Lateral Atlanto-Occipital Space Puncture

Total Page:16

File Type:pdf, Size:1020Kb

Lateral Atlanto-Occipital Space Puncture CLINICAL ARTICLE J Neurosurg 129:146–152, 2018 A new method of subarachnoid puncture for clinical diagnosis and treatment: lateral atlanto-occipital space puncture Dianrong Gong, BS, Haiyan Yu, MS, and Xiaoling Yuan, MD Department of Neurology, Liaocheng People’s Hospital, Liaocheng, Shandong, China OBJECTIVE Lumbar puncture may not be suitable for some patients needing subarachnoid puncture, while lateral C1–2 puncture and cisterna magna puncture have safety concerns. This study investigated lateral atlanto-occipital space puncture (also called lateral cisterna magna puncture) in patients who needed subarachnoid puncture for clinical diagnosis or treatment. The purpose of the study was to provide information on the complications and feasibility of this technique and its potential advantages over traditional subarachnoid puncture techniques. METHODS In total, 1008 lateral atlanto-occipital space puncture procedures performed in 667 patients were retrospec- tively analyzed. The success rate and complications were also analyzed. All patients were followed up for 1 week after puncture. RESULTS Of 1008 lateral atlanto-occipital space punctures, 991 succeeded and 17 failed (1.7%). Fifteen patients (2.25%) reported pain in the ipsilateral external auditory canal or deep soft tissue, 32 patients (4.80%) had a transient increase in blood pressure, and 1 patient (0.15%) had intracranial hypotension after the puncture. These complications resolved fully in all cases. There were no serious complications. CONCLUSIONS Lateral atlanto-occipital space puncture is a feasible technique of subarachnoid puncture for clinical diagnosis and treatment. It is associated with a lower rate of complications than lateral C1–2 puncture or traditional (sub- occipital) cisterna magna puncture. It may have potential in the neurological diagnostic and treatment fields. https://thejns.org/doi/abs/10.3171/2017.1.JNS161089 KEY WORDS lateral atlanto-occipital space puncture; lateral cisterna magna puncture; spinal puncture; treatment outcome; diagnostic technique; adverse effects UBARACHNOID puncture is a routine technique in both To find a safe and convenient method that may be a suit- the basic neurosciences and clinical practice, which able alternative to LP, Professor Dianrong Gong has, since despite the development of advanced imaging mo- 1990, steadfastly studied the anatomical characteristics of Sdalities, such as CT, has not been entirely replaced.15 The the atlanto-occipital space and cisterna magna and spe- most common method of subarachnoid puncture is lumbar cific puncture sites and has performed repeated simulated puncture (LP), and this is generally considered to be safe procedures in specimens in the Department of Neurology, with few complications.22 Nevertheless, LP has some con- Liaocheng People’s Hospital. After she had mastered the traindications, such as in patients with increased intracra- main points and methods of the puncture procedure, the nial pressure or lesions in the puncture site. Also, LP may technique of lateral atlanto-occipital space puncture was not be feasible in patients who are unable to maintain the applied in the clinic beginning in 1995. As of this writing, required position, either seated or lying on their side.8,21 we have conducted 1008 lateral atlanto-occipital space Other methods for subarachnoid puncture such as lateral punctures for clinical diagnosis and treatment. Since July C1–2 puncture and suboccipital cisterna magna puncture 2011, 229 patients with refractory neurological disease are seldom used because of anatomical issues and risks of have received 340 human umbilical cord blood mono- major complications.13,16 nuclear cell transplantations via lateral atlanto-occipital ABBREVIATIONS LP = lumbar puncture. SUBMITTED April 26, 2016. ACCEPTED January 5, 2017. INCLUDE WHEN CITING Published online July 28, 2017; DOI: 10.3171/2017.1.JNS161089. 146 J Neurosurg Volume 129 • July 2018 ©AANS 2018, except where prohibited by US copyright law Unauthenticated | Downloaded 09/30/21 06:03 PM UTC Lateral atlanto-occipital space puncture space puncture, and there have been no cases of iatrogenic TABLE 1. Baseline characteristics of the patients who underwent injury. lateral atlanto-occipital space puncture We present a retrospective analysis of a large case se- Characteristic Value ries of patients who underwent lateral atlanto-occipital space puncture in our clinic. Our goal is to provide details Age in yrs on the procedure as well as the success and safety of the Mean ± SD 56.78 ± 18.13 method in the hope that this information may assist other Median 59 clinicians who require an alternative to LP for subarach- Range 5–88 noid puncture. Sex, no. of pts (%) Male 389 (58.32) Methods Female 278 (41.68) Patient Group Reason for puncture, no. of punctures (%) From March 1995 to March 2015, 667 patients hos- Diagnosis 196 (19.44) pitalized in the Department of Neurology, Liaocheng Treatment 812 (80.56) People’s Hospital, received 1008 lateral atlanto-occipital space puncture procedures for clinical diagnosis or treat- Disease, no. of pts/punctures ment (Table 1). The method was approved by the medical Subarachnoid hemorrhage 250/309 ethics committee of the hospital. Of the 667 patients, 389 CNS infection 121/186 (58.32%) were male and 278 (41.68%) were female. Their Guillain-Barré syndrome 19/19 ages ranged from 5 to 88 years (median 59 years, mean Coma of unknown cause 15/15 ± [ SD] 56.78 ± 18.13 years). Two hundred twenty-nine of Intrathecal injection of drugs for delayed encepha- 8/20 the patients had refractory neurological diseases and were lopathy after acute CO poisoning undergoing treatment with human umbilical cord blood mononuclear cell transplantation; these patients were Dredge treatment when the lateral ventricle drain- 17/17 treated between July 2011 and March 2015. age tube was not free The indications for lateral atlanto-occipital space punc- Whiplash injury syndrome 1/1 ture were as follows:3,21 1) inflammation of the CNS; 2) Cerebellar tonsillar hernia after LP 1/1 diagnosis of subarachnoid hemorrhage in patients with Chemotherapy w/ intrathecal injection 6/20 negative brain CT or difficult differential diagnosis of Umbilical cord blood stem cell therapy 229/420 meningitis; 3) CSF replacement or intrathecal drug ther- apy; 4) stem cell transplantation; 5) diagnosis and differ- Pts = patients. ential diagnosis of demyelinating disease; 6) treatment of ventricular hemorrhage; 7) alternative to difficult LP; 8) rescue of patients with brain herniation of varying causes; The procedure is as follows. The patient is placed in a or 9) need for CSF specimen or intrathecal treatment in supine position with any pillow removed (although a pil- critically ill patients who were not suitable candidates for low could be placed under the shoulders of an obese pa- LP or radiographic investigation. tient to facilitate the procedure if necessary). The patient Lateral atlanto-occipital puncture was not performed is required to keep the head and neck straight and in the in patients who could not cooperate because of tension or midline position. The highest point of the mastoid is lo- those with any of the following contraindications:3,21 1) lo- cated, and the puncture site is identified as 1 cm inferior cal infection of the puncture site; 2) allergic reaction to and 1 cm posterior to that point (between the lower edge local anesthetic; 3) critical clinical condition, such as se- of the occipital bone and atlas). After local sterilization vere cardiopulmonary dysfunction; 4) intracranial space- and induction of local anesthesia by infiltration of 2.5–3 occupying lesions; or 5) severe coagulation disorders. ml of a solution containing 400 mg lidocaine per 20 ml, Data Collection a 20-gauge needle (0.9-mm outer diameter, Shanghai SA Medical & Plastic Instruments Co.) is used to pierce the The baseline characteristics of the patients were col- skin. (The puncture needle consists of 2 parts: one part lected from their medical records. These data included is the needle with a hollow structure; the other part is the their age and sex as well as the reason for the puncture needle core.) The puncture direction is perpendicular to procedure and the clinical diagnosis. The success of the the neck, parallel to the imaginary line of both sides of procedure was noted and any reasons for unsuccessful the external auditory canal, and just below the occipital puncture recorded. bone. Viewed from the side, the needle passes through the rear of the atlanto-occipital joint (the vertebral arteries run The Lateral Atlanto-Occipital Space Puncture Procedure on both sides of the atlanto-occipital joints), posterior and Diagrams presenting the location of the puncture site external to the spinal canal, and between the spinal cord are presented in Figs. 1–3, and a video clip demonstrating and posterior arch. Viewed from the front, the needle is the procedure is shown in Video 1. located above the odontoid and lateral mass (the vertebral VIDEO 1. Video clip showing the procedure for lateral atlanto- artery runs behind the lateral mass). Radiographs of a suc- occipital space puncture. Copyright Dianrong Gong. Published with cessful puncture are shown in Fig. 4. No important blood permission. Click here to view. vessels or nerves run very close to the puncture route, so J Neurosurg Volume 129 • July 2018 147 Unauthenticated | Downloaded 09/30/21 06:03 PM UTC D. Gong, H. Yu, and X. Yuan FIG. 1. Sagittal section showing the correct angle of the needle for lateral atlanto-occipital space puncture. A. = arteria. From Guo Guangwen and Wang Xu: Color Atlas of Human Anatomy[M], 2001, page 8. Beijing: People’s Medical Publishing House. Published with permission from the authors of the work. Figure is available in color online only. there is a good safety margin that reduces the risks of the either obtain or replace CSF or inject the necessary drugs. procedure. The needle core is then removed, and pressure is applied Generally, 2 points of membrane breakage can be felt to the puncture point for 1 minute.
Loading...
Loading...
Loading...
Loading...
Loading...

2 pages remaining, click to load more.

Recommended publications
  • Review of Spinal Cord Basics of Neuroanatomy Brain Meninges
    Review of Spinal Cord with Basics of Neuroanatomy Brain Meninges Prof. D.H. Pauža Parts of Nervous System Review of Spinal Cord with Basics of Neuroanatomy Brain Meninges Prof. D.H. Pauža Neurons and Neuroglia Neuron Human brain contains per 1011-12 (trillions) neurons Body (soma) Perikaryon Nissl substance or Tigroid Dendrites Axon Myelin Terminals Synapses Neuronal types Unipolar, pseudounipolar, bipolar, multipolar Afferent (sensory, centripetal) Efferent (motor, centrifugal, effector) Associate (interneurons) Synapse Presynaptic membrane Postsynaptic membrane, receptors Synaptic cleft Synaptic vesicles, neuromediator Mitochondria In human brain – neurons 1011 (100 trillions) Synapses – 1015 (quadrillions) Neuromediators •Acetylcholine •Noradrenaline •Serotonin •GABA •Endorphin •Encephalin •P substance •Neuronal nitric oxide Adrenergic nerve ending. There are many 50-nm-diameter vesicles (arrow) with dark, electron-dense cores containing norepinephrine. x40,000. Cell Types of Neuroglia Astrocytes - Oligodendrocytes – Ependimocytes - Microglia Astrocytes – a part of hemoencephalic barrier Oligodendrocytes Ependimocytes and microglial cells Microglia represent the endogenous brain defense and immune system, which is responsible for CNS protection against various types of pathogenic factors. After invading the CNS, microglial precursors disseminate relatively homogeneously throughout the neural tissue and acquire a specific phenotype, which clearly distinguish them from their precursors, the blood-derived monocytes. The ´resting´ microglia
    [Show full text]
  • Subarachnoid Trabeculae: a Comprehensive Review of Their Embryology, Histology, Morphology, and Surgical Significance Martin M
    Literature Review Subarachnoid Trabeculae: A Comprehensive Review of Their Embryology, Histology, Morphology, and Surgical Significance Martin M. Mortazavi1,2, Syed A. Quadri1,2, Muhammad A. Khan1,2, Aaron Gustin3, Sajid S. Suriya1,2, Tania Hassanzadeh4, Kian M. Fahimdanesh5, Farzad H. Adl1,2, Salman A. Fard1,2, M. Asif Taqi1,2, Ian Armstrong1,2, Bryn A. Martin1,6, R. Shane Tubbs1,7 Key words - INTRODUCTION: Brain is suspended in cerebrospinal fluid (CSF)-filled sub- - Arachnoid matter arachnoid space by subarachnoid trabeculae (SAT), which are collagen- - Liliequist membrane - Microsurgical procedures reinforced columns stretching between the arachnoid and pia maters. Much - Subarachnoid trabeculae neuroanatomic research has been focused on the subarachnoid cisterns and - Subarachnoid trabecular membrane arachnoid matter but reported data on the SAT are limited. This study provides a - Trabecular cisterns comprehensive review of subarachnoid trabeculae, including their embryology, Abbreviations and Acronyms histology, morphologic variations, and surgical significance. CSDH: Chronic subdural hematoma - CSF: Cerebrospinal fluid METHODS: A literature search was conducted with no date restrictions in DBC: Dural border cell PubMed, Medline, EMBASE, Wiley Online Library, Cochrane, and Research Gate. DL: Diencephalic leaf Terms for the search included but were not limited to subarachnoid trabeculae, GAG: Glycosaminoglycan subarachnoid trabecular membrane, arachnoid mater, subarachnoid trabeculae LM: Liliequist membrane ML: Mesencephalic leaf embryology, subarachnoid trabeculae histology, and morphology. Articles with a PAC: Pia-arachnoid complex high likelihood of bias, any study published in nonpopular journals (not indexed PPAS: Potential pia-arachnoid space in PubMed or MEDLINE), and studies with conflicting data were excluded. SAH: Subarachnoid hemorrhage SAS: Subarachnoid space - RESULTS: A total of 1113 articles were retrieved.
    [Show full text]
  • Chapter III: Case Definition
    NBDPN Guidelines for Conducting Birth Defects Surveillance rev. 06/04 Appendix 3.5 Case Inclusion Guidance for Potentially Zika-related Birth Defects Appendix 3.5 A3.5-1 Case Definition NBDPN Guidelines for Conducting Birth Defects Surveillance rev. 06/04 Appendix 3.5 Case Inclusion Guidance for Potentially Zika-related Birth Defects Contents Background ................................................................................................................................................. 1 Brain Abnormalities with and without Microcephaly ............................................................................. 2 Microcephaly ............................................................................................................................................................ 2 Intracranial Calcifications ......................................................................................................................................... 5 Cerebral / Cortical Atrophy ....................................................................................................................................... 7 Abnormal Cortical Gyral Patterns ............................................................................................................................. 9 Corpus Callosum Abnormalities ............................................................................................................................. 11 Cerebellar abnormalities ........................................................................................................................................
    [Show full text]
  • Certificate of Fetal Brain Imaging
    Certificate of fetal brain imaging Suggested reading 1. Chaoui R, Nicolaides KH. Detecting open spina bifida at the 11-13-week scan by assessing intracranial translucency and the posterior brain region: mid-sagittal or axial plane? Ultrasound Obstet Gynecol. 2011 Dec;38(6):609-12. doi:10.1002/uog.10128. PubMed PMID: 22411445. 2. Lerman-Sagie T, Prayer D, Stöcklein S, Malinger G. Fetal cerebellar disorders. Handb Clin Neurol. 2018;155:3-23. doi:10.1016/B978-0-444-64189-2.00001-9. Review: PubMed PMID: 29891067. 3. Choudhri AF, Cohen HL, Siddiqui A, Pande V, Blitz AM. Twenty-Five Diagnoses on Midline Images of the Brain: From Fetus to Child to Adult. Radiographics. 2018 Jan- Feb;38(1):218-235. doi:10.1148/rg.2018170019. Review. PubMed PMID: 29320328. 4. Davila I, Moscardo I, Yepez M, Sanz Cortes M. Contemporary Modalities to Image the Fetal Brain. Clin Obstet Gynecol. 2017 Sep;60(3):656-667. doi:10.1097/GRF.0000000000000307. PubMed PMID: 28742597. 5. Jakab A, Pogledic I, Schwartz E, Gruber G, Mitter C, Brugger PC, Langs G, Schöpf V, Kasprian G, Prayer D. Fetal Cerebral Magnetic Resonance Imaging Beyond Morphology. Semin Ultrasound CT MR. 2015 Dec;36(6):465-75. doi:10.1053/j.sult.2015.06.003. Epub 2015 Jun 14. Review. PubMed PMID: 26614130. Ultrasound Obstet Gynecol 2007; 29: 109–116 Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/uog.3909 GUIDELINES Sonographic examination of the fetal central nervous system: guidelines for performing the ‘basic examination’ and the ‘fetal neurosonogram’ INTRODUCTION Some abnormalities may be visible in the first and early second trimesters6–11.
    [Show full text]
  • Developmental Defects of the Cisterna Magna and Dura Mater by E
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.12.1.39 on 1 February 1949. Downloaded from J. Neurol. Neurosurg. Psychiat., 1949, 12, 39. DEVELOPMENTAL DEFECTS OF THE CISTERNA MAGNA AND DURA MATER BY E. GRAEME ROBERTSON From the Department ofNeurology and Neurosurgery, Royal Melbourne Hospital, Melbourne, Australia INDEX the cistern in specimens, for without floating the Page arachnoid away from the brain it is difficult to INTRODUCTION.. .. .. .. .. .. 39 delimit the periphery of the cistern. It is only NORMAL ANATOMY OF THE CISTERNA MAGNA .. 39 when gas in the cistern clearly delimits it that these VARIATIONS IN THE CISTERNA MAGNA: RECOGNITION DURING ENCEPHALOGRAPHY .. .. .. 40 -variations can be recognized. ALLIED ABNORMALITIES OF CISTERNA MAGNA, TEN- Normal Anatomy of the Cisterna Magna TORIUM, AND FALX CEREBRI .. .. .. 49 AccouNT OF COINCIDENT CYST IN VERMIS .. .. 50 As the arachnoid membrane passes upwards from SUMMARY .. .. .. .. .. .. 51 the spinal canal through the foramen magnum to enclose the contents of the posterior cranial fossa Introduction it becomes more extensive. Anteriorly the sub- Cerebral dqfects of developmental origin, apart arachnoid space suffers no interruption in front of the medulla and pons. Thus, during encepha- from those involving the nervous parenchyma, are Protected by copyright. to be found chiefly in the neighbourhood of the lography, gas is 'able to pass upwards' to reach the roof of the-third ventricle. The complex develop- interpeduncular cisterns and thence the cerebral mental evolution of the structures in this region subarachnoid space (Fig. 1). Posteriorly and may predispose to imperfect development, whether laterally, however, the arachnoid membrane is the cause be some variety of damage which impairs closely applied to the pia mater on the infeior' development, or.
    [Show full text]
  • Median Aperture of the Fourth Ventricle Revisited
    Folia Morphol. Vol. 70, No. 2, pp. 84–90 Copyright © 2011 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl Median aperture of the fourth ventricle revisited M. Ciołkowski1, 2, M. Sharifi1, 3, S. Tarka4, B. Ciszek1, 5 1Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Poland 2Department of Neurosurgery, Bielanski Hospital, Warsaw, Poland 3Department of Paediatric Otolaryngology, Medical University of Warsaw, Poland 4Department of Forensic Medicine, Medical University of Warsaw, Poland 5Department of Neurosurgery, Prof. Bogdanowicz Children’s Hospital, Warsaw, Poland [Received 22 March 2011; Accepted 5 April 2011] Background: The median aperture of Magendie is the largest of three open- ings of the fourth ventricle and thus it forms the main path for the outflow of the cerebrospinal fluid from the ventricle. The Magendie aperture connects the fourth ventricle with the cisterna magna and makes a natural corridor for neu- rosurgical approach and inspection of the ventricle and its floor. The purpose of this study was to give a contemporary anatomical view of this structure in the context of historical data. Material and methods: The Magendie foramen was studied in 30 fixed spe- cimens of human brainstems with cerebella. The microdissection technique was used. Measurements were taken with a microscope ocular ruler. Results: The aperture is limited by the following structures: obex and gracile tubercles inferiorly, and tela choroidea with choroid plexus superolaterally. Obex tubercles usually have the form of a piece of neural tissue bridging two halves of the brainstem above the entrance to the central canal.
    [Show full text]
  • Meninges, Ventricles and CSF
    Meninges, Ventricles and CSF Neuroanatomy block-Anatomy-Lecture 19 Editing file Objectives At the end of the lecture, students should be able to: 01 Describe the cerebral meninges & list the main dural folds. 02 Describe the spinal meninges & locate the level of the termination of each of them. 03 Describe the importance of the subarachnoid space. 04 List the Ventricular system of the CNS and locate the site of each of them. 05 Describe the formation, circulation, drainage, and functions of the CSF. Color guide 06 Know some clinical point about the CSF. ● Only in boys slides in Green ● Only in girls slides in Purple ● important in Red ● Notes in Grey Meninges The brain and spinal cord are invested by three concentric membranes: Dura Mater Arachnoid Mater Pia Mater The outermost layer. The middle layer. The innermost layer. Dura Mater The cranial dura is a two layered tough, fibrous thick membrane that surrounds the brain. Formed of two layers meningeal :is folded forming the dural folds : Two large periosteal :attached to the skull. reflection of dura extend into the cranial cavity: Tentorium cerebelli: Falx cerebri: -A horizontal shelf of dura, lies between the -It is a vertical sickle shaped sheet of dura, in the posterior part of the cerebral hemispheres and the midline. cerebellum. -Extends from the cranial roof into the great -It has a free border that encircles the midbrain. longitudinal fissure between the two cerebral -Its superior surface in the middle line it is hemispheres. continuous above with the falx cerebri, separated by -It has an attached border adherent to the skull and a straight sinus.
    [Show full text]
  • Blake's Pouch Cyst
    THIEME 122 Case Report Blake’s Pouch Cyst: A Case Report Saurabh Kumar Verma1 M. S. Sridhar1 S. Shashivadhanan1 Manish Garg1 1 Department of Neurosurgery, Army Hospital (R&R), Address for correspondence Col (Dr.) Saurabh Kumar Verma, New Delhi, India Department of Neurosurgery, Army Hospital (R&R), New Delhi, Delhi Cantt, India (e-mail: eskay6362@yahoo.co.in). Indian J Neurosurg 2017;6:122–125. Abstract It is a rare and underdiagnosed entity. The adagium “one only sees what one knows” is certainly true in cases of Blake’s pouch cyst, as all types of posterior fossa cysts and cyst-like malformations may present nearly identical on initial imaging studies. Only one case of Blake’s pouch cyst has been reported from this country, except for a case in utero, in which a diagnosis of Blake’s pouch cyst was made on prenatal ultrasound and later confirmed by MRI. In this report we describe a case of Blake’spouchcystina 9-month-old male child along with the principles of diagnosis of Blake’s pouch cyst, in Keywords combination with literature review. Differentiating Blake’s pouch cyst from other ► Blake’spouchcyst posterior fossa cysts and cyst-like malformations and recognizing the accompanying ► posterior fossa hydrocephalus that are essentially noncommunicating have important implications ► inferior medullary not only on clinical management but also on genetic counseling, which is velum unnecessary in case of Blake’s pouch cyst. 9 Introduction ventricular shunting. Only one case Blake’s pouch cyst has been reported from India by Vakakmudi et al, except for a Blake’s pouch is a normal, transient embryologic cystic- case in utero, in which a diagnosis of Blake’s pouch cyst was appearing structure that represents posterior ballooning of made on prenatal ultrasound and later confirmed by the inferior medullary velum into the cisterna magna, magnetic resonance imaging (MRI).
    [Show full text]
  • Lumbar Puncture: Indications, Challenges and Recent Advances
    Review Neurosurgery Lumbar Puncture: Indications, Challenges and Recent Advances Biswamohan Mishra and Venugopalan Y Vishnu Department of Neurology, All India Institute of Medical Sciences, New Delhi, India. he methodological, diagnostic and therapeutic aspects of lumbar puncture and cerebrospinal fluid (CSF) study have advanced leaps and bounds since its conception in 1890 by Quincke. CSF study is commonly used to diagnose CSF infections, but technological Tadvances have enabled it to be used to diagnose many autoimmune, neuroinflammatory diseases of the central nervous system. CSF biomarkers are an important tool in diagnosing some neurodegenerative diseases; recent improvements in detecting these biomarkers may aid in developing drugs for these chronic, progressive, disabling diseases. Patients with diseases like spinal muscular atrophy, who were only treated supportively for decades, can now benefit from intrathecal nusinersen. Lumbar puncture is generally a safe intervention, yet complications can occur, ranging from mild and self-limiting, e.g. low backache, to severe, e.g. cerebral and spinal coning. Meta-analyses, consensus guidelines and systematic reviews have shown that using an atraumatic needle tip results in fewer complications, and guidelines emphasize the need to increase awareness among physicians and change current practice. Demand for image-guided lumbar puncture has increased significantly since 2000. Deferring lumbar puncture until after brain magnetic resonance imaging may be detrimental in situations where performing lumbar puncture is vital. Certain clinical features should warrant advanced imaging before lumbar puncture in suspected meningitis, instead of routinely performing imaging in every patient before lumbar puncture. Keywords Studying cerebrospinal fluid (CSF) is essential for diagnosing many central nervous system (CNS) Lumbar puncture, spinal puncture, cerebrospinal diseases, including infection, inflammation and malignancy.
    [Show full text]
  • Meninges, Ventricles, and CSF Important Doctors Notes Notes/Extra Explanation Please View Our Editing File Before Studying This Lecture to Check for Any Changes
    Color Code Meninges, Ventricles, and CSF Important Doctors Notes Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives At the end of the lecture, the students should be able to: ✓ Explain the cerebral meninges & compare between the main dural folds. ✓ Identify the spinal meninges & locate the level of the termination of each of them. ✓ Describe the importance of the subarachnoid space. ✓ Explain the ventricular system of the CNS and locate the site of each of them. ✓ Analyze the formation, circulation, drainage, and functions of the CSF. ✓ Justify the clinical point related to the CSF. Meninges 02:02 The brain and spinal cord (CNS) are invested by three concentric membranes/layers: 1-The outermost layer is the dura matter. Dura Outside 2-The middle layer is the arachnoid matter. Pia Inside 3-The innermost layer is the pia matter. 1- (The dura surrounds 2- (from which it is separated by 3- (Pia mater is a the brain and the spinal the subarachnoid space .The thin fibrous tissue that cord and is responsible delicate arachnoid layer is is impermeable to fluid. for keeping in the CSF.) attached to the inside of the dur This allows the pia and surrounds the brain and mater to enclose csf) spinal cord.) Meninges 1- Dura Matter o The cranial dura is a two layered tough, fibrous, thick membrane that surrounds the brain. o It is formed of two layers; Extra 1) periosteal: attached to the skull. 2) meningeal: folded forming the dural folds* falx cerebri, and tentoriam cerebelli.
    [Show full text]
  • Posterior Fossa Malformations
    Posterior Fossa Malformations Nolan R. Altman, 1 Thomas P. Naidich, and Bruce H. Braffman From the Miami Children's Hospital (NAA), the Baptist Hospital of Miami (TPN), and the Memorial Hospital, Hollywood, FL (BHB) Posterior fossa malformations are best classi­ 2. central lob- with the two alae, and fied in terms of their embryogenesis from the ule rhombencephalon ( 1-7). The diverse manifesta­ 3. culmen with the (anterior) quadran- tions of the dysgeneses can be related to the gular lobule. stages at which development of the cerebellum The anterior lobe is the most rostral portion of the became deranged. The cerebellar malformations cerebellum and is separated from the more caudal can also be classified by their effect on the fourth portions of the cerebellum by the primary fissure. ventricle and cisterna magna, and by whether B. The posterior lobe consists of the next five lobules any cystic spaces represent expansion of the of the vermis with their hemispheric connections, ie , rhombencephalic vesicle or secondary atrophy of the parenchyma. Since the size of the posterior vermis and hemispheres fossa depends largely on the size of the rhomben­ 4. declive with the lobulus simplex cephalic vesicle at the time that the mesenchyme 5. folium with the superior semilunar condenses into the bony-dural walls of the pos­ lobule terior fossa (see article by MeLone in this issue), 6. tuber inferior semilunar, identification of the size of the posterior fossa and with the gracile and often proves to be more helpful in differentiating 7. pyramis biventral lobules among these malformations than the simple pres­ 8.
    [Show full text]
  • Reference Intervals of Fetal Cisterna Magna Volume By
    Nardozza LMMOriginal et al. / Fetal Article cisterna magna volume by two-dimensional method Reference intervals of fetal cisterna magna volume by two- dimensional method using the multiplanar mode of three- dimensional ultrasonography* Intervalos de referência para o volume da cisterna magna fetal por meio do método bidimensional usando o modo multiplanar da ultrassonografia tridimensional Luciano Marcondes Machado Nardozza1, Ana Paula Passos2, Edward Araujo Júnior1, Rafael Frederico Bruns3, Antonio Fernandes Moron4 Nardozza LMM, Passos AP, Araujo Júnior E, Bruns RF, Moron AF. Reference intervals of fetal cisterna magna volume by two-dimensional method using the multiplanar mode of three-dimensional ultrasonography. Radiol Bras. 2014 Jul/Ago;47(4):201–205. Abstract Objective: To establish reference intervals for the fetal cisterna magna volume by means of two-dimensional (2D) method using the multiplanar mode of three-dimensional ultrasonography. Materials and Methods: Cross-sectional study with 224 healthy pregnant women between the 17th and 29th gestational weeks. The volume was automatically obtained by multiplying the three major axes in axial and sagittal planes by the constant 0.52. Polynomial regression was utilized to establish the correlation between fetal cisterna magna volume and gestational age, with adjustments by coef- ficient of determination (R2). Reliability and agreement were obtained by intraclass correlation coefficient (ICC) and limits of agreement, respectively. Results: Mean fetal cisterna volume with the 2D method ranged from 0.71 ± 0.19 cm3 to 4.18 ± 0.75 cm3 at the 17th and 29th weeks, respectively. The authors observed a good correlation between fetal cisterna magna volume and gestational age (R2 = 0.67), excellent intraobserver reliability and agreement with ICC = 0.89 and limits of agreement 95% (–52.0; 51.8), respectively, and low interobserver reliability and agreement with ICC = 0.64 and limits of agreement 95% (–110.1; 84.6), respectively.
    [Show full text]