially trained staff at the Harvard Brain Tissue Resource Center using a standard protocol (see http: For real-time quantitative polymerase chain reaction (PCR), //www.brainbank.mclean.org/ for details). A coronal block of complementary DNA was synthesized from 1 µg of total RNA the hippocampus was obtained at the level of the lateral genic- with a synthesis system (SuperScript First-Strand Synthesis Sys- ulate nucleus, frozen in liquid nitrogen vapor, and stored tem for real-time quantitative PCR; Invitrogen Corp) using oli- at −80°C. Mean±SD storage time was 31±14 months with no gonucleotide deoxythymidine as the primer. A primer set for significant difference between groups. Blocks were trimmed to each gene was designed with the help of Primer3 software include only the dentate gyrus and cornu ammonis sectors (http://www.genome.wi.mit.edu/cgi-bin/primer/primer3.cgi). Am- 1 through 4 without adjacent white matter of the parahippo- plicons were designed to be between 100 and 150 base pairs in campal gyrus. Twenty-five slices (10 µm thick) were cut from length. Melt curve analysis and polyacrylamide gel electropho- each hippocampal block in a cryostat and used for RNA ex- resis were used to confirm the specificity of each primer pair. The traction. real-time quantitative PCR reaction was performed in accor- Human hippocampal RNA was prepared according to the dance with described procedures13 (DNA Engine Opticon; Op- protocol provided by Affymetrix (Santa Clara, Calif). The RNA ticon Monitor Data Analysis Software version 1.4; MJ Research, was extracted from 50 to 100 mg of tissue with an extraction kit Waltham, Mass) with a PCR kit (DyNAmo SYBR Green real- (RNAgents kit; Promega, Madison, Wis). The total yield of RNA time quantitative PCR kit; Finnzymes, Espoo, Finland) in a vol- was the same in all 3 groups. The RNA quality was assessed us- ume of 25 µL, with 2.5 µL of 1:5 diluted complementary DNA ing an analytical gel and a bioanalyzer (Agilent Technologies, samples and 0.3-µM primers. The PCR cycling conditions were Palo Alto, Calif). We used 8 µg of total RNA for complementary initially 95°C for 10 minutes followed by 49 cycles at 94°C for DNA synthesis with a double-stranded complementary DNA syn- 30 seconds, 55°C for 30 seconds, and 72°C for 30 seconds. Data thesis kit (SuperScript; Invitrogen Corp, Carlsbad, Calif), and were collected between 72°C and 79°C depending on amplicon in vitro transcription was performed with an RNA transcript la- melting temperature. A melt curve analysis was performed at the beling kit (Enzo IVT kit; Enzo Biochem, Farmingdale, NY). Both end of each real-time quantitative PCR experiment. Dilution curves the schizophrenia group and the bipolar disorder group had a were generated for each primer in every experiment by diluting 20% lower yield of biotinylated RNA. Whereas the difference was complementary DNA twice from a control sample with a ratio of not significant in the bipolar disorder group, it reached signifi- 1:3, yielding a dilution series of 1.00, 0.33, and 0.11. The loga- cance in the schizophrenia group. Biotinylated RNA was frag- rithm of the dilution value was plotted against the cycle thresh- mented and hybridized to the HG-U95Av2 array (Affymetrix) old value.
Recommended publications
  • Design of a Bioactive Small Molecule That Targets R(AUUCU) Repeats in Spinocerebellar Ataxia 10
    ARTICLE Received 24 Jun 2015 | Accepted 18 Apr 2016 | Published 1 Jun 2016 DOI: 10.1038/ncomms11647 OPEN Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10 Wang-Yong Yang1, Rui Gao2, Mark Southern3, Partha S. Sarkar2 & Matthew D. Disney1 RNA is an important target for chemical probes of function and lead therapeutics; however, it is difficult to target with small molecules. One approach to tackle this problem is to identify compounds that target RNA structures and utilize them to multivalently target RNA. Here we show that small molecules can be identified to selectively bind RNA base pairs by probing a library of RNA-focused small molecules. A small molecule that selectively binds AU base pairs informed design of a dimeric compound (2AU-2) that targets the pathogenic RNA, expanded r(AUUCU) repeats, that causes spinocerebellar ataxia type 10 (SCA10) in patient- derived cells. Indeed, 2AU-2 (50 nM) ameliorates various aspects of SCA10 pathology including improvement of mitochondrial dysfunction, reduced activation of caspase 3, and reduction of nuclear foci. These studies provide a first-in-class chemical probe to study SCA10 RNA toxicity and potentially define broadly applicable compounds targeting RNA AU base pairs in cells. 1 Departments of Chemistry and Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, USA. 2 Mitchell Center for Neurodegenerative Disorders, Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA. 3 Informatics Core, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, USA. Correspondence and requests for materials should be addressed to M.D.D.
    [Show full text]
  • Differentially Expressed on Collagen Networks 1, 2, 10 © 2000-2009 Ingenuity Systems, Inc. All Rights Reserved. Symbol Entrez
    Differentially expressed on collagen Networks 1, 2, 10 © 2000-2009 Ingenuity Systems, Inc. All rights reserved. Symbol Entrez Gene Name Affymetrix Fold Change Location Family ALDH1A3 aldehyde dehydrogenase 1 family, member A3 203180_at -5.43125168 Cytoplasm enzyme 209772_s_ Plasma CD24 CD24 molecule at -4.32890229 Membrane other HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 204130_at -4.1099197 Cytoplasm enzyme Plasma AMOTL2 angiomotin like 2 203002_at -2.82872773 Membrane other transcription DLX2 distal-less homeobox 2 207147_at -2.74996362 Nucleus regulator 221215_s_ RIPK4 receptor-interacting serine-threonine kinase 4 at -2.56556472 Nucleus kinase PLK2 polo-like kinase 2 (Drosophila) 201939_at -2.47054478 Nucleus kinase ALDH3A1 aldehyde dehydrogenase 3 family, memberA1 205623_at -2.30532989 Cytoplasm enzyme TXNRD1 thioredoxin reductase 1 201266_at -2.27936909 Cytoplasm enzyme Extracellular CYR61 cysteine-rich, angiogenic inducer, 61 201289_at -2.09052668 Space other 214212_x_ FERMT2 fermitin family homolog 2 (Drosophila) at -1.87478183 Cytoplasm other Plasma RIT1 Ras-like without CAAX 1 209882_at -1.77586775 Membrane enzyme 210297_s_ Extracellular MSMB microseminoprotein, beta- at -1.72177723 Space other Extracellular PI3 peptidase inhibitor 3, skin-derived 203691_at -1.68135697 Space other ALDH3B1 aldehyde dehydrogenase 3 family, member B1 205640_at -1.67376791 Cytoplasm enzyme 202124_s_ Plasma TRAK2 trafficking protein, kinesin binding 2 at -1.6367793 Membrane transporter BMP and activin membrane-bound inhibitor Plasma BAMBI
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Autosomal Dominant Cerebellar Ataxia Type I: a Review of the Phenotypic and Genotypic Characteristics
    Whaley et al. Orphanet Journal of Rare Diseases 2011, 6:33 http://www.ojrd.com/content/6/1/33 REVIEW Open Access Autosomal dominant cerebellar ataxia type I: A review of the phenotypic and genotypic characteristics Nathaniel Robb Whaley1,2, Shinsuke Fujioka2 and Zbigniew K Wszolek2* Abstract Type I autosomal dominant cerebellar ataxia (ADCA) is a type of spinocerebellar ataxia (SCA) characterized by ataxia with other neurological signs, including oculomotor disturbances, cognitive deficits, pyramidal and extrapyramidal dysfunction, bulbar, spinal and peripheral nervous system involvement. The global prevalence of this disease is not known. The most common type I ADCA is SCA3 followed by SCA2, SCA1, and SCA8, in descending order. Founder effects no doubt contribute to the variable prevalence between populations. Onset is usually in adulthood but cases of presentation in childhood have been reported. Clinical features vary depending on the SCA subtype but by definition include ataxia associated with other neurological manifestations. The clinical spectrum ranges from pure cerebellar signs to constellations including spinal cord and peripheral nerve disease, cognitive impairment, cerebellar or supranuclear ophthalmologic signs, psychiatric problems, and seizures. Cerebellar ataxia can affect virtually any body part causing movement abnormalities. Gait, truncal, and limb ataxia are often the most obvious cerebellar findings though nystagmus, saccadic abnormalities, and dysarthria are usually associated. To date, 21 subtypes have been identified: SCA1-SCA4, SCA8, SCA10, SCA12-SCA14, SCA15/16, SCA17-SCA23, SCA25, SCA27, SCA28 and dentatorubral pallidoluysian atrophy (DRPLA). Type I ADCA can be further divided based on the proposed pathogenetic mechanism into 3 subclasses: subclass 1 includes type I ADCA caused by CAG repeat expansions such as SCA1-SCA3, SCA17, and DRPLA, subclass 2 includes trinucleotide repeat expansions that fall outside of the protein-coding regions of the disease gene including SCA8, SCA10 and SCA12.
    [Show full text]
  • Downloaded from Dbgap (Phs000607.V1)
    bioRxiv preprint doi: https://doi.org/10.1101/751933; this version posted September 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Genetics and Pathway Analysis of Normative Cognitive Variation 2 in the Philadelphia Neurodevelopmental Cohort 3 4 Authors: 5 Shraddha Pai1, Shirley Hui1, Philipp Weber2, Owen Whitley1,3, Peipei Li4,5, Viviane Labrie4,5, Jan 6 Baumbach2,6, Gary D Bader1,3,7,8 7 8 Affiliations: 9 1. The Donnelly Centre, University of Toronto, Toronto, Canada 10 2. Department of Mathematics and Computer Science, University of Southern Denmark, Odense, 11 Denmark 12 3. Department of Molecular Genetics, University of Toronto, Toronto, Canada 13 4. Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA 14 5. Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State 15 University, Grand Rapids, MI, USA 16 6. TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany. 17 7. Department of Computer Science, University of Toronto, Toronto, Canada 18 8. The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada 19 20 21 22 * [email protected] 23 24 Page 1 of 23 bioRxiv preprint doi: https://doi.org/10.1101/751933; this version posted September 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • A Master Autoantigen-Ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases Julia Y. Wang1*, Michael W. Roehrl1, Victor B. Roehrl1, and Michael H. Roehrl2* 1 Curandis, New York, USA 2 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA * Correspondence: [email protected] or [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer.
    [Show full text]
  • 50 Clinical Neurogenetics Brent L
    50 Clinical Neurogenetics Brent L. Fogel, Daniel H. Geschwind CHAPTER OUTLINE research has permitted dissection of the cellular machinery supporting the function of the brain and its connections while establishing causal relationships between such dysfunction, GENETICS IN CLINICAL NEUROLOGY human genetic variation, and various neurological diseases. In GENE EXPRESSION, DIVERSITY, AND REGULATION the modern practice of neurology, the use of genetics has DNA to RNA to Protein become widespread, and neurologists are confronted daily with data from an ever-increasing catalog of genetic studies TYPES OF GENETIC VARIATION AND MUTATIONS relating to conditions such as developmental disorders, Rare versus Common Variation dementia, ataxia, neuropathy, and epilepsy, to name but a few. Polymorphisms and Point Mutations The use of genetic information in the clinical evaluation of Structural Chromosomal Abnormalities and Copy neurological disease has expanded dramatically over the past Number Variation (CNV) decade. More efficient techniques for discovering disease genes Repeat Expansion Disorders have led to a greater availability of genetic testing in the clinic. CHROMOSOMAL ANALYSIS AND ABNORMALITIES Approximately one-third of pediatric neurology hospital admissions are related to a genetic diagnosis, and there are DISORDERS OF MENDELIAN INHERITANCE now hundreds of individual genetic tests available to the prac- Autosomal Dominant Disorders ticing neurologist, including several related to common dis- Autosomal Recessive Disorders eases. This number continues to increase rapidly (Fig. 50.1), Sex-Linked (X-Linked) Disorders but is rapidly being supplanted by the clinical availability of exome and genome sequencing, allowing neurologists to MENDELIAN DISEASE GENE IDENTIFICATION BY rapidly survey every gene in human genome for disease- LINKAGE ANALYSIS AND CHROMOSOME MAPPING causing mutations.
    [Show full text]
  • Genetic Variation and Functional Analysis of the Cardiomedin Gene
    TECHNISCHE UNIVERSITÄT MÜNCHEN LEHRSTUHL FÜR EXPERIMENTELLE GENETIK Genetic Variation and Functional Analysis of the Cardiomedin Gene Zasie Susanne Schäfer Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzende: Univ.-Prof. A. Schnieke, Ph.D. Prüfer der Dissertation: 1. apl. Prof. Dr. J. Adamski 2. Univ.-Prof. Dr. Dr. H.-R. Fries 3. Univ.-Prof. Dr. Th. Meitinger Die Dissertation wurde am. 31.05.2011 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 02.04.2012 angenommen. Table of Contents Table of contents Abbreviations ........................................................................................................................ 7 1. Summary ..........................................................................................................................10 Zusammenfassung ...............................................................................................................11 2. Introduction ......................................................................................................................12 2.1 Genome-wide association studies (GWAS) and post-GWAS functional genomics ......12 2.2 Genetic influences on cardiac repolarization and sudden cardiac death syndrome in GWAS and the chromosome
    [Show full text]
  • Sheet1 Page 1 Gene Symbol Gene Description Entrez Gene ID
    Sheet1 RefSeq ID ProbeSets Gene Symbol Gene Description Entrez Gene ID Sequence annotation Seed matches location(s) Ago-2 binding specific enrichment (replicate 1) Ago-2 binding specific enrichment (replicate 2) OE lysate log2 fold change (replicate 1) OE lysate log2 fold change (replicate 2) Probability NM_022823 218843_at FNDC4 Homo sapiens fibronectin type III domain containing 4 (FNDC4), mRNA. 64838 TR(1..1649)CDS(367..1071) 1523..1530 3.73 1.77 -1.91 -0.39 1 NM_003919 204688_at SGCE Homo sapiens sarcoglycan, epsilon (SGCE), transcript variant 2, mRNA. 8910 TR(1..1709)CDS(112..1425) 1495..1501 3.09 1.56 -1.02 -0.27 1 NM_006982 206837_at ALX1 Homo sapiens ALX homeobox 1 (ALX1), mRNA. 8092 TR(1..1320)CDS(5..985) 916..923 2.99 1.93 -0.19 -0.33 1 NM_019024 233642_s_at HEATR5B Homo sapiens HEAT repeat containing 5B (HEATR5B), mRNA. 54497 TR(1..6792)CDS(97..6312) 5827..5834,4309..4315 3.28 1.51 -0.92 -0.23 1 NM_018366 223431_at CNO Homo sapiens cappuccino homolog (mouse) (CNO), mRNA. 55330 TR(1..1546)CDS(96..749) 1062..1069,925..932 2.89 1.51 -1.2 -0.41 1 NM_032436 226194_at C13orf8 Homo sapiens chromosome 13 open reading frame 8 (C13orf8), mRNA. 283489 TR(1..3782)CDS(283..2721) 1756..1762,3587..3594,1725..1731,3395..3402 2.75 1.72 -1.38 -0.34 1 NM_031450 221534_at C11orf68 Homo sapiens chromosome 11 open reading frame 68 (C11orf68), mRNA. 83638 TR(1..1568)CDS(153..908) 967..973 3.07 1.35 -0.72 -0.06 1 NM_033318 225795_at,225794_s_at C22orf32 Homo sapiens chromosome 22 open reading frame 32 (C22orf32), mRNA.
    [Show full text]
  • An Autoantigen-Ome from HS-Sultan B-Lymphoblasts Offers a Molecular Map for Investigating Autoimmune Sequelae of COVID-19
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.05.438500; this version posted April 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. An Autoantigen-ome from HS-Sultan B-Lymphoblasts Offers a Molecular Map for Investigating Autoimmune Sequelae of COVID-19 Julia Y. Wang1*, Wei Zhang2, Victor B. Roehrl1, Michael W. Roehrl1, and Michael H. Roehrl3,4* 1Curandis, New York, USA 2Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guizhou, China 3Department of Pathology and 4Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA *Correspondence: [email protected], [email protected] Keywords: Autoantigens, autoantibodies, autoimmunity, SARS-CoV-2, COVID, Epstein-Barr virus 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.05.438500; this version posted April 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract To understand how COVID-19 may induce autoimmune diseases, we have been compiling an atlas of COVID-autoantigens (autoAgs). Using dermatan sulfate (DS) affinity enrichment of autoantigenic proteins extracted from HS-Sultan lymphoblasts, we identified 362 DS-affinity proteins, of which at least 201 (56%) are confirmed autoAgs. Comparison with available multi-omic COVID data shows that 315 (87%) of the 362 proteins are affected in SARS-CoV-2 infection via altered expression, interaction with viral components, or modification by phosphorylation or ubiquitination, at least 186 (59%) of which are known autoAgs.
    [Show full text]
  • Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions
    molecules Review Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions April L. Darling 1,2,* ID and Vladimir N. Uversky 1,3,* ID 1 Department of Molecular Medicine, College of Medicine, Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33612, USA 2 James A. Haley Veteran’s Hospital, Tampa, FL 33612, USA 3 Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia * Correspondence: [email protected] (A.L.D.); [email protected] (V.N.U.); Tel.: +1-813-396-9249 (A.L.D.); +1-813-974-5816 (V.N.U.) Received: 8 November 2017; Accepted: 21 November 2017; Published: 24 November 2017 Abstract: Intrinsically disordered proteins and proteins with intrinsically disordered regions have been shown to be highly prevalent in disease. Furthermore, disease-causing expansions of the regions containing tandem amino acid repeats often push repetitive proteins towards formation of irreversible aggregates. In fact, in disease-relevant proteins, the increased repeat length often positively correlates with the increased aggregation efficiency and the increased disease severity and penetrance, being negatively correlated with the age of disease onset. The major categories of repeat extensions involved in disease include poly-glutamine and poly-alanine homorepeats, which are often times located in the intrinsically disordered regions, as well as repeats in non-coding regions of genes typically encoding proteins with ordered structures. Repeats in such non-coding regions of genes can be expressed at the mRNA level. Although they can affect the expression levels of encoded proteins, they are not translated as parts of an affected protein and have no effect on its structure.
    [Show full text]
  • A Master Autoantigen-Ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases Julia Y. Wang1*, Michael W. Roehrl1, Victor B. Roehrl1, and Michael H. Roehrl2* 1 Curandis, New York, USA 2 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA * Correspondence: [email protected] or [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer.
    [Show full text]