Cellular and Molecular Mechanisms of Pancreatitis in Atrophy and Regeneration

Total Page:16

File Type:pdf, Size:1020Kb

Cellular and Molecular Mechanisms of Pancreatitis in Atrophy and Regeneration Cellular and molecular mechanisms of pancreatitis in atrophy and regeneration Lynne Estelle Reid BSc, MSc (Qual) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2018 Faculty of Medicine i ABSTRACT Pancreatitis is a debilitating disease with complex etiology, prognosis and pathology, limited treatment options and a burden on health resources. The main lesions of acute pancreatitis are injury to acinar cells and inflammation of the pancreas. Mild interstitial pancreatitis (or oedematous pancreatitis) is characterized by acute inflammation with oedema in the stroma and acinar tissue. Necrosis of acinar tissue, stroma or peri-pancreatic fat is absent and complete recovery, or regeneration of the gland is usual. Whilst there is universal agreement on many of the cellular changes that accompany acute pancreatitis, there is no clear distinction between the factors that determine whether regeneration can occur. The mechanism of regeneration and the cellular processes that influence regeneration form the primary basis of this study. Experimental models of pancreatitis have been produced in rats, mice, dogs, cats and swine by various methods. The time course and final tissue regeneration, if it occurs, vary considerably among different models, with many having the limitation that pancreatic injury is extended, so that degenerative processes are superimposed on regenerative activity. Three in vivo models of pancreatitis in rats were chosen for this project, to study pancreatitis and pancreatic regeneration that occurs in the recovery phase. These models evolve slowly, allowing detailed morphological study. In general, they have similar early events but vary considerably in regenerative outcome. (1) The infusion of caerulein is a well-established model for inducing experimental pancreatitis in rats and pancreatitis is followed by a great reparative capacity. Caerulein is a decapeptide with biological activity on gastrointestinal smooth muscle contraction and pancreatic and gastric secretion. (2) In 1-cyano-2-hydroxy-3-butene (CHB)-induced pancreatitis, acinar cell regeneration is limited to small islands of acini which fail to endure. CHB is known to induce cell death in pancreatic acini. (3) The model of partial pancreatic duct ligation leads to atrophy of the gland with little or no regeneration ensuing. Although some characteristics are known about these models of pancreatitis, there is a general lack of information on the association between pancreatic atrophy and inflammation and investigating this association was one of my overall aims. In addition, as well as investigating the three different models of pancreatitis in rats, I aimed to compare the same initiating event in other animals. Because of the selective nature of CHB pancreatotoxicity, and the ease of producing the model in rats, I sought to investigate this method in a mouse model. In addition, I sought to establish and characterise a canine CHB model. ii The pancreatic atrophy induced in the chosen models typically involved apoptosis of acinar cells and its removal by macrophages. In some situations, if acinar redifferentiation did not occur, development of fibrosis and scarring was a key to pancreatic repair. This atrophy took place in a coherent fashion with normal architectural relationships being maintained. Loss of the potentially dangerous enzyme- secreting cells by apoptosis led to regression of the underlying duct structure such that regeneration might occur should the circumstances change. This thesis has had a prolonged history because of part-time enrolment, through departure from the University of Queensland of my original Principal Advisor Dr Neal Walker, transfer of my Associate Advisor Dr Lyndell Kelly to Dunedin, New Zealand and necessary changes in my Advisory Team, an attempt to complete some of the research in New Zealand and the unfortunate death of the scientist I was working with, as well as my own personal and family issues. I am hoping to complete the project with my current re-enrolment. The hypothesis tested was that different models of pancreatitis can be used to describe the processes of atrophy and regeneration in the pancreas. The specific aims of this study were: 1. To investigate rat models of pancreatitis using caerulein, CHB and duct ligation; 2. To validate a pancreatitis model with CHB in the mouse; 3. To establish a canine model of pancreatitis with CHB; 4. To compare and contrast the models with respect to: Stellate cells and the production of fibrosis The role of mast cells and macrophages The role of survivin in pancreatic regeneration Summary of outcomes of this study Study of the three rat models of pancreatitis facilitated a comparison of markers and mechanisms within the lesion. All of the pathological processes studied, including fibrosis, stellate cells, mast cells and macrophages had specific roles in the different models that correlated with the initiation of pancreatitis, the deposition and degradation of fibrosis, and the ability of the pancreas to regenerate. Resorption of fibrosis may depend on the type of collagen deposited. Survivin appears to be maintaining conditions for the survival of cell populations. The models of CHB in mouse and dog were not suitable for the study of pancreatitis as the liver showed more severe damage at low doses than the pancreas iii DECLARATION BY AUTHOR This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, financial support and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my higher degree by research candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the policy and procedures of The University of Queensland, the thesis be made available for research and study in accordance with the Copyright Act 1968 unless a period of embargo has been approved by the Dean of the Graduate School. I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis and have sought permission from co-authors for any jointly authored works included in the thesis. iv ACKNOWLEDGEMENTS I acknowledge and thank those who have given me support throughout this long journey. Prof Neal Walker, now Envoi Pathology, Brisbane, introduced me to pancreatitis as supervisor for my Masters Qualifying thesis and was first supervisor for the PhD thesis. Prof Grant Ramm (QIMR-Berghofer Research Institute) supervised a comprehensive but ultimately unsuccessful and aborted search for the elusive pancreatic stem cell. Dr Leila Cuttle (then, UQ School of Medicine) taught me how to use the ImagePro Plus® image analysis software. Dr Richard Malik (Centre for Veterinary Education, University of Sydney) and Dr Melanie Latter (veterinary pathologist, formerly UQ School of Veterinary Science) provided veterinary proficiency. Dr Anne Marie McNicol (now retired, Reader in Pathology, Glasgow University) perused some of the earlier manuscript. Work colleagues from the past, Clay Winterford, Estelle Schoch and from the more recent past, the brilliant staff too numerous to mention, of the Lakhani Breast Cancer Research Group, are sincerely thanked. Debates and discussions about research and protocols, sharing of knowledge and general moral support, were invaluable. Dr Lyndell Kelly (School of Medicine, University of Otago, New Zealand) has been a friend and colleague extraordinaire and a PhD supervisor: The Three Musketeers, Lyndell, Lynne and Pancreas have planned projects, finished some, made the acquaintance of lots of laboratory animals and enjoyed mutual scientific discovery. I could not have done this without you. A/Prof Glenda Gobe (School of Biomedical Sciences, UQ Faculty of Medicine), I am forever grateful for your expertise, patience and good humour in helping me achieve the finished product. v PUBLICATIONS Peer-reviewed publications during candidature Reid L and Walker N. Acinar cell apoptosis and the origin of tubular complexes in caerulein- induced pancreatitis. Int. J. Exp. Pathol. 1999, 80, 205-215. Kelly LE, Reid L, Walker NI. Massive acinar cell apoptosis with secondary necrosis, origin of ducts in atrophic lobules and failure to regenerate in cyanohydroxybutene pancreatopathy in rats. Int. J. Exp. Pathol., 1999, 80, 217-226. Peer-reviewed published abstracts during candidature Kelly LE, Goodall AR, Reid L, Walker NI. The effect of the pancreatotoxin cyanohydroxybutene on pancreatic ductal and acinar carcinoma cell lines. In Proceedings of the 5th International Symposium on predictive Oncology and Therapy, Cancer Detection
Recommended publications
  • Pancreatic B-Cell Replacement: Advances in Protocols Used for Differentiation of Pancreatic Progenitors to B-Like Cells
    FOLIA HISTOCHEMICA REVIEW ET CYTOBIOLOGICA Vol. 57, No. 3, 2019 pp. 101–115 Pancreatic b-cell replacement: advances in protocols used for differentiation of pancreatic progenitors to b-like cells Muhammad Waseem Ghani1, Li Ye1, Zhao Yi1, Hammad Ghani2, Muhammad Waseem Birmani1, Aamir Nawab1, Lang Guan Cun1, Liu Bin1, Xiao Mei1 1Department of Livestock Production and Management, Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China 2Nawaz Sharif Medical College University of Gujrat, Punjab, Pakistan Abstract Insulin-producing cells derived from in vitro differentiation of stem cells and non-stem cells by using different factors can spare the need for genetic manipulation and provide a cure for diabetes. In this context, pancreatic progenitors differentiating to b-like cells garner increasing attention as b-cell replacement source. This kind of cell therapy has the potential to cure diabetes, but is still on its way of being clinically useful. The primary restriction for in vitro production of mature and functional b-cells is developing a physiologically relevant in vitro culture system which can mimic in vivo pathways of islet development. In order to achieve this target, different approaches have been attempted for the differentiation of pancreatic stem/progenitor cells to b-like cells. Here, we will review some of the state-of-the-art protocols for the differentiation of pancreatic progenitors and differentiated pancreatic cells into b-like cells with a focus on pancreatic duct cells. (Folia Histochemica et Cytobiologica
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Interaction of Stellate Cells with Pancreatic Carcinoma Cells
    Cancers 2010, 2, 1661-1682; doi:10.3390/cancers2031661 OPEN ACCESS cancers ISSN 2072-6694 www.mdpi.com/journal/cancers Review Interaction of Stellate Cells with Pancreatic Carcinoma Cells Hansjörg Habisch 1, Shaoxia Zhou 1, Marco Siech 2 and Max G. Bachem 1,* 1 Department Clinical Chemistry and Central Laboratory, University of Ulm, Germany; E-Mails: [email protected] (H.H); [email protected] (S.Z.) 2 Department of surgery, Ostalbklinikum Aalen, Germany; E-Mail: [email protected] (M.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-731-500-67500/01; Fax: +49-731-500-67506. Received: 28 July 2010; in revised form: 2 September 2010 / Accepted: 2 September 2010 / Published: 9 September 2010 Abstract: Pancreatic cancer is characterized by its late detection, aggressive growth, intense infiltration into adjacent tissue, early metastasis, resistance to chemo- and radiotherapy and a strong ―desmoplastic reaction‖. The dense stroma surrounding carcinoma cells is composed of fibroblasts, activated stellate cells (myofibroblast-like cells), various inflammatory cells, proliferating vascular structures, collagens and fibronectin. In particular the cellular components of the stroma produce the tumor microenvironment, which plays a critical role in tumor growth, invasion, spreading, metastasis, angiogenesis, inhibition of anoikis, and chemoresistance. Fibroblasts, myofibroblasts and activated stellate cells produce the extracellular matrix components and are thought to interact actively with tumor cells, thereby promoting cancer progression. In this review, we discuss our current understanding of the role of pancreatic stellate cells (PSC) in the desmoplastic response of pancreas cancer and the effects of PSC on tumor progression, metastasis and drug resistance.
    [Show full text]
  • Normal Pancreatic Function 1. What Are the Functions of the Pancreas?
    Normal Pancreatic Function Stephen J. Pandol Cedars-Sinai Medical Center and Department of Veterans Affairs Los Angeles, California USA [email protected] Version 1.0, June 13, 2015 [DOI: 10.3998/panc.2015.17] 1. What are the functions of the This chapter presents processes underlying the functions of the exocrine pancreas with pancreas? references to how specific abnormalities of the The pancreas has both exocrine and endocrine pancreas can lead to disease states. function. This chapter is devoted to the exocrine functions of the pancreas. The exocrine function 2. Where is the pancreas located? is devoted to secretion of digestive enzymes, ions and water into the intestine of the gastrointestinal The illustration in Figure 1 demonstrates the (GI) tract. The digestive enzymes are necessary anatomical relationships between the pancreas for converting a meal into molecules that can be and organs surrounding it in the abdomen. The absorbed across the surface lining of the GI tract regions of the pancreas are the head, body, tail into the body. Of note, there are digestive and uncinate process (Figure 2). The distal end enzymes secreted by our salivary glands, of the common bile duct passes through the head stomach and surface epithelium of the GI tract of the pancreas and joins the pancreatic duct as it that also contribute to digestion of a meal. enters the intestine (Figure 2). Because the bile However, the exocrine pancreas is necessary for duct passes through the pancreas before entering most of the digestion of a meal and without it the intestine, diseases of the pancreas such as a there is a substantial loss of digestion that results cancer at the head of the pancreas or swelling in malnutrition.
    [Show full text]
  • Índice De Denominacións Españolas
    VOCABULARIO Índice de denominacións españolas 255 VOCABULARIO 256 VOCABULARIO agente tensioactivo pulmonar, 2441 A agranulocito, 32 abaxial, 3 agujero aórtico, 1317 abertura pupilar, 6 agujero de la vena cava, 1178 abierto de atrás, 4 agujero dental inferior, 1179 abierto de delante, 5 agujero magno, 1182 ablación, 1717 agujero mandibular, 1179 abomaso, 7 agujero mentoniano, 1180 acetábulo, 10 agujero obturado, 1181 ácido biliar, 11 agujero occipital, 1182 ácido desoxirribonucleico, 12 agujero oval, 1183 ácido desoxirribonucleico agujero sacro, 1184 nucleosómico, 28 agujero vertebral, 1185 ácido nucleico, 13 aire, 1560 ácido ribonucleico, 14 ala, 1 ácido ribonucleico mensajero, 167 ala de la nariz, 2 ácido ribonucleico ribosómico, 168 alantoamnios, 33 acino hepático, 15 alantoides, 34 acorne, 16 albardado, 35 acostarse, 850 albugínea, 2574 acromático, 17 aldosterona, 36 acromatina, 18 almohadilla, 38 acromion, 19 almohadilla carpiana, 39 acrosoma, 20 almohadilla córnea, 40 ACTH, 1335 almohadilla dental, 41 actina, 21 almohadilla dentaria, 41 actina F, 22 almohadilla digital, 42 actina G, 23 almohadilla metacarpiana, 43 actitud, 24 almohadilla metatarsiana, 44 acueducto cerebral, 25 almohadilla tarsiana, 45 acueducto de Silvio, 25 alocórtex, 46 acueducto mesencefálico, 25 alto de cola, 2260 adamantoblasto, 59 altura a la punta de la espalda, 56 adenohipófisis, 26 altura anterior de la espalda, 56 ADH, 1336 altura del esternón, 47 adipocito, 27 altura del pecho, 48 ADN, 12 altura del tórax, 48 ADN nucleosómico, 28 alunarado, 49 ADNn, 28
    [Show full text]
  • University of Southampton Research Repository Eprints Soton
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON REGULATION OF THE SYNTHESIS OF TISSUE INHIBITORS OF METALLOPROTEINASE-1 AND –2 BY HEPATIC AND PANCREATIC STELLATE CELLS Dr Peter Raymond McCrudden B.Sc.(Hons) MBBS FRCP Submitted for the degree of MD Faculty of Medicine, Health and Biological Sciences June 2010 For Ute, Nicolas, Katia and India 2 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF MEDICINE, HEALTH AND LIFE SCIENCES (MHLS) SCHOOL OF MEDICINE DIVISION OF INFECTION, INFLAMMATION AND IMMUNITY Doctor of Medicine REGULATION OF THE SYNTHESIS OF TISSUE INHIBITORS OF METALLOPROTEINASE-1 AND –2 BY HEPATIC AND PANCREATIC STELLATE By Dr Peter Raymond McCrudden Hepatic stellate cells (HSC) play a central role in fibrosis development by production of extracellular matrix and also by secretion of matrix metalloproteinases (MMPs) and Tissue inhibitors of metalloproteinases (TIMPs) including TIMP-2 and MMP-2.
    [Show full text]
  • Extensive Pancreas Regeneration Following Acinar-Specific
    GASTROENTEROLOGY 2011;141:1463–1472 Extensive Pancreas Regeneration Following Acinar-Specific Disruption of Xbp1 in Mice DAVID A. HESS,* SEAN E. HUMPHREY,* JEFF ISHIBASHI,* BARBARA DAMSZ,* ANN–HWEE LEE,‡ LAURIE H. GLIMCHER,‡ and STEPHEN F. KONIECZNY* *Department of Biological Sciences and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana; and ‡Department of Immunology and Infectious Diseases, Harvard School of Public Health, and Department of Medicine, Harvard Medical School, Boston, Massachusetts and survival of acinar cells is the management of their See editorial on page 1155. extensive protein synthesis/processing machinery, which uses regulatory pathways involving the Golgi, intermediate BACKGROUND & AIMS: Progression of diseases of the transport vesicles, plasma membrane components, and the exocrine pancreas, which include pancreatitis and cancer, is endoplasmic reticulum (ER). Among these organelles, the associated with increased levels of cell stress. Pancreatic aci- ER ensures that newly synthesized secretory and transmem- nar cells are involved in development of these diseases and, brane proteins are properly folded and modified before ex- because of their high level of protein output, they require an portation. In cells with high protein synthesis demands,2,3 efficient, unfolded protein response (UPR) that mediates with specific differentiation requirements,2,4,5 or that are recovery from endoplasmic reticulum (ER) stress following subject to environmental or physiologic alterations, the abil- the accumulation of misfolded proteins. METHODS: To ity of the protein-folding machinery to handle the synthetic study recovery from ER stress in the exocrine organ, we load can reach an imbalance, setting in motion a series of generated mice with conditional disruption of Xbp1 (a prin- intracellular signaling pathways collectively known as the cipal component of the UPR) in most adult pancreatic aci- unfolded protein response (UPR).6–8 Activation of the UPR nar cells (Xbp1fl/fl).
    [Show full text]
  • HISTOLOGY & CELL BIOLOGY Mr. BABATUNDE, D.E DIGESTIVE
    HISTOLOGY & CELL BIOLOGY Mr. BABATUNDE, D.E DIGESTIVE GLANDS I EXTRINSIC GLANDS ❖ Of the digestive system are located outside the wall of the alimentary canal and deliver their secretion into the lumen via a system of ducts. ❖ Provide enzymes, buffers, emulsifiers, and lubricants for the digestive tract, as well as hormones, proteins, globulins, and numerous additional products for the remainder of the body. ❖ Are the salivary glands (parotid, sublingual, and submandibular), the pancreas, and the liver. MAJOR SALIVARY GLANDS Parotid Gland Classification ❖ Purely serous, compound, tubuloalveolar gland. Capsule ❖ Formed by the continuation of the superficial cervical fascia, is mostly collagenous in nature. ❖ Forms broad bands of trabeculae (septa) that subdivide the gland into lobes and lobules. Trabeculae ❖ Convey blood and lymph vessels, ducts, and nerves into the substance of the gland. ❖ Often contain fat cells in older individuals. Acini ❖ Although are said to be composed of purely serous cells, they are actually seromucous in character. ❖ Are surrounded by myoepithelial cells. ❖ Their center contains the lumen. Parotid gland : only contains serous secretory units Figure 16—2. Photomicrograph of a parotid gland. Its secretory portion consists of serous amylase—producing cells that store this enzyme in secretory granules. Intralobular (intercalated and striated) ducts are also present. Pararosaniline— toluidine blue (PT) stain. Medium magnification. Acinar Cells ❖ Pyramidal cells, whose apical aspects usually contain secretory granules. ❖ Nucleus is round and basally located. ❖ Cytoplasm contains extensive rough endoplasmic reticulum, a well-developed Golgi apparatus, and numerous mitochondria. Myoepithelial Cells ❖ Are stellate shaped. ❖ Their cytoplasm is difficult to discern with the light microscope. ❖ Electron micrographs demonstrate that they resemble smooth muscle cells and are contractile.
    [Show full text]
  • Centroacinar Cells Are Progenitors That Contribute to Endocrine Pancreas
    Page 1 of 50 Diabetes Centroacinar cells are progenitors that contribute to endocrine pancreas regeneration. Fabien Delaspre*1, Rebecca L. Beer*1, Meritxell Rovira2, Wei Huang1, Guangliang Wang1, Stephen Gee1, Maria del Carmen Vitery1, Sarah J. Wheelan1, 3, and Michael J. Parsons1, 4† 1 McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD 2 Genomic Programming of Beta-Cells Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain 3 Department of Oncology, Johns Hopkins University, Baltimore, MD 4 Department of Surgery, Johns Hopkins University, Baltimore, MD * Authors contributed equally to this work † Corresponding author [email protected] Short title: CACs are β-cell progenitors Correspondence: Michael J. Parsons, Johns Hopkins University School of Medicine, 733 N. Broadway, MRB 467, Baltimore, MD 21205; [email protected] 3,994 words, 7 Figures 1 Diabetes Publish Ahead of Print, published online July 7, 2015 Diabetes Page 2 of 50 Abstract Diabetes is associated with a paucity of insulin-producing β cells. With the goal of finding therapeutic routes to treat diabetes, we aim to find molecular and cellular mechanisms involved in β-cell neogenesis and regeneration. To facilitate discovery of such mechanisms we utilize a vertebrate organism where pancreatic cells readily regenerate. The larval zebrafish pancreas contains Notch-responsive progenitors that during development give rise to adult ductal, endocrine, and centroacinar cells (CACs). Adult CACs are also Notch-responsive and are morphologically similar to their larval predecessors. To test our hypothesis that adult CACs are also progenitors we took two complementary approaches: 1) we established the transcriptome for adult CACs.
    [Show full text]
  • Single-Cell Resolution Analysis of the Human Pancreatic Ductal Progenitor Cell Niche
    Single-cell resolution analysis of the human pancreatic ductal progenitor cell niche Mirza Muhammad Fahd Qadira,b,1, Silvia Álvarez-Cubelaa,1, Dagmar Kleina, Jasmijn van Dijkc, Rocío Muñiz-Anquelad, Yaisa B. Moreno-Hernándeza,e, Giacomo Lanzonia, Saad Sadiqf, Belén Navarro-Rubioa,e, Michael T. Garcíaa, Ángela Díaza, Kevin Johnsona, David Santg, Camillo Ricordia,h,i,j,k, Anthony Griswoldl, Ricardo Luis Pastoria,l,2, and Juan Domínguez-Bendalaa,b,h,2 aDiabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136; bDepartment of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136; cInstituut voor Life Science & Technology, Hanze University of Applied Sciences, 9747 AS Groningen, The Netherlands; dVrije Universiteit Medisch Centrum School of Medical Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; eFacultad de Medicina, Universidad Francisco de Vitoria, 28223 Madrid, Spain; fDepartment of Electrical and Computer Engineering, University of Miami, Coral Gables, FL 33146; gDepartment of Biomedical Informatics, University of Utah, Salt Lake City, UT 84108; hDepartment of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136; iDepartment of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL 33136; jDepartment of Biomedical Engineering, University of Miami Miller School of Medicine, Miami, FL 33136; kDepartment of Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Miami Miller
    [Show full text]
  • Lineage Tracing Reveals the Dynamic Contribution of Hes1+ Cells to the Developing and Adult Pancreas Daniel Kopinke1, Marisa Brailsford1, Jill E
    DEVELOPMENT AND STEM CELLS RESEARCH ARTICLE 431 Development 138, 431-441 (2011) doi:10.1242/dev.053843 © 2011. Published by The Company of Biologists Ltd Lineage tracing reveals the dynamic contribution of Hes1+ cells to the developing and adult pancreas Daniel Kopinke1, Marisa Brailsford1, Jill E. Shea2, Rebecca Leavitt1, Courtney L. Scaife2 and L. Charles Murtaugh1,* SUMMARY Notch signaling regulates numerous developmental processes, often acting either to promote one cell fate over another or else to inhibit differentiation altogether. In the embryonic pancreas, Notch and its target gene Hes1 are thought to inhibit endocrine and exocrine specification. Although differentiated cells appear to downregulate Hes1, it is unknown whether Hes1 expression marks multipotent progenitors, or else lineage-restricted precursors. Moreover, although rare cells of the adult pancreas express Hes1, it is unknown whether these represent a specialized progenitor-like population. To address these issues, we developed a mouse Hes1CreERT2 knock-in allele to inducibly mark Hes1+ cells and their descendants. We find that Hes1 expression in the early embryonic pancreas identifies multipotent, Notch-responsive progenitors, differentiation of which is blocked by activated Notch. In later embryogenesis, Hes1 marks exocrine-restricted progenitors, in which activated Notch promotes ductal differentiation. In the adult pancreas, Hes1 expression persists in rare differentiated cells, particularly terminal duct or centroacinar cells. Although we find that Hes1+ cells in the resting or injured pancreas do not behave as adult stem cells for insulin-producing beta ()-cells, Hes1 expression does identify stem cells throughout the small and large intestine. Together, these studies clarify the roles of Notch and Hes1 in the developing and adult pancreas, and open new avenues to study Notch signaling in this and other tissues.
    [Show full text]