ED300212.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

ED300212.Pdf DOCUMENT RESUME ED 300 212 SE 049 707 AUTHOR Borgford, Christie L.; Summerlin, Lee R. TITLE Chemical Activities. Teacher Edition. INSTITUTION American Chemical Society, Washington, D.C. REPORT NO ISBN-0-8412-1416-6 PUB DATE 88 NOTE 329p.; Drawings may not reproduce well. AVAILABLE FROMAmerican Chemical Society, 1155 Sixteenth Street, NW, Washington, LC 20036 ($19.95). PUB TYPE Guides - Classroom Use - Guides (For Teachers) (052) FDRS PRICE MF01 Plus Postage. PC Nct Available from EDRS. DESCRIPTORS Chemical Reactions; Chemistry; *Demonstrations (Educational); *Educational Experiments; *Experiments; High Schools; Instructional Materials; Investigations; Junior High Schools; *Laboratories; *Laboratory Procedures; Middle Schools; Science Activities; Science Education; Science Instruction; Science Teachers; Secondary Education; *Secondary School Science IDENTIFIERS *ChemCom ABSTRACT This sourcebook for chemical activities is designed to be used as a student laboratory book for both junior and senior high school students. The student's role as-a knowledgeable consumer and informed citizen is stressed. Each activity includes a list of needed materials, procedures, reactions, questions, and notes for the teacher which include background information, teaching tips, and answers to the questions. General areas of consideration include chemistry of matter, chemistry of atoms and molecules, chemical reactions, chemical energy and rates of reaction, chemistry around the house, chemistry and the environment, biochemistry, chemistry of living things, chemistry of foods, chemical detectives, tools and techniques of the chemist, and kitchen chemistry. Included is a cross reference of activities by chemical topics, laboratory skills and by major topics of "Chemistry in the Community" (ChemCom). Also included is a listing of useful resources with addresses as well as several charts of chemistry information. (ML) ********************* ***** ********************************************* * Reproductions supplied by EDRS are the best that can be made * * from the original document. * *********************************************************************** Always Be Careful in the Laboratory Follow these rules: 1.Be sure the science teacher is present in the laboratory when you work. 2.Wear goggles at all times when you are in the laboratory. Do not wear contact lenses because there isalways a danger of volatile or corrosive material dissolving inthe lenses or getting beneath them. 3.Read each activity carefully before starting work to become familiar with the experimental procedure and safety precautions. 4.Keep loose clothing and long hair out of the way when you are working. Tie back long hair and remove coats. Do not wear open-toed shoes or sandals in the laboratory. 5.Wash your hands thoroughly after you work in a science laboratory. 6.Do not eat, drink, chew gum, or apply cosmetics in the science laboratory. Do not taste anything. 7.Reach around, not over, a flame. Turn off burners that are not in use. 8.Handle hot glassware with tongs, test tube holders, or potholders as directed in the procedure. Rememberthat hot glass looks like cold glass. 9.Extinguish all burner flames before using flammable materials, such as alcohol. 10. When heating a test tube, hold it at an angle and move itthrough the flame; point the mouth of the test tube away from others and from yourself. 11. When instructed to test for the odor of asubstance, follow the instructions in the procedure. Hold the container away from you and fan a small amount of the vapor toward you with your hand. 12. Know the location of all emergency equipment (e.g.,fire extin- guishers, eye washes, and fire blankets) in the laboratory and be sure that you know how to use it. 13.Note carefully the method of disposal of chemicals in each activity and follow directions given by your teacher. Never put solid chemicals, solo Lions, or liquids in the sink unless directed to do so. 14.Perform only those procedures directed by your teacher. Use only the recommended amounts of chemicals and no more. 15.Always keep your work area neat and uncluttered. Keep mate- rials away from the edge of the laboratory bench. 3 Chemical Activities Teacher Edition Christie L. Borgford Qregon Episcopal School Lee R. Summerlin University of Alabama at Birmingham AMERICAN CHEMICAL SOCIETY WASHINGTON, DC 1988 Library of Congress Cataloging-in-Publication Data Borgford, Christie L., 1943- Chemical activities: Teacher edition/Christie L. Borgford, Lee R. Summerlin. p. cm. Bibliography: p. Includes indexes. ISBN 0-8412-1416-6 (Teacher ed.) ISBN 0-8412-1417-4 (Student ed.) 1. ChemistryExperiments. I. Summerlin, Lee R. IL Title. QD43.B63 1988 540'.78dc19 87-28992 CIP Karen L McCeney: Copy editing Paula M. Berard: Production and indexing Janet S. Dodd: Managing edit°, Carla L. Clemens: Cover design and section openingpages Dana Borgford: Illustrations in text Typesetting: Hot Type Ltd., Washington, DC Typeface: Melior Printing: Mack Printing Company, Easton, PA Binding: Nicholstone Book Bindery, Nashville, TN Copyright1988 American Chemical Society All Rights Reserved. Reprographic copies of individual activities may be made for personal or internal use or for the personal or internal use of specific clients. This consent does not extend to copying or transmission by any meansgraphic or electronicfor any other purpose, such as for general distribution, for advertising or promotional purposes, for creating a new collective work, for resale, or for information storage and retrieval systems. The citation of trade names and/or names of manufacturers in this publication is not to be construed as an endorsement or as approval by ACS of the commercial products or services referenced herein; nor s could the mere reference herein to any drawing, specification, chemical process, or other data be regarded as a license or as a conveyance of any right or permission, to the holder, reader, or any other person or corporation, to manufacture, reproduce, use, or sell any patented invention or copyrighted work that may in any way be related thereto. Registered names, trademarks, etc., used in this publication, even without specific indication 0.a-eof, are not to be considered unprotected by law. PRINTED IN THE UNITED STATES OF AMERICA About the Authors Li B,: C la \ Si P S t 17 K As Se Pt lb `SI) 're I :s P- -7 : v., Po At r AI& Lb ry CHRISTIEL.BORGFORD (right) received her B.S. from the University of Washington and her master's degree from the University of Alabama at Birmingham. She taught chemistry in Washington, MO, and is now chair of the Science Department at Oregon Episcopal School in Portland, OR Throughout her teaching career, she has emphasized the experimental approach to chemistry andhasdeveloped and used demonstrations and activities for junior high school students, chemistry students, and chemistry teacher education programs around the country. In addition to the many workshops and courses that she has organized and conducted for science teachers in the Northwest, she was codirector of the Chemical Demonstrations Program for the Institute for Chemical Education (I.C.E.) program at the University of California Berkeley in 1985 and was director of the laboratory program in 1986 and 1987. She serves as a consultant to several firms and organizations and has published articles and books on chemistry and chemical education, including a laboratory manual for the Berkeley I.C.E. program. She is coauthor of Chemical Demonstrations: A Sourcebook for Teachers, Volume II, published by the American Chemical Society. She is active in the American Chemical Society, where she chairs the Division of Chemical Education Prehigh School Science Task Force and is a member of other national ACS committees. She serves her local section as Precollege Chair. LEE R SUMMERLIN (left) received his B.A. from Samford University, his M.S. from Birmingham-Southern College, and his Ph.D. from the University of Maryland. He has held many teaching and administrative positions and has Hi served as a consultant to various organizations, companies, colleges, and school boards in this country and abroad. He has served as a peer review panelist for several science education development programs and as a chemistry consultant to various National Science Foundation Institutes. He has presented many seminars and published a number of books on methods and aspects of teaching chemistry and science. He has also conducted numerous workshops on chemical demonstrations throughout the country. He was codirector of the Institute for Chemical Education program at the University of CaliforniaBerkeley in 1985 and coordinator for the program in 1986 and 1987. Summer lin has held office or had major committee assign- ments in the National Science Teachers Association, the American Association for the Advancement of Science, and the American Chemical Society. He is a member of the ACS Task Force on High School Chemistry. He received the James B. Conant Award (1969), the Florida Section Outstanding Chemistry Teacher Award (1967), the Gregg Ingalls Outstanding Teaching Award (1985), and the Chemical Manufacturers Association National Catalyst Award (1986). He is coauthor of Chemical Demonstrations: A Sourcebook for Thachers, Volumes I and II, published by the American Chemical Society. Our book is dedicated to Marjorie Gardner, Director of the Lawrence Hall of Science, University of CaliforniaBerkeley. Her support and encouragement made this volume possible. iv Contents Preface ix Preface to the Student Edition xi Chemistry of Matter Gases 1. Pressure of Air Around Us 3 2. How Much Gas Is in a Bottle of Cola? 5 3. Solution of a Gas: What Happens During a Pressure Change? 8 4. Density of Carbon Dioxide 10 5. Behavior of Gases and the Boiling Egg 13 6. Used Breath: Carbon Dioxide in Exhaled Air 15 7. Reactions of Egg,:tells, Seashells, and Baking Soda 17 8. What Makes Popcorn "Pop"? 20 9. Sublimation of Air Freshener 22 Liquids and Solids 10. Layers of Liquids 27 11. Pennies in the Glass and Properties of Water 29 12. Boiling Water in a Paper Cup 32 13. Hydrates: Molecules with Water Attached 34 14.
Recommended publications
  • Aldrich FT-IR Collection Edition I Library
    Aldrich FT-IR Collection Edition I Library Library Listing – 10,505 spectra This library is the original FT-IR spectral collection from Aldrich. It includes a wide variety of pure chemical compounds found in the Aldrich Handbook of Fine Chemicals. The Aldrich Collection of FT-IR Spectra Edition I library contains spectra of 10,505 pure compounds and is a subset of the Aldrich Collection of FT-IR Spectra Edition II library. All spectra were acquired by Sigma-Aldrich Co. and were processed by Thermo Fisher Scientific. Eight smaller Aldrich Material Specific Sub-Libraries are also available. Aldrich FT-IR Collection Edition I Index Compound Name Index Compound Name 3515 ((1R)-(ENDO,ANTI))-(+)-3- 928 (+)-LIMONENE OXIDE, 97%, BROMOCAMPHOR-8- SULFONIC MIXTURE OF CIS AND TRANS ACID, AMMONIUM SALT 209 (+)-LONGIFOLENE, 98+% 1708 ((1R)-ENDO)-(+)-3- 2283 (+)-MURAMIC ACID HYDRATE, BROMOCAMPHOR, 98% 98% 3516 ((1S)-(ENDO,ANTI))-(-)-3- 2966 (+)-N,N'- BROMOCAMPHOR-8- SULFONIC DIALLYLTARTARDIAMIDE, 99+% ACID, AMMONIUM SALT 2976 (+)-N-ACETYLMURAMIC ACID, 644 ((1S)-ENDO)-(-)-BORNEOL, 99% 97% 9587 (+)-11ALPHA-HYDROXY-17ALPHA- 965 (+)-NOE-LACTOL DIMER, 99+% METHYLTESTOSTERONE 5127 (+)-P-BROMOTETRAMISOLE 9590 (+)-11ALPHA- OXALATE, 99% HYDROXYPROGESTERONE, 95% 661 (+)-P-MENTH-1-EN-9-OL, 97%, 9588 (+)-17-METHYLTESTOSTERONE, MIXTURE OF ISOMERS 99% 730 (+)-PERSEITOL 8681 (+)-2'-DEOXYURIDINE, 99+% 7913 (+)-PILOCARPINE 7591 (+)-2,3-O-ISOPROPYLIDENE-2,3- HYDROCHLORIDE, 99% DIHYDROXY- 1,4- 5844 (+)-RUTIN HYDRATE, 95% BIS(DIPHENYLPHOSPHINO)BUT 9571 (+)-STIGMASTANOL
    [Show full text]
  • So2 and Wine: a Review
    OIV COLLECTIVE EXPERTISE DOCUMENT SO2 AND WINE: A REVIEW SO2 AND WINE: A REVIEW 1 MARCH 2021 OIV COLLECTIVE EXPERTISE DOCUMENT SO2 AND WINE: A REVIEW WARNING This document has not been submitted to the step procedure for examining resolutions and cannot in any way be treated as an OIV resolution. Only resolutions adopted by the Member States of the OIV have an official character. This document has been drafted in the framework of Expert Group “Food safety” and revised by other OIV Commissions. This document, drafted and developed on the initiative of the OIV, is a collective expert report. © OIV publications, 1st Edition: March 2021 (Paris, France) ISBN 978-2-85038-022-8 OIV - International Organisation of Vine and Wine 35, rue de Monceau F-75008 Paris - France www.oiv.int 2 MARCH 2021 OIV COLLECTIVE EXPERTISE DOCUMENT SO2 AND WINE: A REVIEW SCOPE The group of experts « Food safety » of the OIV has worked extensively on the safety assessment of different compounds found in vitivinicultural products. This document aims to gather more specific information on SO2. This document has been prepared taking into consideration the information provided during the different sessions of the group of experts “Food safety” and information provided by Member States. Finally, this document, drafted and developed on the initiative of the OIV, is a collective expert report. This review is based on the help of scientific literature and technical works available until date of publishing. COORDINATOR OIV - International Organisation of Vine and Wine AUTHORS Dr. Creina Stockley (AU) Dr. Angelika Paschke-Kratzin (DE) Pr.
    [Show full text]
  • Sulfite: Here, There, Everywhere
    Sulfite: Here, There, Everywhere Max T. Baker, PhD Associate Professor Department of Anesthesia University of Iowa Inadvertent Exposures Combustion of fossil fuels, Air pollutant Large quantities as sulfur dioxide are expelled from volcanos Kilauea on the Big Island Small quantities endogenously formed in mammals from sulfur-containing amino acid metabolism Deliberate Exposures As Preservative- Wine, Beer (dates to Roman times From burning sulfur candles) Fruits and Vegetables (reduce browning, extend shelf-life) Pharmaceuticals1 Reductant - Antioxidant - Antimicrobial What are Sulfites? Oxidized Forms of the Sulfur Atom Sulfur Dioxide, MW = 64, bp = - 10oC (gaseous) Sulfur (IV) - Oxidation state of 4 S = Atomic number 16 – electrons/shell, 2,8,6 Sodium Dioxide Readily Hydrates2 Sulfur Carbon Dioxide Dioxide (irritant) H O H2O 2 Sulfurous Unstable Carbonic low acid species acid pH high pH Bisulfite Bicarbonate anion anion Sulfite Carbonate dianion dianion Forms radical Doesn’t form radical Bisulfite Can Combine with SO2 to form Metabisulfite + excess Bisulfite Metabisulfite (disulfite, pyrosulfite) “Sulfite” usually added to drugs as sodium or potassium salts of: Sulfite, Bisulfite, or Metabisulfite Endogenous to Mammals Small quantities formed from sulfur-containing amino acid metabolism - cysteine, methionine3 + - + H2O + 2H + 2 e Sulfite Sulfate Rapidly detoxified by sulfite oxidase (SOX) to form sulfate – a two electron oxidation, molybdenum dependent Two Confirmed Sulfite Toxicities Neurological abnormalities from genetic sulfite oxidase deficiency3 Allergic reactions from exogenous exposure4 Oral, parenteral, inhalational exposure: dermatitis, urticaria, flushing, hypotension, abdominal pain and diarrhea to life- threatening anaphylactic and asthmatic reactions “The overall prevalence of sulfite sensitivity in the general population is unknown and probably low. Sulfite sensitivity is seen more frequently in asthmatic than in nonasthmatic people." - FDA Prevalence – 3-10% are sulfite sensitive among asthmatic subjects.
    [Show full text]
  • 10102-68-8 SDS Document Number: 000041 1.2: Recommended Uses and Restrictions Recommended Uses Manufacture of Substances Restrictions Not for Food Or Drug Use
    Safety Data Sheet 1: Identification 1.1: Product Identifier Product Name: CaI2 Product Number(s): 1CAI2-0019F CAS Number: 10102-68-8 SDS Document Number: 000041 1.2: Recommended Uses and Restrictions Recommended Uses Manufacture of substances Restrictions Not for food or drug use. 1.3: Supplier Contact Information APL Engineered Materials, Inc. 2401 N. Willow Rd. Urbana, IL 61802 Phone: 217-367-1340 Fax: 217-367-9084 1.4: Emergency Phone Number United States: 800-255-3924 International: +01-813-248-0585 2: Hazards Identification 2.1: Classifications Not a hazardous substance or mixture - . 2.2: GHS Label Elements Pictograms Signal Word: Hazard Statements Not a hazardous substance. Precautionary Statements Not a hazardous substance. 2.3: Hazards Not Otherwise Classified or Not Covered by GHS Thursday, July 16, 2015 Page 1 of 9 None. 2.4: Amount(s) of substances with unknown toxicity None 3: Composition/Information on Ingredients 3.1: .Ingredient .Weight% .Formula .CAS Number .Mol Wt .EC Number CaI2 100 CaI2 10102-68-8 293.89 233-276-8 3.2: Other Hazardous components none 3.3: Trade Secret Disclaimer none 3.4: Synonyms Calcium Iodide 4: First Aid Measures 4.1: First Aid General Remove person from area of exposure and remove any contaminated clothing Consult with physician and provide this Safety Data Sheet In contact with eyes Flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Seek medical attention if irritation develops or persists In contact with skin Wash thoroughly with soap and plenty of water.
    [Show full text]
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • IODINE Its Properties and Technical Applications
    IODINE Its Properties and Technical Applications CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York IODINE Its Properties and Technical Applications ¡¡iiHiüíiüüiütitittüHiiUitítHiiiittiíU CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York 1951 Copyright, 1951, by Chilean Iodine Educational Bureau, Inc. Printed in U.S.A. Contents Page Foreword v I—Chemistry of Iodine and Its Compounds 1 A Short History of Iodine 1 The Occurrence and Production of Iodine ....... 3 The Properties of Iodine 4 Solid Iodine 4 Liquid Iodine 5 Iodine Vapor and Gas 6 Chemical Properties 6 Inorganic Compounds of Iodine 8 Compounds of Electropositive Iodine 8 Compounds with Other Halogens 8 The Polyhalides 9 Hydrogen Iodide 1,0 Inorganic Iodides 10 Physical Properties 10 Chemical Properties 12 Complex Iodides .13 The Oxides of Iodine . 14 Iodic Acid and the Iodates 15 Periodic Acid and the Periodates 15 Reactions of Iodine and Its Inorganic Compounds With Organic Compounds 17 Iodine . 17 Iodine Halides 18 Hydrogen Iodide 19 Inorganic Iodides 19 Periodic and Iodic Acids 21 The Organic Iodo Compounds 22 Organic Compounds of Polyvalent Iodine 25 The lodoso Compounds 25 The Iodoxy Compounds 26 The Iodyl Compounds 26 The Iodonium Salts 27 Heterocyclic Iodine Compounds 30 Bibliography 31 II—Applications of Iodine and Its Compounds 35 Iodine in Organic Chemistry 35 Iodine and Its Compounds at Catalysts 35 Exchange Catalysis 35 Halogenation 38 Isomerization 38 Dehydration 39 III Page Acylation 41 Carbón Monoxide (and Nitric Oxide) Additions ... 42 Reactions with Oxygen 42 Homogeneous Pyrolysis 43 Iodine as an Inhibitor 44 Other Applications 44 Iodine and Its Compounds as Process Reagents ...
    [Show full text]
  • The Replacement of Calcium Carbonate with Calcium Chloride and Calcium Fluoride in a Whiteware Body
    Scholars' Mine Bachelors Theses Student Theses and Dissertations 1933 The replacement of calcium carbonate with calcium chloride and calcium fluoride in a whiteware body Charles Richard Rosenbaum Follow this and additional works at: https://scholarsmine.mst.edu/bachelors_theses Part of the Ceramic Materials Commons Department: Materials Science and Engineering Recommended Citation Rosenbaum, Charles Richard, "The replacement of calcium carbonate with calcium chloride and calcium fluoride in a whiteware body" (1933). Bachelors Theses. 58. https://scholarsmine.mst.edu/bachelors_theses/58 This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Bachelors Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. THE ~PLACEMENT OF CALCIUM CARBO ATE WITH CALCIUM CHLORIDE ~~ . AND CALCIUM FLUORIDE IN A WHITEWARE BODY BY CHARLES RICHARD ROSENBAUM 1\/ A ~HESIS ·submitted _to the faculty of. the SCHOOL OF MINES AND METALLURGY OF THE UNIVERSITY OF MISSOURI in partial-fulfillment rof.the ·work-requlred·for the Degree .. Of BACHELOR- OF.- SCIENCE IN· eERAMIC .. ENGINEERING Rolla, . Mo. 1933. Approved by a222. a<9zmt:d? ~ Professor of Ceramic Eng1neer~ng. '\ THE REPLACE1mNT OF CALCIUM CARBONATE WITH CALCIUM. CHLORIDE AND CALCIUM FLUORIDE IN A WHITEWARE BODY BY CHARLES RICHARD ROSENBAUM IY' A THESI.S submitted to the faculty of the SCHOOL OF MINES AND METALLURGY OF THE UNIVERSITY OF MISSOURI in partial fulfillment of the work required for the Degree Of BACHELOR OF SCIENCE IN CERAMIC ENGINEERING Rolla, Mo.
    [Show full text]
  • Sulfur Dioxide and Some Sulfites, Bisulfites and Metabisulfites
    SULFUR DIOXIDE AND SOME SULFITES, BISULFITES AND METABISULFITES 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Synonyms and structural and molecular data Sulfr dioxi Chem. Abstr. Serv Reg. No.: 7446-09-5 Replaced CAS Nos.: 8014-94-6; 12396-99-5; 83008-56-4; 89125-89-3 Chem. Abstr. Name; Sulfur dioxide IUPAC Systematic Name: Sulfur dioxide Synonyms: Sulfurous acid anhydride; sulfurous anhydride; sulfurous oxide; sulfur oxide (S02); sulfur superoxide; sulphur dioxide 0=8=0 S02 MoL. wt: 64.07 Sodium sulfte Chem. Abstr. Serv Reg. No.: 7757-83-7 Altemate CAS No.: 10579-83-6 Replaced CAS No.: 68135-69-3 Chem. Abstr. Name: Sulfurous acid, di sodium salt IUPAC Systematic Name: Sulfurous acid, disodium salt Synonyms: Anhydrous sodium sulfite; disodium sulfite; sodium sulphite o 1/ Na · 0 - 8 - 0 · Na Na2S0J MoL. wt: 126.04 Sodium bisulfe Chem. Abstr. Serv Reg. No.: 7631-90-5 Replaced CAS Nos.: 57414-01-4; 69098-86-8; 89830-27-3; 91829-63-9 Chem. Abstr. Name: Sulfurous acid, monosodium salt IUPAC Systematic Name: Sulfurous acid, monosodium salt -131- 132 lARe MONOGRAPHS VOLUME 54 Synonyms: Hydrogen sulfite sodium; monosodium sulfite; sodium acid sulfite; sodium bisulphite; sodium hydrogen sulfite; sodium sulfite (NaHS03) o Il HO - S - a · Na NaHS03 MoL. wt: 104.06 Sodium metabisulfte Chem. Abstr. Serv Reg. No.: 7681-57-4 Altemate CAS No.: 7757-74-6 Replaced CAS No.: 15771-29-6 Chem. Abstr. Name: Disulfurous acid, disodium salt IUPAC Systematic Name: Pyrosulfurous acid, disodium salt Synonyms: Disodium disulfite; disodium metabisulfite; disodium pyrosulfite; sodium disulfite; sodium metabisulphite; sodium pyrosulfite oIl Il0 Na · 0- S - a - S - a · Na .Na2S20S MoL.
    [Show full text]
  • Nature [December 22, 1904
    180 NATURE [DECEMBER 22, 1904 As an example of the successful accomplishment this spherical globule when solidified forms the ruby. of a difficult task, we reproduce (Fig. I) the photo­ The cooling has to be very gradual, so that the crystal­ graph of kittiwake gulls nesting on the precipitous line particles have time to become regularly arranged, face of a cliff, approach to which was effected by climb­ or an opaque product is obtained. If the ovoid mass ing down a narrow gulley and then scrambling over is carefully detached when cold, it splits up into two seaweed-clad boulders, to the imminent peril of the nearly equal portions, but not along a cleavage-plane. camera. The product so obtained is !in individual crystal, and As a specimen of really excellent bird-photography, the direction of its principal optic axis is never very we present to our readers the picture of a group of different from that of the major axis of the ovoid. young ringed plovers (Fig. 2), the mottled down of The product when cut cannot be distinguished by which harmonises so admirably at a short distance with its chemical, physical, or optical properties from a their surroundings. stone cut from a natural ruby. The operation may If it be said that this notice is purely commendatory, be considered successful when the clear product weighs and contains nothing in the way of criticism, the reply 12 to IS carats, and has a real diameter of 5 or 6 is that we have found nothing to criticise or to con- millimetres.
    [Show full text]
  • Standard Thermodynamic Properties of Chemical
    STANDARD THERMODYNAMIC PROPERTIES OF CHEMICAL SUBSTANCES ∆ ° –1 ∆ ° –1 ° –1 –1 –1 –1 Molecular fH /kJ mol fG /kJ mol S /J mol K Cp/J mol K formula Name Crys. Liq. Gas Crys. Liq. Gas Crys. Liq. Gas Crys. Liq. Gas Ac Actinium 0.0 406.0 366.0 56.5 188.1 27.2 20.8 Ag Silver 0.0 284.9 246.0 42.6 173.0 25.4 20.8 AgBr Silver(I) bromide -100.4 -96.9 107.1 52.4 AgBrO3 Silver(I) bromate -10.5 71.3 151.9 AgCl Silver(I) chloride -127.0 -109.8 96.3 50.8 AgClO3 Silver(I) chlorate -30.3 64.5 142.0 AgClO4 Silver(I) perchlorate -31.1 AgF Silver(I) fluoride -204.6 AgF2 Silver(II) fluoride -360.0 AgI Silver(I) iodide -61.8 -66.2 115.5 56.8 AgIO3 Silver(I) iodate -171.1 -93.7 149.4 102.9 AgNO3 Silver(I) nitrate -124.4 -33.4 140.9 93.1 Ag2 Disilver 410.0 358.8 257.1 37.0 Ag2CrO4 Silver(I) chromate -731.7 -641.8 217.6 142.3 Ag2O Silver(I) oxide -31.1 -11.2 121.3 65.9 Ag2O2 Silver(II) oxide -24.3 27.6 117.0 88.0 Ag2O3 Silver(III) oxide 33.9 121.4 100.0 Ag2O4S Silver(I) sulfate -715.9 -618.4 200.4 131.4 Ag2S Silver(I) sulfide (argentite) -32.6 -40.7 144.0 76.5 Al Aluminum 0.0 330.0 289.4 28.3 164.6 24.4 21.4 AlB3H12 Aluminum borohydride -16.3 13.0 145.0 147.0 289.1 379.2 194.6 AlBr Aluminum monobromide -4.0 -42.0 239.5 35.6 AlBr3 Aluminum tribromide -527.2 -425.1 180.2 100.6 AlCl Aluminum monochloride -47.7 -74.1 228.1 35.0 AlCl2 Aluminum dichloride -331.0 AlCl3 Aluminum trichloride -704.2 -583.2 -628.8 109.3 91.1 AlF Aluminum monofluoride -258.2 -283.7 215.0 31.9 AlF3 Aluminum trifluoride -1510.4 -1204.6 -1431.1 -1188.2 66.5 277.1 75.1 62.6 AlF4Na Sodium tetrafluoroaluminate
    [Show full text]
  • Consideration of Mandatory Fortification with Iodine for Australia and New Zealand Food Technology Report
    CONSIDERATION OF MANDATORY FORTIFICATION WITH IODINE FOR AUSTRALIA AND NEW ZEALAND FOOD TECHNOLOGY REPORT December 2007 1 Introduction Food Standards Australia New Zealand is considering mandatory fortification of the food supply in Australia and New Zealand with iodine. Generally, the addition of iodine to foods is technologically feasible. However, in some instances the addition of iodine can lead to quality changes in food products such as appearance, taste, odour, texture and shelf life. These changes will depend on the chemical form of iodine used as a fortificant, the chemistry of the food that is being fortified, the food processes involved in manufacture and possible processing interactions that could occur during distribution and storage. Many foods have been fortified with iodine and the potassium salts of iodine compounds have been used as the preferred form. 2 Forms of Iodine Iodine is normally introduced, or supplemented, as the iodide or iodate of potassium, calcium or sodium. The following table lists different chemical forms of iodine along with their important physical properties. Table 1: Physical Properties of Iodine and its Compounds Name Chemical Formula % Iodine Solubility in water (g/L) 0°C 20°C 30°C 40°C 60°C Iodine I2 100 - - 0.3 0.4 0.6 Calcium iodide CaI2 86.5 646 676 690 708 740 Calcium iodate Ca(IO3)2.6H2O 65.0 - 1.0 4.2 6.1 13.6 Potassium iodide KI 76.5 1280 1440 1520 1600 1760 Potassium iodate KIO3 59.5 47.3 81.3 117 128 185 Sodium iodide NaI.2H20 85.0 1590 1790 1900 2050 2570 Sodium iodate NaIO3 64.0 - 25.0 90.0 150 210 Adapted from Mannar and Dunn (1995) 2.1 Potassium Iodide Potassium iodide (KI) is highly soluble in water.
    [Show full text]
  • Chemical Substances Exempt from Notification of Manufacturing/Import Amount
    Chemical Substances Exempt from Notification of Manufacturing/Import Amount A list under Chemical Substance Control Law (Japan) 2014-3-24 Official issuance: Joint Notice No.1 of MHLW, METI and MOE English source: Chemical Risk Information Platform (CHRIP) Edited by: https://ChemLinked.com ChemLinked Team, REACH24H Consulting Group| http://chemlinked.com 6 Floor, Building 2, Hesheng Trade Centre, No.327 Tianmu Mountain Road, Hangzhou, China. PC: 310023 Tel: +86 571 8700 7545 Fax: +86 571 8700 7566 Email: [email protected] 1 / 1 Specification: In Japan, all existing chemical substances and notified substances are given register numbers by Ministry of International Trade and Industry (MITI Number) as a chemical identifier. The Japanese Chemical Management Center continuously works on confirming the mapping relationships between MITI Numbers and CAS Registry Numbers. Please enter CHRIP to find if there are corresponding CAS Numbers by searching the substances’ names or MITI Numbers. The first digit of a MITI number is a category code. Those adopted in this List are as follows: 1: Inorganic compounds 2: Chained organic low-molecular-weight compounds 3: Mono-carbocyclic organic low-molecular-weight compounds 5: Heterocyclic organic low-molecular-weight compounds 6: Organic compounds of addition polymerization 7: Organic compounds of condensation polymerization 8: Organic compounds of modified starch, and processed fats and oils 9: Compounds of pharmaceutical active ingredients, etc. This document is provided by ChemLinked, a division of REACH24H Consulting Group. ChemLinked is a unique portal to must-know EHS issues in China, and essential regulatory database to keep all EHS & Regulatory Affairs managers well-equipped. You may subscribe and download this document from ChemLinked.com.
    [Show full text]