Viewer Plug-In (Imagej 3D Viewer

Total Page:16

File Type:pdf, Size:1020Kb

Viewer Plug-In (Imagej 3D Viewer BASIC RESEARCH www.jasn.org Glomerular Cell Cross-Talk Influences Composition and Assembly of Extracellular Matrix † Adam Byron,* Michael J. Randles,* Jonathan D. Humphries,* Aleksandr Mironov,* † ‡ ‡ ‡ Hellyeh Hamidi,* Shelley Harris, Peter W. Mathieson, Moin A. Saleem, Simon C. Satchell, | † Roy Zent,§ Martin J. Humphries,* and Rachel Lennon* *Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences and †Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom; ‡Academic Renal Unit, Faculty of Medicine and Dentistry, University of Bristol, Bristol, United Kingdom; §Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and |Department of Medicine, Veterans Affairs Hospital, Nashville, Tennessee ABSTRACT The glomerular basement membrane (GBM) is a specialized extracellular matrix (ECM) compartment within the glomerulus that contains tissue-restricted isoforms of collagen IV and laminin. It is integral to the capillary wall and therefore, functionally linked to glomerular filtration. Although the composition of the GBM has been investigated with global and candidate-based approaches, the relative contributions of glomerular cell types to the production of ECM are not well understood. To characterize specific cellular contributions to the GBM, we used mass spectrometry–based proteomics to analyze ECM isolated from podocytes and glomerular endothelial cells in vitro. These analyses identified cell type–specificdifferences in ECM composition, indicating distinct contributions to glomerular ECM assembly. Coculture of podo- cytes and endothelial cells resulted in an altered composition and organization of ECM compared with monoculture ECMs, and electron microscopy revealed basement membrane–like ECM deposition be- tween cocultured cells, suggesting the involvement of cell–cell cross-talk in the production of glomerular ECM. Notably, compared with monoculture ECM proteomes, the coculture ECM proteome better resembled a tissue-derived glomerular ECM dataset, indicating its relevance to GBM in vivo.Protein network analyses revealed a common core of 35 highly connected structural ECM proteins that may be important for glomerular ECM assembly. Overall, these findings show the complexity of the glomerular ECM and suggest that both ECM composition and organization are context-dependent. J Am Soc Nephrol 25: 953–966, 2014. doi: 10.1681/ASN.2013070795 The glomerular basement membrane (GBM) is in- Forexample, collagen IVnetworksare predominantly tegral to the glomerular capillary wall, and it directly comprised of a1anda2 chains; however, at the contributes to barrier function.1,2 The ultrastructural appearance of the GBM shows that it is unusually Received July 28, 2013. Accepted December 16, 2013. thick (300–350 nm) as a result of two basement mem- branes fusing during glomerular development.3 This A.B. and M.J.R. contributed equally to this work. specialized extracellular matrix (ECM) supports two Published online ahead of print. Publication date available at distinct cell types: glomerular endothelial cells www.jasn.org. (GEnCs) on the inner capillary wall and podocytes, Present address: Dr. Adam Byron, Edinburgh Cancer Research United Kingdom Centre, Institute of Genetics and Molecular which form a mesh-like covering of the outer surface. Medicine, University of Edinburgh, Edinburgh, United Kingdom. However, there is limited understanding about the Correspondence: Dr. Rachel Lennon, Wellcome Trust Centre for relative contribution of each cell type to the regulation Cell-Matrix Research, Michael Smith Building, University of of ECM synthesis and organization in the GBM. Manchester, Manchester M13 9PT, United Kingdom. Email: Some unique ECM isoforms, essential for normal [email protected] barrier function, characterize the mature glomerulus. Copyright © 2014 by the American Society of Nephrology J Am Soc Nephrol 25: 953–966, 2014 ISSN : 1046-6673/2505-953 953 BASIC RESEARCH www.jasn.org capillary loop stage of glomerular development, there is an iso- 1B, iii). In contrast, podocytes had wider cell–cell junctions form switch to the expression of the collagen IV a3a4a5 net- (2963.4 nm) (Figure 1B, v), more lysosomes (Figure 1B, vi), work in the GBM.4,5 This network is thought to provide the and greater cell width (6.160.49 mm) (Figure 1, B and C). tensile strength necessary to withstand filtration forces.5,6 Sim- ilar changes in laminin isoforms have been reported, switching Glomerular Cells In Vitro Exhibit Differential ECM from a combination of laminin 111 and 511 to a predominance Protein Synthesis of laminin 521 in the mature GBM.7 The importance of glomer- Tocollect ECM proteins for proteomic analysis, a fractionation ular ECM composition for normal barrier function is high- workflow was adapted from previous studies (Figure 2A).17,18 lighted by human genetic mutations, which result in the absence Cell-derived ECMs were extracted from both GEnC and po- of the collagen IV a3a4a5 network in Alport syndrome8 and the docyte monocultures and analyzed by MS. We identified 127 absenceoflaminin521inPiersonsyndrome.9 However, there extracellular proteins in GEnC samples (Supplemental Table is a much wider spectrum of inherited and acquired glomerular 1) and 142 extracellular proteins in podocyte samples (Sup- disease with associated abnormalities in the GBM, which is not plemental Table 2). There was considerable (55%) overlap explained by defects in collagen IV or laminin.10,11 Therefore, between proteins detected in GEnC and podocyte ECMs, building understanding of ECM composition in an unbiased suggesting a common core of ECM proteins, but cell type– manner could help to identify additional genetic defects and specific proteins were also identified (Figure 2B). Further- appreciate mechanisms of ECM regulation in the glomerulus. more, 44% of proteins in the recently described in vivo These questions can be initially addressed with studies in glomerular ECM proteome15 were identified in cell-derived vitro, because cell-based investigations allow the dissection of ECMs (Figure 2B). Statistical analysis of all identified proteins molecular pathways in a manner not feasible in animal studies. in the cell-derived ECM samples revealed differential ECM Conditionally immortalized human glomerular cells have protein synthesis between GEnCs and podocytes (Figure 2C, been derived to facilitate these investigations12,13; however, Supplemental Table 3). Although gene ontology (GO) enrich- their ability to synthesize and organize ECM has not been fully ment analysis highlighted significantly enriched GO terms as- investigated. In vivo, these cells are highly specialized, and ex sociated with ECM proteins for both GEnC and podocyte vivo, they may lose critical paracrine and environmental cues samples (Supplemental Table 4), there was also evidence of required to maintain a differentiated state.14 To test this hy- cell type–specific differences between the ECMs. Specifically, pothesis and inform mechanisms of ECM regulation in the there was significant enrichment of vascular development glomerulus, global investigation of cell-derived ECM processes in GEnC ECM, whereas cell adhesion processes represents a powerful, unbiased analytical approach. were enriched in podocyte ECM (Figure 2D, Supplemental Using an ECM enrichment strategy coupled to mass spec- Table 4). These data indicate a functional distinction between trometry (MS)–based proteomics, we recently described a GEnC and podocyte ECMs. Moreover, the expected associa- glomerular ECM proteome derived from isolated human glo- tion of GEnC with endothelial cellular functions suggests that meruli.15 Toextend this global analysis, we analyzed cell-derived this analysis has the capability to identify proteins with tissue- ECM from GEnCs and podocytes to determine their relative con- specificfunctions. tribution to ECM production and regulation in the glomerulus. In contrast to the compositional differences highlighted by the GO analysis, previously identified glomerular ECM com- ponents were detected to a similar extent in ECMs from both RESULTS cell types (Figure 2B), suggesting that the ECMs are qualita- tively closely related. To examine putative interactions be- Human Glomerular Cells Synthesize and Organize ECM tween the identified ECM proteins, interaction networks In Vitro were generated from a curated protein interaction database Toinvestigate ECM production by glomerular cells on either side (Supplemental Material). ECM protein interaction networks of the GBM, we prepared monocultures of human GEnCs and had similar topologies, with highly connected subnetworks of podocytes in vitro. Both cell types synthesized and deposited basement membrane and other structural ECM proteins (Fig- ECM (Figure 1A), and this process did not seem disrupted by ure 3, Supplemental Figures 1 and 2). Highly connected the removal of cells before ECM extraction (Figure 1A, right proteins tend to be involved in important biologic functions. panels). Ultrastructural analysis of both glomerular cell types Interestingly, basement membrane proteins had a higher revealed a thin basal layer of ECM (Figure 1B). In addition, number of protein–protein interactions than ECM-associated GEnCs and podocytes exhibited distinct morphology (Figure proteins, suggesting that these molecules play key roles in glo- 1, B and C). GEnCs had more caveolae, which were visible as merular ECM organization (Figure 3, B and D). These findings small (50- to 100-nm diameter)
Recommended publications
  • 1 1 Alpha-Smooth Muscle Actin (ACTA2) Is Required for Metastatic Potential of Human 1 Lung Adenocarcinoma 2 3 Hye Won Lee*1,2,3
    Author Manuscript Published OnlineFirst on August 30, 2013; DOI: 10.1158/1078-0432.CCR-13-1181 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 1 Alpha-smooth muscle actin (ACTA2) is required for metastatic potential of human 2 lung adenocarcinoma 3 4 Hye Won Lee*1,2,3, Young Mi Park*3,4, Se Jeong Lee1,4,5, Hyun Jung Cho1,2, Duk-Hwan Kim6,7, 5 Jung-Il Lee2, Myung-Soo Kang3, Ho Jun Seol2, Young Mog Shim8, Do-Hyun Nam1,2,3, Hyeon 6 Ho Kim3,4, Kyeung Min Joo1,3,4,5 7 8 Authors’ Affiliations: 9 1Cancer Stem Cell Research Center, 2Department of Neurosurgery, 3Department of Health 10 Sciences and Technology, Samsung Advanced Institute for Health Sciences and 11 Technology (SAIHST), 4Samsung Biomedical Research Institute, 5Department of Anatomy 12 and Cell Biology, 6Department of Molecular Cell Biology, 7Center for Genome Research, 13 8Department of Thoracic Surgery, Samsung Medical Center, Sungkyunkwan University 14 School of Medicine, Seoul, Korea 15 16 *These authors contributed equally to this work. 17 18 Running title: ACTA2 confers metastatic potential on lung adenocarcinoma 19 Keywords: Non-small cell lung adenocarcinoma, alpha-smooth muscle actin, migration, 20 invasion, metastasis 1 Downloaded from clincancerres.aacrjournals.org on September 26, 2021. © 2013 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 30, 2013; DOI: 10.1158/1078-0432.CCR-13-1181 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 2 1 Financial support: This study was supported by a grant from the Korea Healthcare 2 Technology R&D Project, Ministry for Health & Welfare Affairs, Republic of Korea (A092255), 3 and the Basic Science Research Program, National Research Foundation of Korea by the 4 Ministry of Education, Science, and Technology (2011-009329 to H.
    [Show full text]
  • Annexin A2 Flop-Out Mediates the Non-Vesicular Release of Damps/Alarmins from C6 Glioma Cells Induced by Serum-Free Conditions
    cells Article Annexin A2 Flop-Out Mediates the Non-Vesicular Release of DAMPs/Alarmins from C6 Glioma Cells Induced by Serum-Free Conditions Hayato Matsunaga 1,2,† , Sebok Kumar Halder 1,3,† and Hiroshi Ueda 1,4,* 1 Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; [email protected] (H.M.); [email protected] (S.K.H.) 2 Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan 3 San Diego Biomedical Research Institute, San Diego, CA 92121, USA 4 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan * Correspondence: [email protected]; Tel.: +81-75-753-4536 † These authors contributed equally to this work. Abstract: Prothymosin alpha (ProTα) and S100A13 are released from C6 glioma cells under serum- free conditions via membrane tethering mediated by Ca2+-dependent interactions between S100A13 and p40 synaptotagmin-1 (Syt-1), which is further associated with plasma membrane syntaxin-1 (Stx-1). The present study revealed that S100A13 interacted with annexin A2 (ANXA2) and this interaction was enhanced by Ca2+ and p40 Syt-1. Amlexanox (Amx) inhibited the association between S100A13 and ANXA2 in C6 glioma cells cultured under serum-free conditions in the in situ proximity ligation assay. In the absence of Amx, however, the serum-free stress results in a flop-out of ANXA2 Citation: Matsunaga, H.; Halder, through the membrane, without the extracellular release. The intracellular delivery of anti-ANXA2 S.K.; Ueda, H. Annexin A2 Flop-Out antibody blocked the serum-free stress-induced cellular loss of ProTα, S100A13, and Syt-1.
    [Show full text]
  • Reprogramming of Trna Modifications Controls the Oxidative Stress Response by Codon-Biased Translation of Proteins
    Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Chan, Clement T.Y. et al. “Reprogramming of tRNA Modifications Controls the Oxidative Stress Response by Codon-biased Translation of Proteins.” Nature Communications 3 (2012): 937. As Published http://dx.doi.org/10.1038/ncomms1938 Publisher Nature Publishing Group Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/76775 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins Clement T.Y. Chan,1,2 Yan Ling Joy Pang,1 Wenjun Deng,1 I. Ramesh Babu,1 Madhu Dyavaiah,3 Thomas J. Begley3 and Peter C. Dedon1,4* 1Department of Biological Engineering, 2Department of Chemistry and 4Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; 3College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, NY 12203 * Corresponding author: PCD, Department of Biological Engineering, NE47-277, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139; tel 617-253-8017; fax 617-324-7554; email [email protected] 2 ABSTRACT Selective translation of survival proteins is an important facet of cellular stress response. We recently demonstrated that this translational control involves a stress-specific reprogramming of modified ribonucleosides in tRNA.
    [Show full text]
  • The Impact of Endogenous Annexin A1 on Glucocorticoid Control of Infl Ammatory Arthritis
    Basic and translational research Ann Rheum Dis: first published as 10.1136/annrheumdis-2011-201180 on 5 May 2012. Downloaded from EXTENDED REPORT The impact of endogenous annexin A1 on glucocorticoid control of inß ammatory arthritis Hetal B Patel,1 Kristin N Kornerup,1 AndreÕ LF Sampaio,1 Fulvio DÕAcquisto,1 Michael P Seed,1 Ana Paula Girol,2 Mohini Gray,3 Costantino Pitzalis,1 Sonia M Oliani,2 Mauro Perretti1 ▶ Additional (Þ gures and tables) ABSTRACT Annexin A1 (AnxA1) is an effector of resolution.4 are published online only. To view Objectives To establish the role and effect of Highly expressed in immune cells (eg, polymorpho- these Þ les please visit the journal nuclear cells and macrophages), this protein is exter- online (http://ard.bmj.com/ glucocorticoids and the endogenous annexin A1 (AnxA1) content/early/recent). pathway in inß ammatory arthritis. nalised to exert paracrine and juxtacrine effects, the vast majority of which are mediated by the formyl- 1William Harvey Research Methods Ankle joint mRNA and protein expression Institute, Barts and The London of AnxA1 and its receptors were analysed in peptide receptor type 2 (FPR2/ALX ([Lipoxin A4 School of Medicine, London UK naive and arthritic mice by real-time PCR and receptor]) or FPR2, in rodents).5 Intriguingly, FPR2/ 2Department of Biology; 6 immunohistochemistry. Inß ammatory arthritis was ALX is also the lipoxin A4 receptor indicating the Instituto de Bioci•ncias, Letras +/+ existence of important – yet not fully appreci- e Ci•ncias Exatas (IBILCE), S‹o induced with the K/BxN arthritogenic serum in AnxA1 −/− ated – networks in resolution.7 Paulo State University, S‹o JosŽ and AnxA1 mice; in some experiments, animals Another receptor do Rio Preto, Brazil were treated with dexamethasone (Dex) or with human is also advocated to mediate the effects of AnxA1, 3Medical Research Council recombinant AnxA1 or a protease-resistant mutant the formyl-peptide receptor type 1 or FPR1 (FPR1 Centre for Inß ammation, (termed SuperAnxA1).
    [Show full text]
  • Dysregulated Hepatic Methionine
    Virginia Commonwealth University VCU Scholars Compass Internal Medicine Publications Dept. of Internal Medicine 2015 Dysregulated Hepatic Methionine Metabolism Drives Homocysteine Elevation in Diet-Induced Nonalcoholic Fatty Liver Disease Tommy Pacana Virginia Commonwealth University, [email protected] Sophie Cazanave Virginia Commonwealth University Aurora Verdianelli Virginia Commonwealth University See next page for additional authors Follow this and additional works at: http://scholarscompass.vcu.edu/intmed_pubs Part of the Medicine and Health Sciences Commons Copyright: © 2015 Pacana et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Downloaded from http://scholarscompass.vcu.edu/intmed_pubs/98 This Article is brought to you for free and open access by the Dept. of Internal Medicine at VCU Scholars Compass. It has been accepted for inclusion in Internal Medicine Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Authors Tommy Pacana, Sophie Cazanave, Aurora Verdianelli, Viashali Patel, Hae-Ki Min, Faridoddin Mirshahi, Eoin Quinlavin, and Arun J. Sanyal This article is available at VCU Scholars Compass: http://scholarscompass.vcu.edu/intmed_pubs/98 RESEARCH ARTICLE Dysregulated Hepatic Methionine Metabolism Drives Homocysteine Elevation in Diet-Induced Nonalcoholic Fatty
    [Show full text]
  • Allele-Specific Expression of Ribosomal Protein Genes in Interspecific Hybrid Catfish
    Allele-specific Expression of Ribosomal Protein Genes in Interspecific Hybrid Catfish by Ailu Chen A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 1, 2015 Keywords: catfish, interspecific hybrids, allele-specific expression, ribosomal protein Copyright 2015 by Ailu Chen Approved by Zhanjiang Liu, Chair, Professor, School of Fisheries, Aquaculture and Aquatic Sciences Nannan Liu, Professor, Entomology and Plant Pathology Eric Peatman, Associate Professor, School of Fisheries, Aquaculture and Aquatic Sciences Aaron M. Rashotte, Associate Professor, Biological Sciences Abstract Interspecific hybridization results in a vast reservoir of allelic variations, which may potentially contribute to phenotypical enhancement in the hybrids. Whether the allelic variations are related to the downstream phenotypic differences of interspecific hybrid is still an open question. The recently developed genome-wide allele-specific approaches that harness high- throughput sequencing technology allow direct quantification of allelic variations and gene expression patterns. In this work, I investigated allele-specific expression (ASE) pattern using RNA-Seq datasets generated from interspecific catfish hybrids. The objective of the study is to determine the ASE genes and pathways in which they are involved. Specifically, my study investigated ASE-SNPs, ASE-genes, parent-of-origins of ASE allele and how ASE would possibly contribute to heterosis. My data showed that ASE was operating in the interspecific catfish system. Of the 66,251 and 177,841 SNPs identified from the datasets of the liver and gill, 5,420 (8.2%) and 13,390 (7.5%) SNPs were identified as significant ASE-SNPs, respectively.
    [Show full text]
  • Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
    Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo
    [Show full text]
  • Epithelial Delamination Is Protective During Pharmaceutical-Induced Enteropathy
    Epithelial delamination is protective during pharmaceutical-induced enteropathy Scott T. Espenschieda, Mark R. Cronana, Molly A. Mattya, Olaf Muellera, Matthew R. Redinbob,c,d, David M. Tobina,e,f, and John F. Rawlsa,e,1 aDepartment of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710; bDepartment of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; cDepartment of Biochemistry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599; dDepartment of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599; eDepartment of Medicine, Duke University School of Medicine, Durham, NC 27710; and fDepartment of Immunology, Duke University School of Medicine, Durham, NC 27710 Edited by Dennis L. Kasper, Harvard Medical School, Boston, MA, and approved July 15, 2019 (received for review February 12, 2019) Intestinal epithelial cell (IEC) shedding is a fundamental response to in mediating intestinal responses to injury remains poorly un- intestinal damage, yet underlying mechanisms and functions have derstood for most xenobiotics. been difficult to define. Here we model chronic intestinal damage in Gastrointestinal pathology is common in people using phar- zebrafish larvae using the nonsteroidal antiinflammatory drug maceuticals, including nonsteroidal antiinflammatory drugs (NSAID) Glafenine. Glafenine induced the unfolded protein response (NSAIDs) (11). While gastric ulceration has historically been a (UPR) and inflammatory pathways in IECs, leading to delamination. defining clinical presentation of NSAID-induced enteropathy, Glafenine-induced inflammation was augmented by microbial colo- small intestinal pathology has also been observed, although the nizationandassociatedwithchanges in intestinal and environmental incidence may be underreported due to diagnostic limitations microbiotas.
    [Show full text]
  • Annexin A1 Expression Is Associated with Epithelial–Mesenchymal Transition (EMT), Cell Proliferation, Prognosis, and Drug Response in Pancreatic Cancer
    cells Article Annexin A1 Expression Is Associated with Epithelial–Mesenchymal Transition (EMT), Cell Proliferation, Prognosis, and Drug Response in Pancreatic Cancer Masanori Oshi 1,2 , Yoshihisa Tokumaru 1,3 , Swagoto Mukhopadhyay 1, Li Yan 4, Ryusei Matsuyama 2, Itaru Endo 2 and Kazuaki Takabe 1,2,5,6,7,8,* 1 Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; [email protected] (M.O.); [email protected] (Y.T.); [email protected] (S.M.) 2 Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan; [email protected] (R.M.); [email protected] (I.E.) 3 Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan 4 Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; [email protected] 5 Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan 6 Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo the State University of New York, Buffalo, NY 14263, USA 7 Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan Citation: Oshi, M.; Tokumaru, Y.; 8 Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan Mukhopadhyay, S.; Yan, L.; * Correspondence: [email protected]; Tel.: +1-716-8-455-540; Fax: +1-716-8-451-668 Matsuyama, R.; Endo, I.; Takabe, K. Annexin A1 Expression Is Associated Abstract: Annexin A1 (ANXA1) is a calcium-dependent phospholipid-binding protein overexpressed with Epithelial–Mesenchymal in pancreatic cancer (PC).
    [Show full text]
  • Global Analysis of Protein Folding Thermodynamics for Disease State Characterization
    Global Analysis of Protein Folding Thermodynamics for Disease State Characterization and Biomarker Discovery by Jagat Adhikari Department of Biochemistry Duke University Date:_______________________ Approved: ___________________________ Michael C. Fitzgerald, Supervisor ___________________________ Kenneth Kreuzer ___________________________ Terrence G. Oas ___________________________ Jiyong Hong ___________________________ Seok-Yong Lee Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biochemistry in the Graduate School of Duke University 2015 ABSTRACT Global Analysis of Protein Folding Thermodynamics for Disease State Characterization and Biomarker Discovery by Jagat Adhikari Department of Biochemistry Duke University Date:_______________________ Approved: ___________________________ Michael C. Fitzgerald, Supervisor ___________________________ Kenneth Kreuzer ___________________________ Terrence G. Oas ___________________________ Jiyong Hong ___________________________ Seok-Yong Lee An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biochemistry in the Graduate School of Duke University 2015 Copyright by Jagat Adhikari 2015 Abstract Protein biomarkers can facilitate the diagnosis of many diseases such as cancer and they can be important for the development of effective therapeutic interventions. Current large-scale biomarker discovery and disease state characterization
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Protein Expression Analysis of an in Vitro Murine Model of Prostate Cancer Progression: Towards Identification of High-Potential Therapeutic Targets
    Journal of Personalized Medicine Article Protein Expression Analysis of an In Vitro Murine Model of Prostate Cancer Progression: Towards Identification of High-Potential Therapeutic Targets Hisham F. Bahmad 1,2,3 , Wenjing Peng 4, Rui Zhu 4, Farah Ballout 1, Alissar Monzer 1, 1,5 6, , 1, , 4, , Mohamad K. Elajami , Firas Kobeissy * y , Wassim Abou-Kheir * y and Yehia Mechref * y 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; [email protected] (H.F.B.); [email protected] (F.B.); [email protected] (A.M.); [email protected] (M.K.E.) 2 Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA 3 Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA 4 Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; [email protected] (W.P.); [email protected] (R.Z.) 5 Department of Internal Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA 6 Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon * Correspondence: [email protected] (F.K.); [email protected] (W.A.-K.); [email protected] (Y.M.); Tel.: +961-1-350000 (ext. 4805) (F.K.); +961-1-350000 (ext. 4778) (W.A.K.); +1-806-834-8246 (Y.M.); Fax: +1-806-742-1289 (Y.M.); 961-1-744464 (W.A.K.) These authors have contributed equally to this work as joint senior authors.
    [Show full text]