Normal Pancreatic Function 1. What Are the Functions of the Pancreas?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cholecystokinin Expression in the Developing and Regenerating Pancreas and Intestine
233 Cholecystokinin expression in the developing and regenerating pancreas and intestine G Liu, S V Pakala, D Gu, T Krahl, L Mocnik and N Sarvetnick Department of Immunology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA (Requests for offprints should be addressed to N Sarvetnick; Email: [email protected]) Abstract In developmental terms, the endocrine system of neither NOD mice continued this pattern. By contrast, in IFN- the gut nor the pancreatic islets has been characterized transgenic mice, CCK expression was suppressed from fully. Little is known about the involvement of cholecysto- birth to 3 months of age in the pancreata but not intestines. kinin (CCK), a gut hormone, involved in regulating the However, by 5 months of age, CCK expression appeared secretion of pancreatic hormones, and pancreatic growth. in the regenerating pancreatic ductal region of IFN- Here, we tracked CCK-expressing cells in the intestines transgenic mice. In the intestine, CCK expression per- and pancreata of normal mice (BALB/c), Non Obese sisted from fetus to adulthood and was not influenced Diabetic (NOD) mice and interferon (IFN)- transgenic by IFN-. Intestinal cells expressing CCK did not mice, which exhibit pancreatic regeneration, during em- co-express glucagon, suggesting that these cells are bryonic development, the postnatal period and adulthood. phenotypically distinct from CCK-expressing cells in We also questioned whether IFN- influences the expres- the pancreatic islets, and the effect of IFN- on sion of CCK. The results from embryonic day 16 showed CCK varies depending upon the cytokine’s specific that all three strains had CCK in the acinar region of microenvironment. -
Mouth Esophagus Stomach Rectum and Anus Large Intestine Small
1 Liver The liver produces bile, which aids in digestion of fats through a dissolving process known as emulsification. In this process, bile secreted into the small intestine 4 combines with large drops of liquid fat to form Healthy tiny molecular-sized spheres. Within these spheres (micelles), pancreatic enzymes can break down fat (triglycerides) into free fatty acids. Pancreas Digestion The pancreas not only regulates blood glucose 2 levels through production of insulin, but it also manufactures enzymes necessary to break complex The digestive system consists of a long tube (alimen- 5 carbohydrates down into simple sugars (sucrases), tary canal) that varies in shape and purpose as it winds proteins into individual amino acids (proteases), and its way through the body from the mouth to the anus fats into free fatty acids (lipase). These enzymes are (see diagram). The size and shape of the digestive tract secreted into the small intestine. varies in each individual (e.g., age, size, gender, and disease state). The upper part of the GI tract includes the mouth, throat (pharynx), esophagus, and stomach. The lower Gallbladder part includes the small intestine, large intestine, The gallbladder stores bile produced in the liver appendix, and rectum. While not part of the alimentary 6 and releases it into the duodenum in varying canal, the liver, pancreas, and gallbladder are all organs concentrations. that are vital to healthy digestion. 3 Small Intestine Mouth Within the small intestine, millions of tiny finger-like When food enters the mouth, chewing breaks it 4 protrusions called villi, which are covered in hair-like down and mixes it with saliva, thus beginning the first 5 protrusions called microvilli, aid in absorption of of many steps in the digestive process. -
Papilla with Separate Bile and Pancreatic Duct Orifices
JOP. J Pancreas (Online) 2013 May 10; 14(3):302-303. MULTIMEDIA ARTICLE – Clinical Imaging Papilla with Separate Bile and Pancreatic Duct Orifices Surinder Singh Rana, Deepak Kumar Bhasin Department of Gastroenterology, Post Graduate Institute of Medical Education and Research (PGIMER). Chandigarh, India A 32-year-old male, a known case of alcohol related Conflict of interest The authors have no potential chronic non calcific pancreatitis, was referred to us for conflicts of interest pancreatic endotherapy for relief of intractable abdominal pain. The cross sectional imaging studies References had revealed an irregularly dilated main pancreatic duct. The examination of the major duodenal papilla 1. Silvis SE, Vennes JA, Dreyer M. Variation in the normal duodenal papilla. Gastrointest Endosc 1983; 29:132-133 [PMID; revealed the presence of two separate orifices at 6852473] endoscopic retrograde cholangiopancreatography (ERCP) (Image). The cranial orifice was located at 11- 12 clock position whereas the caudal orifice was located at 4-5 clock position. The caudal orifice was selectively cannulated and the injection of the contrast revealed presence of an irregularly dilated main pancreatic duct. The cannula and the guide wire introduced through the caudal orifice selectively entered the pancreatic duct and did not come out through the cranial orifice. During ERCP, bile could be seen coming out of the cranial orifice, confirming it to be the orifice of common bile duct. Following selective cannulation of the main pancreatic duct, a 5-Fr stent was placed into the pancreatic duct. Following this, the patient had complete pain relief and is planned for further sessions of pancreatic endotherapy along with pancreatic sphincterotomy. -
Pancreatic B-Cell Replacement: Advances in Protocols Used for Differentiation of Pancreatic Progenitors to B-Like Cells
FOLIA HISTOCHEMICA REVIEW ET CYTOBIOLOGICA Vol. 57, No. 3, 2019 pp. 101–115 Pancreatic b-cell replacement: advances in protocols used for differentiation of pancreatic progenitors to b-like cells Muhammad Waseem Ghani1, Li Ye1, Zhao Yi1, Hammad Ghani2, Muhammad Waseem Birmani1, Aamir Nawab1, Lang Guan Cun1, Liu Bin1, Xiao Mei1 1Department of Livestock Production and Management, Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, China 2Nawaz Sharif Medical College University of Gujrat, Punjab, Pakistan Abstract Insulin-producing cells derived from in vitro differentiation of stem cells and non-stem cells by using different factors can spare the need for genetic manipulation and provide a cure for diabetes. In this context, pancreatic progenitors differentiating to b-like cells garner increasing attention as b-cell replacement source. This kind of cell therapy has the potential to cure diabetes, but is still on its way of being clinically useful. The primary restriction for in vitro production of mature and functional b-cells is developing a physiologically relevant in vitro culture system which can mimic in vivo pathways of islet development. In order to achieve this target, different approaches have been attempted for the differentiation of pancreatic stem/progenitor cells to b-like cells. Here, we will review some of the state-of-the-art protocols for the differentiation of pancreatic progenitors and differentiated pancreatic cells into b-like cells with a focus on pancreatic duct cells. (Folia Histochemica et Cytobiologica -
Pancreatic Cancer
A Patient’s Guide to Pancreatic Cancer COMPREHENSIVE CANCER CENTER Staff of the Comprehensive Cancer Center’s Multidisciplinary Pancreatic Cancer Program provided information for this handbook GI Oncology Program, Patient Education Program, Gastrointestinal Surgery Department, Medical Oncology, Radiation Oncology and Surgical Oncology Digestive System Anatomy Esophagus Liver Stomach Gallbladder Duodenum Colon Pancreas (behind the stomach) Anatomy of the Pancreas Celiac Plexus Pancreatic Duct Common Bile Duct Sphincter of Oddi Head Body Tail Pancreas ii A Patient’s Guide to Pancreatic Cancer ©2012 University of Michigan Comprehensive Cancer Center Table of Contents I. Overview of pancreatic cancer A. Where is the pancreas located?. 1 B. What does the pancreas do? . 2 C. What is cancer and how does it affect the pancreas? .....................2 D. How common is pancreatic cancer and who is at risk?. .3 E. Is pancreatic cancer hereditary? .....................................3 F. What are the symptoms of pancreatic cancer? ..........................4 G. How is pancreatic cancer diagnosed?. 7 H. What are the types of cancer found in the pancreas? .....................9 II. Treatment A. Treatment of Pancreatic Cancer. 11 1. What are the treatment options?. 11 2. How does a patient decide on treatment? ..........................12 3. What factors affect prognosis and recovery?. .12 D. Surgery. 13 1. When is surgery a treatment?. 13 2. What other procedures are done?. .16 E. Radiation therapy . 19 1. What is radiation therapy? ......................................19 2. When is radiation therapy given?. 19 3. What happens at my first appointment? . 20 F. Chemotherapy ..................................................21 1. What is chemotherapy? ........................................21 2. How does chemotherapy work? ..................................21 3. When is chemotherapy given? ...................................21 G. -
Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal. -
Primary Outgrowth Cultures Are a Reliable Source of Human Pancreatic
Laboratory Investigation (2015) 95, 1331–1340 © 2015 USCAP, Inc All rights reserved 0023-6837/15 Primary outgrowth cultures are a reliable source of human pancreatic stellate cells Song Han1,4, Daniel Delitto1,4, Dongyu Zhang1, Heather L Sorenson2, George A Sarosi1,3, Ryan M Thomas1,3, Kevin E Behrns1, Shannon M Wallet2, Jose G Trevino1 and Steven J Hughes1 Recent advances demonstrate a critical yet poorly understood role for the pancreatic stellate cell (PSC) in the pathogenesis of chronic pancreatitis (CP) and pancreatic cancer (PC). Progress in this area has been hampered by the availability, fidelity, and/or reliability of in vitro models of PSCs. We examined whether outgrowth cultures from human surgical specimens exhibited reproducible phenotypic and functional characteristics of PSCs. PSCs were cultured from surgical specimens of healthy pancreas, CP and PC. Growth dynamics, phenotypic characteristics, soluble mediator secretion profiles and co-culture with PC cells both in vitro and in vivo were assessed. Forty-seven primary cultures were established from 52 attempts, demonstrating universal α-smooth muscle actin and glial fibrillary acidic protein but negligible epithelial surface antigen expression. Modification of culture conditions consistently led to cytoplasmic lipid accumulation, suggesting induction of a quiescent phenotype. Secretion of growth factors, chemokines and cytokines did not significantly differ between donor pathologies, but did evolve over time in culture. Co-culture of PSCs with established PC cell lines resulted in significant changes in levels of multiple secreted mediators. Primary PSCs co-inoculated with PC cells in a xenograft model led to augmented tumor growth and metastasis. Therefore, regardless of donor pathology, outgrowth cultures produce PSCs that demonstrate consistent growth and protein secretion properties. -
Study Guide Medical Terminology by Thea Liza Batan About the Author
Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails proficiencyincommunicatingwithhealthcareprofessionalssuchasphysicians,nurses, or dentists. -
And Pancreas Divisum
Gut: first published as 10.1136/gut.27.2.203 on 1 February 1986. Downloaded from Gut 1986, 27, 203-212 Progress report A historical perspective on the discovery of the accessory duct of the pancreas, the ampulla 'of Vater' andpancreas divisum SUMMARY The discovery of the accessory duct of the pancreas is usually ascribed to Giovanni Domenico Santorini (1681-1737), after whom this structure is named. The papilla duodeni (ampulla 'of Vater', or papilla 'of Santorini') is named after Abraham Vater (1684-1751) or after GD Santorini. Pancreas divisum, a persistence through non-fusion of the embryonic dorsal and ventral pancreas is a relatively common clinical condition, the discovery of which is usually ascribed to Joseph Hyrtl (1810-1894). In this review I report that pancreas divisum, the accessory duct and the papilla duodeni (ampulla 'of Vater') had all been observed and the observations published during the 17th century by at least seven anatomists before Santorini, Vater, and Hyrtl. I further suggest, in the light of frequent anatomical misattributions in common usage, that anatomical structures be referred to only by their proper anatomical names. The human pancreas forms during the seventh week of embryonic http://gut.bmj.com/ development by the fusion of two pancreatic primordia, one dorsal and the other ventral.1 4Each of these two primordia contains a duct, opening into the duodenum. After fusion, the distal part of the main duct of the pancreas ('Wirsung's duct') is formed from the duct of the ventral pancreas, and its proximal part from the proximal portion of the duct of the dorsal primordium. -
Fact Sheet - Symptoms of Pancreatic Cancer
Fact Sheet - Symptoms of Pancreatic Cancer Diagnosis Pancreatic cancer is often difficult to diagnose, because the pancreas lies deep in the abdomen, behind the stomach, so tumors are not felt during a physical exam. Pancreatic cancer is often called the “silent” cancer because the tumor can grow for many years before it causes pressure, pain, or other signs of illness. When symptoms do appear, they can vary depending on the size of the tumor and where it is located on the pancreas. For these reasons, the symptoms of pancreatic cancer are seldom recognized until the cancer has progressed to an advanced stage and often spread to other areas of the body. General Symptoms Pain The first symptom of pancreatic cancer is often pain, because the tumors invade nerve clusters. Pain can be felt in the stomach area and/or in the back. The pain is generally worse after eating and when lying down, and is sometimes relieved by bending forward. Pain is more common in cancers of the body and tail of the pancreas. The abdomen may also be generally tender or painful if the liver, pancreas or gall bladder are inflamed or enlarged. It is important to keep in mind that there are many other causes of abdominal and back pain! Jaundice More than half of pancreatic cancer sufferers have jaundice, a yellowing of the skin and whites of the eyes. Jaundice is caused by a build-up bilirubin, a substance which is made in the liver and a component of bile. Bilirubin contains a lot of yellow pigment, and gives bile it’s color. -
Endocrine Pancreatic Tumors: Ultrastructure
ANNALS OF CLINICAL AND LABORATORY SCIENCE, Vol. 10, No. 1 Copyright© 1980, Institute for Clinical Science, Inc. Endocrine Pancreatic Tumors: Ultrastructure MERY KOSTIANOVSKY, M.D. Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107 ABSTRACT Endocrine pancreatic tumors are frequently multicellular and produce several hormones and peptides. A review of the basic concepts of hormone secretion, pancreatic islet cell composition and ultrastructural make-up of tumors is presented. The importance of correlating ultrastructural, immuno- cytochemical and biochemical studies of these tumors is emphasized. Introduction Morphofunctional Aspects of Pancreatic Islets During the last few years a great amount of information was accumulated regarding At the present time four different types the mechanisms of synthesis, storage and of cells have been described in the pan release of hormones.14,28,31 The use of ex creatic islets,17,33 each having a specific perimental in vitro m odels21,25,26,28 was secretory product (table I). A variety of very helpful in clarifying the participation other cells possibly exists, although of different organelles in the biosynthesis, further identification is awaited. By light cellular “packaging” and emyocytosis of microscopy, it is not possible to distin the secretory products. In a review, Lacy31 guish one type of cell from the other. has proposed a working model for hor Histochemical procedures are of help, mone secretion, describing the sim however, and B cells are easily stained ilarities between different endocrine with aldehyde fuchsin. The dicferent pro glands. Some of this information was ob cedures and empiric nature oi the silver tained through the studies of endocrine stain22 added confusion in the nomen pancreatic tumors as in the case of the clature of the cells (as seen in table I) discovery of pro-insulin in a beta cell where the same cell has been described adenoma.62 The purpose of this paper is to by different names. -
Nomina Histologica Veterinaria, First Edition
NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.