Field Oriented Keys to the Florida Lichens
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lichen Communities for Forest Health Monitoring in Colorado
Lichen Communities for Forest Health Monitoring in Colorado, USA A Report to the USDA Forest Service by Bruce McCune1, Paul Rogers2, Andrea Ruchty1, and Bruce Ryan3 29 June 1998 1Department of Botany and Plant Pathology, Cordley 2082, Oregon State University, Corvallis, OR 97331-2902. Phone: 541 737 1741, fax: 541 737 3573, email: [email protected] 2USDA Forest Service, Intermountain Research Station, 507 25th St., Ogden, UT 84401 3Department of Botany, Arizona State University, Tempe, AZ 85287-1601 CONTENTS Abstract ............................................................................................................... 1 Introduction........................................................................................................... 2 Lichens in the Forest Health Monitoring Program ................................................ 2 The Lichen Community Indicator ..................................................................... 2 Previous Work on Lichen Communities in Colorado............................................. 4 Methods ............................................................................................................... 4 Field Methods .............................................................................................. 4 Data Sources ............................................................................................... 5 Data Analysis............................................................................................... 6 The Analytical Data Set....................................................................... -
Four <I>Parmeliaceae</I> Species Excluded from <I>Bulbothrix</I>
MYCOTAXON Volume 111, pp. 387–401 January–March 2010 Four Parmeliaceae species excluded from Bulbothrix Michel N. Benatti1 & Marcelo P. Marcelli2 1 [email protected] & 2 [email protected] Instituto de Botânica, Seção de Micologia e Liquenologia Caixa Postal 3005, São Paulo/SP, CEP 01061-970, Brazil Abstract — Four species previously included in the genus Bulbothrix are shown not to form bulbate cilia and are combined into alternative genera as Hypotrachyna tuskiformis, Parmelinopsis pinguiacida, P. subinflata, and Parmotrema yunnanum. All species are described in detail and a lectotype is selected for Bulbothrix tuskiformis. Key words — Bulbothrix pinguiacida, Bulbothrix subinflata, Bulbothrix yunnana Introduction The genus Bulbothrix Hale was proposed for a group of species previously included in Parmelia ser. Bicornutae (Lynge) Hale & Kurokawa (Hale 1974) characterized by small laciniate, adnate thalli, bulbate marginal cilia, cortical atranorin, simple to branched cilia and rhizines, smooth to coronate apothecia, unicellular, colorless, ellipsoid to bicornute ascospores 5−21 × 4−12 μm, and small, bacilliform to bifusiform conidia 5−10 µm long (Hale 1976b, Elix 1993a). During a taxonomic revision of the genus we found four species previously included in Bulbothrix that do not have the typical cilia with hollow basal bulbae that contain differentiated cells and an oily substance (Hale 1975, Feuerer & Marth 1997) should be classified outside this genus. These four species are distributed in Southeast Asia and Oceania. Hypotrachyna tuskiformis is still only known from the type locality in Papua New Guinea (Elix 1997b), Parmelinopsis pinguiacida from New Caledonia and Rarotonga (Louwhoff & Elix 2000a, 2000b), Parmelinopsis subinflata from the Philippines, Australia, Malaysia, and Papua New Guinea (Hale 1965, 1976b, Sipman 1993, Streimann 1986), and Parmotrema yunnanum from southern China (Wang et al. -
Cuivre Bryophytes
Trip Report for: Cuivre River State Park Species Count: 335 Date: Multiple Visits Lincoln County Agency: MODNR Location: Lincoln Hills - Bryophytes Participants: Bryophytes from Natural Resource Inventory Database Bryophyte List from NRIDS and Bruce Schuette Species Name (Synonym) Common Name Family COFC COFW Acarospora unknown Identified only to Genus Acarosporaceae Lichen Acrocordia megalospora a lichen Monoblastiaceae Lichen Amandinea dakotensis a button lichen (crustose) Physiaceae Lichen Amandinea polyspora a button lichen (crustose) Physiaceae Lichen Amandinea punctata a lichen Physiaceae Lichen Amanita citrina Citron Amanita Amanitaceae Fungi Amanita fulva Tawny Gresette Amanitaceae Fungi Amanita vaginata Grisette Amanitaceae Fungi Amblystegium varium common willow moss Amblystegiaceae Moss Anisomeridium biforme a lichen Monoblastiaceae Lichen Anisomeridium polypori a crustose lichen Monoblastiaceae Lichen Anomodon attenuatus common tree apron moss Anomodontaceae Moss Anomodon minor tree apron moss Anomodontaceae Moss Anomodon rostratus velvet tree apron moss Anomodontaceae Moss Armillaria tabescens Ringless Honey Mushroom Tricholomataceae Fungi Arthonia caesia a lichen Arthoniaceae Lichen Arthonia punctiformis a lichen Arthoniaceae Lichen Arthonia rubella a lichen Arthoniaceae Lichen Arthothelium spectabile a lichen Uncertain Lichen Arthothelium taediosum a lichen Uncertain Lichen Aspicilia caesiocinerea a lichen Hymeneliaceae Lichen Aspicilia cinerea a lichen Hymeneliaceae Lichen Aspicilia contorta a lichen Hymeneliaceae Lichen -
Lichens of Tuckernuck Island Voucher List
The Nantucket Biodiversity Initiative A Checklist of the Lichens on Nantucket Island. Town of Nantucket, Nantucket County, MA, USA May 2008 Elizabeth Kneiper. 35 Woodchester Dr., Weston, MA 02493 Email: [email protected] Abstract: Collections made at 14 sites on Nantucket Island during the 2006 and 2007 NBI Weeks have added 53 species in 33 genera to the 2004 lichen list of 89 species in 37 genera. In all 21 genera have been added to the historical list for the island, increasing the number of genera to 61 and the species list to 148 species. Five species, Bacidia helicospora, Pyrrhospora quernea, Physcia pumilior, Cladonia abbreviatula and Usnea cornuta appear to be new records for Massachusetts. Ramalina willeyi is well established on the island as are other Ramalinas thought to be uncommon in the region, such as Usnea mutabilis, Ramalina americana and Ramalina farinacea. Skyttea radiatilis and Mycoglaena sp. (saprophytic fungi related to lichens and lichenicolous fungi) and Naetrocymbe punctiforms, a lichenicolous fungus, are reported for the island. This lichen inventory work is a continuation of the work started during the 2004 NBI Week. Different lichen assemblages develop in different plant communities and on different substrates. The aim of this work was to survey habitats not examined in 2004 to document the lichen diversity in diverse sites and to attempt to document lichen species recorded for Nantucket Island in The Vascular and Non-Vascular Flora of Nantucket, Tuckernuck and Muskeget Islands by Sorries and Dunwiddie in 1996. Scope of the Inventory and Methods The localities of the sites surveyed in 2006-2007 are listed below. -
Lectotypification of Usnea Confusa (Parmeliaceae, Ascomycota)
Bull. Natl. Mus. Nat. Sci., Ser. B, 45(2), pp. 63–70, May 22, 2019 Lectotypification of Usnea confusa (Parmeliaceae, Ascomycota) Yoshihito Ohmura1, * and Philippe Clerc2 1 Department of Botany, National Museum of Nature and Science, 4–1–1 Amakubo Tsukuba, Ibaraki 305–0005, Japan 2 Conservatoire et Jardin botaniques de la Ville de Genève, Geneva, Switzerland * E-mail: [email protected] (Received 25 February 2019; accepted 27 March 2019) Abstract The original material of Usnea confusa Asahina consists of several thalli glued on a cardboard. In order to avoid any future taxonomic confusion especially presence or absence of “isidiate soredia”, a single specimen with numerous isidiofibrils developing on the soralia was cho- sen as lectotype. The lectotype of U. confusa contains usnic, salazinic, constictic acids and trace amount of protocetraric acid as the secondary substances. ITS rDNA sequences of Japanese and Taiwanese specimens that have the same morphology and chemistry with the lectotype form two distinct clades nested within the strongly supported clade representing the core group of Usnea cornuta (containing U. cornuta Körber s.str.). Our molecular phylogenetic result based only on ITS rDNA sequences doesn’t allow to confirm or contradict the conspecificity of U. confusa with U. cornuta. Key words: isidiofibrils, ITS rDNA, lectotype, lichenized fungi, phylogeny, soralia, taxonomy. Introduction type (Gerlach et al., 2017), the density of medul- lary hyphae varies from dense to lax; the many In lichenology, the genus Usnea Adans. is chemotypes designated by main substances such known as one of the most difficult genera due to as: salazinic, constictic, stictic, norstictic, proto- the high morphological variability within species cetraric, psoromic, galbinic, thamnolic or lobaric (Clerc, 1998). -
1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families ⇑ Jolanta Miadlikowska A, , Frank Kauff B,1, Filip Högnabba C, Jeffrey C
Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10, Soili Stenroos c,10 a Department of Biology, Duke University, Durham, NC 27708-0338, USA b FB Biologie, Molecular Phylogenetics, 13/276, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany c Botanical Museum, Finnish Museum of Natural History, FI-00014 University of Helsinki, Finland d Department of Ecology and Evolutionary Biology, Yale University, 358 ESC, 21 Sachem Street, New Haven, CT 06511, USA e Institut für Botanik, Karl-Franzens-Universität, Holteigasse 6, A-8010 Graz, Austria f Department of Plant Taxonomy and Nature Conservation, University of Gdan´sk, ul. Wita Stwosza 59, 80-308 Gdan´sk, Poland g Science and Education, The Field Museum, 1400 S. -
Three Challenges to Contemporaneous Taxonomy from a Licheno-Mycological Perspective
Megataxa 001 (1): 078–103 ISSN 2703-3082 (print edition) https://www.mapress.com/j/mt/ MEGATAXA Copyright © 2020 Magnolia Press Review ISSN 2703-3090 (online edition) https://doi.org/10.11646/megataxa.1.1.16 Three challenges to contemporaneous taxonomy from a licheno-mycological perspective ROBERT LÜCKING Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany �[email protected]; https://orcid.org/0000-0002-3431-4636 Abstract Nagoya Protocol, and does not need additional “policing”. Indeed, the Nagoya Protocol puts the heaviest burden on This paper discusses three issues that challenge contempora- taxonomy and researchers cataloguing biodiversity, whereas neous taxonomy, with examples from the fields of mycology for the intended target group, namely those seeking revenue and lichenology, formulated as three questions: (1) What is gain from nature, the protocol may not actually work effec- the importance of taxonomy in contemporaneous and future tively. The notion of currently freely accessible digital se- science and society? (2) An increasing methodological gap in quence information (DSI) to become subject to the protocol, alpha taxonomy: challenge or opportunity? (3) The Nagoya even after previous publication, is misguided and conflicts Protocol: improvement or impediment to the science of tax- with the guidelines for ethical scientific conduct. Through onomy? The importance of taxonomy in society is illustrated its implementation of the Nagoya Protocol, Colombia has using the example of popular field guides and digital me- set a welcome precedence how to exempt taxonomic and dia, a billion-dollar business, arguing that the desire to name systematic research from “access to genetic resources”, and species is an intrinsic feature of the cognitive component of hopefully other biodiversity-rich countries will follow this nature connectedness of humans. -
An Evolving Phylogenetically Based Taxonomy of Lichens and Allied Fungi
Opuscula Philolichenum, 11: 4-10. 2012. *pdf available online 3January2012 via (http://sweetgum.nybg.org/philolichenum/) An evolving phylogenetically based taxonomy of lichens and allied fungi 1 BRENDAN P. HODKINSON ABSTRACT. – A taxonomic scheme for lichens and allied fungi that synthesizes scientific knowledge from a variety of sources is presented. The system put forth here is intended both (1) to provide a skeletal outline of the lichens and allied fungi that can be used as a provisional filing and databasing scheme by lichen herbarium/data managers and (2) to announce the online presence of an official taxonomy that will define the scope of the newly formed International Committee for the Nomenclature of Lichens and Allied Fungi (ICNLAF). The online version of the taxonomy presented here will continue to evolve along with our understanding of the organisms. Additionally, the subfamily Fissurinoideae Rivas Plata, Lücking and Lumbsch is elevated to the rank of family as Fissurinaceae. KEYWORDS. – higher-level taxonomy, lichen-forming fungi, lichenized fungi, phylogeny INTRODUCTION Traditionally, lichen herbaria have been arranged alphabetically, a scheme that stands in stark contrast to the phylogenetic scheme used by nearly all vascular plant herbaria. The justification typically given for this practice is that lichen taxonomy is too unstable to establish a reasonable system of classification. However, recent leaps forward in our understanding of the higher-level classification of fungi, driven primarily by the NSF-funded Assembling the Fungal Tree of Life (AFToL) project (Lutzoni et al. 2004), have caused the taxonomy of lichen-forming and allied fungi to increase significantly in stability. This is especially true within the class Lecanoromycetes, the main group of lichen-forming fungi (Miadlikowska et al. -
Lichen Functional Trait Variation Along an East-West Climatic Gradient in Oregon and Among Habitats in Katmai National Park, Alaska
AN ABSTRACT OF THE THESIS OF Kaleigh Spickerman for the degree of Master of Science in Botany and Plant Pathology presented on June 11, 2015 Title: Lichen Functional Trait Variation Along an East-West Climatic Gradient in Oregon and Among Habitats in Katmai National Park, Alaska Abstract approved: ______________________________________________________ Bruce McCune Functional traits of vascular plants have been an important component of ecological studies for a number of years; however, in more recent times vascular plant ecologists have begun to formalize a set of key traits and universal system of trait measurement. Many recent studies hypothesize global generality of trait patterns, which would allow for comparison among ecosystems and biomes and provide a foundation for general rules and theories, the so-called “Holy Grail” of ecology. However, the majority of these studies focus on functional trait patterns of vascular plants, with a minority examining the patterns of cryptograms such as lichens. Lichens are an important component of many ecosystems due to their contributions to biodiversity and their key ecosystem services, such as contributions to mineral and hydrological cycles and ecosystem food webs. Lichens are also of special interest because of their reliance on atmospheric deposition for nutrients and water, which makes them particularly sensitive to air pollution. Therefore, they are often used as bioindicators of air pollution, climate change, and general ecosystem health. This thesis examines the functional trait patterns of lichens in two contrasting regions with fundamentally different kinds of data. To better understand the patterns of lichen functional traits, we examined reproductive, morphological, and chemical trait variation along precipitation and temperature gradients in Oregon. -
H. Thorsten Lumbsch VP, Science & Education the Field Museum 1400
H. Thorsten Lumbsch VP, Science & Education The Field Museum 1400 S. Lake Shore Drive Chicago, Illinois 60605 USA Tel: 1-312-665-7881 E-mail: [email protected] Research interests Evolution and Systematics of Fungi Biogeography and Diversification Rates of Fungi Species delimitation Diversity of lichen-forming fungi Professional Experience Since 2017 Vice President, Science & Education, The Field Museum, Chicago. USA 2014-2017 Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. Since 2014 Curator, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2013-2014 Associate Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2009-2013 Chair, Dept. of Botany, The Field Museum, Chicago, USA. Since 2011 MacArthur Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2006-2014 Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2005-2009 Head of Cryptogams, Dept. of Botany, The Field Museum, Chicago, USA. Since 2004 Member, Committee on Evolutionary Biology, University of Chicago. Courses: BIOS 430 Evolution (UIC), BIOS 23410 Complex Interactions: Coevolution, Parasites, Mutualists, and Cheaters (U of C) Reading group: Phylogenetic methods. 2003-2006 Assistant Curator, Dept. of Botany, The Field Museum, Chicago, USA. 1998-2003 Privatdozent (Assistant Professor), Botanical Institute, University – GHS - Essen. Lectures: General Botany, Evolution of lower plants, Photosynthesis, Courses: Cryptogams, Biology -
Biatora Alnetorum (Ramalinaceae, Lecanorales), a New Lichen Species from Western North America
A peer-reviewed open-access journal MycoKeys 48: 55–65Biatora (2019) alnetorum, a new lichen species from western North America 55 doi: 10.3897/mycokeys.48.33001 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Biatora alnetorum (Ramalinaceae, Lecanorales), a new lichen species from western North America Stefan Ekman1, Tor Tønsberg2 1 Museum of Evolution, Uppsala University, Norbyvägen 16, SE-752 36 Uppsala, Sweden 2 Department of Na- tural History, University Museum, University of Bergen, Allégaten 41, P.O. Box 7800, NO-5020 Bergen, Norway Corresponding author: Stefan Ekman ([email protected]) Academic editor: T. Lumbsch | Received 10 January 2019 | Accepted 21 February 2019 | Published 5 March 2019 Citation: Ekman S, Tønsberg T (2019) Biatora alnetorum (Ramalinaceae, Lecanorales), a new lichen species from western North America. MycoKeys 48: 55–65. https://doi.org/10.3897/mycokeys.48.33001 Abstract Biatora alnetorum S. Ekman & Tønsberg, a lichenised ascomycete in the family Ramalinaceae (Lecano- rales, Lecanoromycetes), is described as new to science. It is distinct from other species of Biatora in the combination of mainly three-septate ascospores, a crustose thallus forming distinctly delimited soralia that develop by disintegration of convex pustules and the production of atranorin in the thallus and apothecia. The species is known from the Pacific Northwest of North America, where it inhabits the smooth bark of Alnus alnobetula subsp. sinuata and A. rubra. Biatora alnetorum is also a new host for the lichenicolous ascomycete Sclerococcum toensbergii Diederich. Keywords Biatora flavopunctata, Biatora pallens, Lecania, BAli-Phy Introduction During field work in the Pacific Northwest of the United States and Canada in 1995– 2018, the second author came across a distinct crustose and sorediate lichen on the smooth bark of alders. -
One Hundred New Species of Lichenized Fungi: a Signature of Undiscovered Global Diversity
Phytotaxa 18: 1–127 (2011) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Monograph PHYTOTAXA Copyright © 2011 Magnolia Press ISSN 1179-3163 (online edition) PHYTOTAXA 18 One hundred new species of lichenized fungi: a signature of undiscovered global diversity H. THORSTEN LUMBSCH1*, TEUVO AHTI2, SUSANNE ALTERMANN3, GUILLERMO AMO DE PAZ4, ANDRÉ APTROOT5, ULF ARUP6, ALEJANDRINA BÁRCENAS PEÑA7, PAULINA A. BAWINGAN8, MICHEL N. BENATTI9, LUISA BETANCOURT10, CURTIS R. BJÖRK11, KANSRI BOONPRAGOB12, MAARTEN BRAND13, FRANK BUNGARTZ14, MARCELA E. S. CÁCERES15, MEHTMET CANDAN16, JOSÉ LUIS CHAVES17, PHILIPPE CLERC18, RALPH COMMON19, BRIAN J. COPPINS20, ANA CRESPO4, MANUELA DAL-FORNO21, PRADEEP K. DIVAKAR4, MELIZAR V. DUYA22, JOHN A. ELIX23, ARVE ELVEBAKK24, JOHNATHON D. FANKHAUSER25, EDIT FARKAS26, LIDIA ITATÍ FERRARO27, EBERHARD FISCHER28, DAVID J. GALLOWAY29, ESTER GAYA30, MIREIA GIRALT31, TREVOR GOWARD32, MARTIN GRUBE33, JOSEF HAFELLNER33, JESÚS E. HERNÁNDEZ M.34, MARÍA DE LOS ANGELES HERRERA CAMPOS7, KLAUS KALB35, INGVAR KÄRNEFELT6, GINTARAS KANTVILAS36, DOROTHEE KILLMANN28, PAUL KIRIKA37, KERRY KNUDSEN38, HARALD KOMPOSCH39, SERGEY KONDRATYUK40, JAMES D. LAWREY21, ARMIN MANGOLD41, MARCELO P. MARCELLI9, BRUCE MCCUNE42, MARIA INES MESSUTI43, ANDREA MICHLIG27, RICARDO MIRANDA GONZÁLEZ7, BIBIANA MONCADA10, ALIFERETI NAIKATINI44, MATTHEW P. NELSEN1, 45, DAG O. ØVSTEDAL46, ZDENEK PALICE47, KHWANRUAN PAPONG48, SITTIPORN PARNMEN12, SERGIO PÉREZ-ORTEGA4, CHRISTIAN PRINTZEN49, VÍCTOR J. RICO4, EIMY RIVAS PLATA1, 50, JAVIER ROBAYO51, DANIA ROSABAL52, ULRIKE RUPRECHT53, NORIS SALAZAR ALLEN54, LEOPOLDO SANCHO4, LUCIANA SANTOS DE JESUS15, TAMIRES SANTOS VIEIRA15, MATTHIAS SCHULTZ55, MARK R. D. SEAWARD56, EMMANUËL SÉRUSIAUX57, IMKE SCHMITT58, HARRIE J. M. SIPMAN59, MOHAMMAD SOHRABI 2, 60, ULRIK SØCHTING61, MAJBRIT ZEUTHEN SØGAARD61, LAURENS B. SPARRIUS62, ADRIANO SPIELMANN63, TOBY SPRIBILLE33, JUTARAT SUTJARITTURAKAN64, ACHRA THAMMATHAWORN65, ARNE THELL6, GÖRAN THOR66, HOLGER THÜS67, EINAR TIMDAL68, CAMILLE TRUONG18, ROMAN TÜRK69, LOENGRIN UMAÑA TENORIO17, DALIP K.