Three Challenges to Contemporaneous Taxonomy from a Licheno-Mycological Perspective

Total Page:16

File Type:pdf, Size:1020Kb

Three Challenges to Contemporaneous Taxonomy from a Licheno-Mycological Perspective Megataxa 001 (1): 078–103 ISSN 2703-3082 (print edition) https://www.mapress.com/j/mt/ MEGATAXA Copyright © 2020 Magnolia Press Review ISSN 2703-3090 (online edition) https://doi.org/10.11646/megataxa.1.1.16 Three challenges to contemporaneous taxonomy from a licheno-mycological perspective ROBERT LÜCKING Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany �[email protected]; https://orcid.org/0000-0002-3431-4636 Abstract Nagoya Protocol, and does not need additional “policing”. Indeed, the Nagoya Protocol puts the heaviest burden on This paper discusses three issues that challenge contempora- taxonomy and researchers cataloguing biodiversity, whereas neous taxonomy, with examples from the fields of mycology for the intended target group, namely those seeking revenue and lichenology, formulated as three questions: (1) What is gain from nature, the protocol may not actually work effec- the importance of taxonomy in contemporaneous and future tively. The notion of currently freely accessible digital se- science and society? (2) An increasing methodological gap in quence information (DSI) to become subject to the protocol, alpha taxonomy: challenge or opportunity? (3) The Nagoya even after previous publication, is misguided and conflicts Protocol: improvement or impediment to the science of tax- with the guidelines for ethical scientific conduct. Through onomy? The importance of taxonomy in society is illustrated its implementation of the Nagoya Protocol, Colombia has using the example of popular field guides and digital me- set a welcome precedence how to exempt taxonomic and dia, a billion-dollar business, arguing that the desire to name systematic research from “access to genetic resources”, and species is an intrinsic feature of the cognitive component of hopefully other biodiversity-rich countries will follow this nature connectedness of humans. While continuous societal example. support of a critical mass of taxonomists is necessary to cata- logue all species on Earth, it is shown that this is a finite task, Key words: amateur taxonomy, biopiracy, fungal diversity, and a proposal is made how a remaining 10 million species impact factor, sixth mass extinction, taxonomic impediment can be catalogued within 40 years by 1,000 well-trained and dedicated taxonomists, with an investment of $4 billion, cor- responding to 0.0001% of the annual global GDP or 0.005% Introduction of annual military expenditures. Notorious undercitation of actually used taxonomic resources and lack of coverage of Taxonomy is the most fundamental discipline in biodiversity impact metrics for monographs and other taxonomic work research. It is the science that puts names on organisms that cannot be published in indexed journals is discussed and and groups of related organisms (taxa) and arranges these suggestions are made how this problem can be remedied. An increasing methodological gap in approaches to taxonomy, in hierarchical classification systems, with the focus in between classic morphological and advanced genomic stud- establishing names (Judd et al. 2007; Guerra-García et al. ies, affects in particular taxonomists in biodiversity-rich 2008; Kirk et al. 2008; Wilkins 2011; Lew 2018). In contrast, countries and amateurs, also regarding proper training to systematics is concerned with the relationships between apply advanced methods and concepts. To counterbalance taxa and not primarily with naming them, although both this problem, international collaborations bringing different areas are strongly interdependent. Taxonomy establishes expertise to the table and undertaking mutual capacitation hypotheses about relationships between individuals or are one successful remedy. Classic taxonomy still works for lower-level taxa and gives these hypotheses formal names, many groups and is a first approach to catalogue species and whereas systematics tests these relationships, on the base of establish taxon hypotheses, but ultimately each taxonomic which the taxonomy is then adjusted. group needs to be studied with the array of methods proper Taxonomy is divided into three approaches: (1) alpha to the group, including descriptive work. Finally, the Con- taxonomy, the naming of species (“microtaxonomy”); vention on Biological Diversity (CBD) and the Nagoya Pro- tocol has put additional burden on basic biodiversity science. (2) beta taxonomy, the arrangement of species into Using lichenology in Latin America and Brazil as an exam- higher-level classifications through named higher taxa ple, it is shown that the spirit of non-monetary benefit-shar- (“macrotaxonomy”); and (3) gamma taxonomy, the naming ing proper to taxonomy and systematics, namely capacita- and classification of infraspecific entities (Mayr 1968, tion, joint publications, and shared reference collections, has 1982a; Winston 1999; Disney 2000; Tahseen 2014). This been increasingly implemented long before the CBD and the division seems at first counterintuitive, as it contradicts the Submitted: 24 Jan. 2020; accepted by Z.-Q. Zhang: 29 Jan. 2020; published: 31 Jan. 2020 73 Licensed under a Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/ logical sequence from individuals to species to higher taxa, 1. What is the importance of taxonomy in i.e. gamma (= below species), alpha (= species), beta (= contemporaneous and future science and society? above species). However, the term alpha (‘leader’) taxonomy for naming species properly reflects the fact that species The desire and need to name species. The discipline are the fundamental unit of biodiversity research: higher of taxonomy is as old as humankind. While hunting and classifications and the Tree of Life are ultimately based gathering as principle means of survival, humans both on species, and infraspecific entities cannot be established implicitly and explicitly employed—and still employ— before species have been named first. This is also embedded taxonomy (“ethnotaxonomy”) when naming and classifying in the various rules of nomenclature, for lichenology and natural resources according to their potential uses (Sharma mycology the International Code of Nomenclature for 1993; Godfray 2002; Manktelow 2010; Franco et al. 2015; algae, fungi, and plants (ICN; Turland et al. 2018). Si 2016; Krishnamurthy & Adams 2016). The scientific The ICN, as well as the rules of nomenclature for approach to taxonomy, which separates human curiosity animals and bacteria, employ binomials for species names. from immediate applied aspects, goes back several This Linnean-based way of naming is often considered thousand years, but only in the 16th century began its outdated (Cantino et al. 1999; Ereshefsky 2002, 2007), ascent to modern biodiversity science, with the formal but remains a masterpiece of combinatorics, as it allows birth of Linnean taxonomy in the 18th century (Linnaeus to maximize the number of species names that can be 1753, 1758; Gilmour 1951; Mayr 1982b; Stevens 2001; memorized by the human brain (Lücking 2019). The Minelli 2012; Wilson 2005; Tahseen 2014). Linnean binomial allows to immediately place species into While taxonomy is a branch of science, it also the Tree of Life through their genus component, a feature continues to be the most important aspect of “citizen not possible with alternative, non-Linnean names (Cantino science”, particularly expressed so in the widespread et al. 1999; Lücking 2019). The binomial thus combines and popular use of field guides (Law & Lynch 1988; elements of alpha and beta taxonomy, since the genus Stevenson et al. 2003). The International Field Guides name incorporates the lowest hierarchical level at which Database (International Field Guides 2020) features over species are being classified, and at the same time provides 6,500 entries covering all groups of organisms around the linkage to higher categories. The subdiscipline of the globe, between 1954 and present, although the first strict alpha taxonomy does therefore not exist, as naming modern field guides go back to the 19th century (Merriam species simultaneously means to classify them into genera 1890; Barrow 1998) and the database covers only a part as the next higher category. Therefore, alpha taxonomists of all such guides ever published. Some popular field are also beta taxonomists by default, and one could use guides, such as A Field Guide to the Birds of Britain and the term “lower beta” taxonomy to reflect this fact. This Europe in the Peterson Field Guides Series, have sold paper focuses on alpha and “lower beta” taxonomy which, over a million times (Johnsgard 2006), and the National compared to “higher beta” and gamma taxonomy, are Audubon Society Field Guide to North American the subdisciplines of taxonomy which have faced, and Mushrooms approximately 200,000 copies. With perhaps continue to be facing, the most substantial challenges in close to 20,000 copies sold globally, Lichens of North contemporaneous biodiversity research (Kitching 1993; America (Brodo et al. 2001) is likely the most popular Carvalho et al. 2007; Wheeler 2008; Ebach et al. 2011; book on lichens published to date; while not quite a field Pearson et al. 2011; Vinarski 2019). guide, it is essentially a taxonomy book based on the One may consider this contribution redundant, as expertise by one of the foremost lichenologists on North almost everything that could be said about this topic in America and two outstanding nature photographers. Field the field of
Recommended publications
  • New Species of Graphidaceae from the Neotropics and Southeast Asia
    Phytotaxa 189 (1): 289–311 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.189.1.21 New species of Graphidaceae from the Neotropics and Southeast Asia HARRIE J. M. SIPMAN Freie Universität, Botanischer Garten & Botanisches Museum, Königin-Luise-Strasse 6-8, D-14195 Berlin, Germany; email: [email protected] Abstract Descriptions and illustrations are provided for 20 new species in the family Graphidaceae (lichenized fungi) originating from El Salvador, the Guianas, Venezuela, Colombia, and Malaysia: Acanthothecis adjuncta Welz & Sipman, differing from all other Acanthothecis species by the rounded ascocarps with covered discs; Astrochapsa albella Sipman, differing from A. meridensis in the white apothecium rim, the corticolous growth habit, the more or less clear hymenium, and the protocetraric acid chemistry; A. columnaris Sipman, differing from other Astrochapsa species by the columnar marginal slips; Chapsa francisci Sipman, differing from other Chapsa species by the numerous marginal lacinae; C. nubila Sipman, differing from other Chapsa species by the combination of a guttulate hymenium and 4- to 8-spored asci; Diorygma extensum Sipman, differing from D. minisporum in producing norstictic acid instead of stictic acid; Fissurina chapsoides Sipman, a Fissurina species with large, muriform ascospores and short ascocarps opening mostly by branched slits; F. gigas Sipman, differing from F. rufula in the larger ascomata and muriform ascospores; F. v or a x Sipman, differing from other Fissurina species by the aggregated ascocarps in combination with papillose paraphysis tips; Graphis murali-elegans Sipman, differing from G.
    [Show full text]
  • Response of Ectomycorrhizal Fungi to Inorganic and Organic Forms of Nitrogen and Phosphorus
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2012 RESPONSE OF ECTOMYCORRHIZAL FUNGI TO INORGANIC AND ORGANIC FORMS OF NITROGEN AND PHOSPHORUS Christa M. Luokkala Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Forest Sciences Commons Copyright 2012 Christa M. Luokkala Recommended Citation Luokkala, Christa M., "RESPONSE OF ECTOMYCORRHIZAL FUNGI TO INORGANIC AND ORGANIC FORMS OF NITROGEN AND PHOSPHORUS", Master's report, Michigan Technological University, 2012. https://doi.org/10.37099/mtu.dc.etds/611 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Forest Sciences Commons RESPONSE OF ECTOMYCORRHIZAL FUNGI TO INORGANIC AND ORGANIC FORMS OF NITROGEN AND PHOSPHORUS By Christa M. Luokkala A REPORT Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Applied Ecology MICHIGAN TECHNOLOGICAL UNIVERSITY 2012 © 2012 Christa M. Luokkala This report has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Applied Ecology. School of Forest Resources and Environmental Science Report Advisor: Dr. Erik A. Lilleskov Committee Member: Dr. Susan A. Bagley Committee Member: Dr. Dana L. Richter Committee Member: Dr. Christopher W. Swanston School Dean: Dr. Terry L. Sharik Table of Contents Abstract .............................................................................................................................
    [Show full text]
  • Fertility-Dependent Effects of Ectomycorrhizal Fungal Communities on White Spruce Seedling Nutrition
    Mycorrhiza (2015) 25:649–662 DOI 10.1007/s00572-015-0640-9 ORIGINAL PAPER Fertility-dependent effects of ectomycorrhizal fungal communities on white spruce seedling nutrition Alistair J. H. Smith II1 & Lynette R. Potvin2 & Erik A. Lilleskov2 Received: 14 January 2015 /Accepted: 6 April 2015 /Published online: 24 April 2015 # Springer-Verlag Berlin Heidelberg (outside the USA) 2015 Abstract Ectomycorrhizal fungi (EcMF) typically colonize manganese, and Atheliaceae sp. had a negative relationship with nursery seedlings, but nutritional and growth effects of these P content. Findings shed light on the community and species communities are only partly understood. To examine these ef- effects on seedling condition, revealing clear functional differ- fects, Picea glauca seedlings collected from a tree nursery natu- ences among dominants. The approach used should be scalable rally colonized by three dominant EcMF were divided between to explore function in more complex communities composed of fertilized and unfertilized treatments. After one growing season unculturable EcMF. seedlings were harvested, ectomycorrhizas identified using DNA sequencing, and seedlings analyzed for leaf nutrient concentra- Keywords Stoichiometry . Ectomycorrhizal fungal tion and content, and biomass parameters. EcMF community community effects . Nitrogen . Phosphorus . Micronutrients . structure–nutrient interactions were tested using nonmetric mul- Amphinema . Atheliaceae . Thelephora terrestris . tidimensional scaling (NMDS) combined with vector analysis of Greenhouse foliar nutrients and biomass. We identified three dominant spe- cies: Amphinema sp., Atheliaceae sp., and Thelephora terrestris. NMDS+envfit revealed significant community effects on seed- Introduction ling nutrition that differed with fertilization treatment. PERM ANOVA and regression analyses uncovered significant species Seedlings regenerating naturally or artificially are influenced by effects on host nutrient concentration, content, and stoichiometry.
    [Show full text]
  • Major Clades of Agaricales: a Multilocus Phylogenetic Overview
    Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153- Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J.
    [Show full text]
  • Four <I>Parmeliaceae</I> Species Excluded from <I>Bulbothrix</I>
    MYCOTAXON Volume 111, pp. 387–401 January–March 2010 Four Parmeliaceae species excluded from Bulbothrix Michel N. Benatti1 & Marcelo P. Marcelli2 1 [email protected] & 2 [email protected] Instituto de Botânica, Seção de Micologia e Liquenologia Caixa Postal 3005, São Paulo/SP, CEP 01061-970, Brazil Abstract — Four species previously included in the genus Bulbothrix are shown not to form bulbate cilia and are combined into alternative genera as Hypotrachyna tuskiformis, Parmelinopsis pinguiacida, P. subinflata, and Parmotrema yunnanum. All species are described in detail and a lectotype is selected for Bulbothrix tuskiformis. Key words — Bulbothrix pinguiacida, Bulbothrix subinflata, Bulbothrix yunnana Introduction The genus Bulbothrix Hale was proposed for a group of species previously included in Parmelia ser. Bicornutae (Lynge) Hale & Kurokawa (Hale 1974) characterized by small laciniate, adnate thalli, bulbate marginal cilia, cortical atranorin, simple to branched cilia and rhizines, smooth to coronate apothecia, unicellular, colorless, ellipsoid to bicornute ascospores 5−21 × 4−12 μm, and small, bacilliform to bifusiform conidia 5−10 µm long (Hale 1976b, Elix 1993a). During a taxonomic revision of the genus we found four species previously included in Bulbothrix that do not have the typical cilia with hollow basal bulbae that contain differentiated cells and an oily substance (Hale 1975, Feuerer & Marth 1997) should be classified outside this genus. These four species are distributed in Southeast Asia and Oceania. Hypotrachyna tuskiformis is still only known from the type locality in Papua New Guinea (Elix 1997b), Parmelinopsis pinguiacida from New Caledonia and Rarotonga (Louwhoff & Elix 2000a, 2000b), Parmelinopsis subinflata from the Philippines, Australia, Malaysia, and Papua New Guinea (Hale 1965, 1976b, Sipman 1993, Streimann 1986), and Parmotrema yunnanum from southern China (Wang et al.
    [Show full text]
  • <I>Cyanodermella Asteris</I> Sp. Nov. (<I>Ostropales</I>)
    MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2017 January–March 2017—Volume 132, pp. 107–123 http://dx.doi.org/10.5248/132.107 Cyanodermella asteris sp. nov. (Ostropales) from the inflorescence axis of Aster tataricus Linda Jahn1,*, Thomas Schafhauser2, Stefan Pan2, Tilmann Weber2,7, Wolfgang Wohlleben2, David Fewer3, Kaarina Sivonen3, Liane Flor4, Karl-Heinz van Pée4, Thibault Caradec5, Philippe Jacques5,8, Mieke M.E. Huijbers6,9, Willem J.H. van Berkel6 & Jutta Ludwig-Müller1,* 1 Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany 2 Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany 3 Microbiology and Biotechnology Division, Dept. of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, FIN-00014, Helsinki, Finland 4 Allgemeine Biochemie, Technische Universität Dresden, 01069 Dresden, Germany 5 Laboratoire ProBioGEM, Université Lille1- Sciences et Technologies, Villeneuve d’Ascq, France 6 Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands 7 moved to: Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark 8 moved to: Gembloux Agro-Bio Tech, Université de Liege, Passage des Déportés 2, 5030 Gembloux, Belgium 9 moved to: Department of Biotechnology, Technical University Delft, Van der Maasweg 9, 2629 HZ Delft, The Netherlands *Correspondence to: [email protected], [email protected] Abstract—An endophytic fungus isolated from the inflorescence axis ofAster tataricus is proposed as a new species. Phylogenetic analyses based on sequences from the ribosomal DNA cluster (the ITS1+5.8S+ITS2, 18S, and 28S regions) and the RPB2 gene revealed a relationship between the unknown fungus and the Stictidaceae lineage of the Ostropales.
    [Show full text]
  • Mycosphere Notes 225–274: Types and Other Specimens of Some Genera of Ascomycota
    Mycosphere 9(4): 647–754 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/4/3 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere Notes 225–274: types and other specimens of some genera of Ascomycota Doilom M1,2,3, Hyde KD2,3,6, Phookamsak R1,2,3, Dai DQ4,, Tang LZ4,14, Hongsanan S5, Chomnunti P6, Boonmee S6, Dayarathne MC6, Li WJ6, Thambugala KM6, Perera RH 6, Daranagama DA6,13, Norphanphoun C6, Konta S6, Dong W6,7, Ertz D8,9, Phillips AJL10, McKenzie EHC11, Vinit K6,7, Ariyawansa HA12, Jones EBG7, Mortimer PE2, Xu JC2,3, Promputtha I1 1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3 World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan Province, People’s Republic of China 4 Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China 5 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China 6 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 7 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 8 Department Research (BT), Botanic Garden Meise, Nieuwelaan 38, BE-1860 Meise, Belgium 9 Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Rue A.
    [Show full text]
  • An Evolving Phylogenetically Based Taxonomy of Lichens and Allied Fungi
    Opuscula Philolichenum, 11: 4-10. 2012. *pdf available online 3January2012 via (http://sweetgum.nybg.org/philolichenum/) An evolving phylogenetically based taxonomy of lichens and allied fungi 1 BRENDAN P. HODKINSON ABSTRACT. – A taxonomic scheme for lichens and allied fungi that synthesizes scientific knowledge from a variety of sources is presented. The system put forth here is intended both (1) to provide a skeletal outline of the lichens and allied fungi that can be used as a provisional filing and databasing scheme by lichen herbarium/data managers and (2) to announce the online presence of an official taxonomy that will define the scope of the newly formed International Committee for the Nomenclature of Lichens and Allied Fungi (ICNLAF). The online version of the taxonomy presented here will continue to evolve along with our understanding of the organisms. Additionally, the subfamily Fissurinoideae Rivas Plata, Lücking and Lumbsch is elevated to the rank of family as Fissurinaceae. KEYWORDS. – higher-level taxonomy, lichen-forming fungi, lichenized fungi, phylogeny INTRODUCTION Traditionally, lichen herbaria have been arranged alphabetically, a scheme that stands in stark contrast to the phylogenetic scheme used by nearly all vascular plant herbaria. The justification typically given for this practice is that lichen taxonomy is too unstable to establish a reasonable system of classification. However, recent leaps forward in our understanding of the higher-level classification of fungi, driven primarily by the NSF-funded Assembling the Fungal Tree of Life (AFToL) project (Lutzoni et al. 2004), have caused the taxonomy of lichen-forming and allied fungi to increase significantly in stability. This is especially true within the class Lecanoromycetes, the main group of lichen-forming fungi (Miadlikowska et al.
    [Show full text]
  • Lichen Functional Trait Variation Along an East-West Climatic Gradient in Oregon and Among Habitats in Katmai National Park, Alaska
    AN ABSTRACT OF THE THESIS OF Kaleigh Spickerman for the degree of Master of Science in Botany and Plant Pathology presented on June 11, 2015 Title: Lichen Functional Trait Variation Along an East-West Climatic Gradient in Oregon and Among Habitats in Katmai National Park, Alaska Abstract approved: ______________________________________________________ Bruce McCune Functional traits of vascular plants have been an important component of ecological studies for a number of years; however, in more recent times vascular plant ecologists have begun to formalize a set of key traits and universal system of trait measurement. Many recent studies hypothesize global generality of trait patterns, which would allow for comparison among ecosystems and biomes and provide a foundation for general rules and theories, the so-called “Holy Grail” of ecology. However, the majority of these studies focus on functional trait patterns of vascular plants, with a minority examining the patterns of cryptograms such as lichens. Lichens are an important component of many ecosystems due to their contributions to biodiversity and their key ecosystem services, such as contributions to mineral and hydrological cycles and ecosystem food webs. Lichens are also of special interest because of their reliance on atmospheric deposition for nutrients and water, which makes them particularly sensitive to air pollution. Therefore, they are often used as bioindicators of air pollution, climate change, and general ecosystem health. This thesis examines the functional trait patterns of lichens in two contrasting regions with fundamentally different kinds of data. To better understand the patterns of lichen functional traits, we examined reproductive, morphological, and chemical trait variation along precipitation and temperature gradients in Oregon.
    [Show full text]
  • Taxonomy and Phylogenetic Relationships of the Coral Genera Australomussa and Parascolymia (Scleractinia, Lobophylliidae)
    Contributions to Zoology, 83 (3) 195-215 (2014) Taxonomy and phylogenetic relationships of the coral genera Australomussa and Parascolymia (Scleractinia, Lobophylliidae) Roberto Arrigoni1, 7, Zoe T. Richards2, Chaolun Allen Chen3, 4, Andrew H. Baird5, Francesca Benzoni1, 6 1 Dept. of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy 2 Aquatic Zoology, Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia 3Biodiversity Research Centre, Academia Sinica, Nangang, Taipei 115, Taiwan 4 Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan 5 ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia 6 Institut de Recherche pour le Développement, UMR227 Coreus2, 101 Promenade Roger Laroque, BP A5, 98848 Noumea Cedex, New Caledonia 7 E-mail: [email protected] Key words: COI, evolution, histone H3, Lobophyllia, Pacific Ocean, rDNA, Symphyllia, systematics, taxonomic revision Abstract Molecular phylogeny of P. rowleyensis and P. vitiensis . 209 Utility of the examined molecular markers ....................... 209 Novel micromorphological characters in combination with mo- Acknowledgements ...................................................................... 210 lecular studies have led to an extensive revision of the taxonomy References ...................................................................................... 210 and systematics of scleractinian corals. In the present work, we Appendix .......................................................................................
    [Show full text]
  • Succession of Crustose Coralline Red Algae (Rhodophyta) on Coralgal Reefs Exposed to Physical Disturbance in the Southwest Atlantic
    Helgol Mar Res (2013) 67:687–696 DOI 10.1007/s10152-013-0354-3 ORIGINAL ARTICLE Succession of crustose coralline red algae (Rhodophyta) on coralgal reefs exposed to physical disturbance in the southwest Atlantic Rodrigo Mariath • Rafael Riosmena Rodriguez • Marcia A. O. Figueiredo Received: 4 November 2011 / Revised: 25 February 2013 / Accepted: 3 April 2013 / Published online: 14 May 2013 Ó Springer-Verlag Berlin Heidelberg and AWI 2013 Abstract Biological and physical disturbances create the abundant. Physical disturbance increased crust recruitment conditions for species succession in any biological eco- and the low-light environment created by sediments. The system. In particular, coral reefs are susceptible to this data demonstrated coexistence among crustose coralline process because of the complexity of their ecological species and a tolerance to physical disturbance, which relationships. In the southwest Atlantic, nearshore reefs are seemed to favor the thinner crusts of P. conicum over mostly coated by a thin layer of coralline crusts rather than thick-crust species during succession. The succession pat- stony corals. However, little is known about the succession tern observed in this subtropical Brazilian coral reef differs of crustose coralline algae. We studied this process by from that described for shallow tropical reef communities. means of a series of experimental and control discs exposed to physical disturbance. Our results showed that Keywords CCA Á Coral reef Á Benthic communities Á the dominant species in natural conditions, Pneophyllum Brazil conicum, had early recruits and later became dominant on the discs, replicating the community structure of the actual reef. This species had mature reproductive structures and Introduction available spores from the beginning of the colonization experiments.
    [Show full text]
  • H. Thorsten Lumbsch VP, Science & Education the Field Museum 1400
    H. Thorsten Lumbsch VP, Science & Education The Field Museum 1400 S. Lake Shore Drive Chicago, Illinois 60605 USA Tel: 1-312-665-7881 E-mail: [email protected] Research interests Evolution and Systematics of Fungi Biogeography and Diversification Rates of Fungi Species delimitation Diversity of lichen-forming fungi Professional Experience Since 2017 Vice President, Science & Education, The Field Museum, Chicago. USA 2014-2017 Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. Since 2014 Curator, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2013-2014 Associate Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2009-2013 Chair, Dept. of Botany, The Field Museum, Chicago, USA. Since 2011 MacArthur Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2006-2014 Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2005-2009 Head of Cryptogams, Dept. of Botany, The Field Museum, Chicago, USA. Since 2004 Member, Committee on Evolutionary Biology, University of Chicago. Courses: BIOS 430 Evolution (UIC), BIOS 23410 Complex Interactions: Coevolution, Parasites, Mutualists, and Cheaters (U of C) Reading group: Phylogenetic methods. 2003-2006 Assistant Curator, Dept. of Botany, The Field Museum, Chicago, USA. 1998-2003 Privatdozent (Assistant Professor), Botanical Institute, University – GHS - Essen. Lectures: General Botany, Evolution of lower plants, Photosynthesis, Courses: Cryptogams, Biology
    [Show full text]