Latex Tubes in the Rays of Pimelodendron Amboinicum Hassk
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Origin of the Cyathium-Bearing Euphorbieae (Euphorbiaceae): Phylogenetic Study Based on Morphological Characters
ParkBot. Bull.and Backlund Acad. Sin. — (2002) Origin 43: of 57-62 the cyathium-bearing Euphorbieae 57 Origin of the cyathium-bearing Euphorbieae (Euphorbiaceae): phylogenetic study based on morphological characters Ki-Ryong Park1,* and Anders Backlund2 1Department of Biology, Kyung-Nam University, Masan 631-701, Korea 2Division of Pharmacognosy, Department of Pharmacy, Uppsala University, BMC-Biomedical center, S-751 23 Uppsala, Sweden (Received October 6, 2000; Accepted August 24, 2001) Abstract. A cladistic analysis of the subfamily Euphorbioideae was undertaken to elucidate the origin of the cyathium- bearing Euphorbieae and to provide hypotheses about evolutionary relationships within the subfamily. Twenty-one species representing most of the genera within the study group and three outgroup taxa from the subfamilies Acalyphoideae and Crotonoideae were selected for parsimony analysis. An unweighted parsimony analysis of 24 morphological characters resulted in five equally parsimonious trees with consistency indices of 0.67 and tree lengths of 39 steps. The strict consensus tree supported monophyly of the cyathium-bearing Euphorbieae. The sister group relationships of cyathium bearing Euphorbieae with Maprounea (subtribe Hippomaninae) were supported weakly, and the origin of cyathium is possibly in Hippomaneae, or in the common ancestor of Euphorbieae and remaining taxa of Euphorbioideae plus Acalyphoideae. Within the tribe Euphorbieae, both subtribes Euphorbiinae and Neoguilauminiinae are monophyletic, but the African endemic subtribe Anthosteminae is unresolved. The resulting trees support the monophyly of the tribe Stomatocalyceae while the tribe Hippomaneae does not consistently form a clade. Keywords: Cyathium; Euphorbieae; Phylogeny. Introduction to the position of a female flower. Accordingly, the Eu- phorbia-like cyathium results from the alteration of floral In a recent classification of subfamily Euphorbioideae axis and the condensation of the axis of male flower in Boiss., Webster (1975, 1994b) recognized six tribes: Hippomaneae. -
Studies on New Guinea Moths. 1. Introduction (Lepidoptera)
PROC. ENTOMOL. SOC. WASH. 105(4), 2003, pp. 1034-1042 STUDIES ON NEW GUINEA MOTHS. 1. INTRODUCTION (LEPIDOPTERA) SCOTT E. MILLER, VOJTECH NOVOTNY, AND YVES BASSET (SEM) Department of Systematic Biology, National Museum of Natural History, Smith- sonian Institution, Washington, DC 20560-0105, U.S.A. (e-mail: [email protected]. edu); (VN) Institute of Entomology, Czech Academy of Sciences and Biological Faculty, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic; (YB) Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Ancon, Panama Abstract.•This is the first in a series of papers providing taxonomic data in support of ecological and biogeographic studies of moths in New Guinea. The primary study is an extensive inventory of the caterpillar fauna of a lowland rainforest site near Madang, Papua New Guinea, from 1994•2001. The inventory focused on the Lepidoptera com- munity on 71 woody plant species representing 45 genera and 23 families. During the study, 46,457 caterpillars representing 585 species were sampled, with 19,660 caterpillars representing 441 species reared to adults. This introductory contribution is intended to provide background on the project, including descriptions of the study site, sampling methods, and taxonomic methods. Key Words: Malesia, Papua New Guinea, Lepidoptera, biodiversity, rearing, community ecology A very large portion of tropical biodi- 1992 and 1993 (Basset 1996, Basset et al. versity consists of herbivorous insects, and 1996). This paper represents the first in a among them, Lepidoptera are among the series of papers providing taxonomic doc- most amenable to study. To better under- umentation in support of the broader stud- stand the structure and maintenance of trop- ies, and is intended to provide general back- ical biodiversity, we undertook a series of ground, including descriptions of the study related inventories of Lepidoptera in New site, sampling methods, and taxonomic Guinea. -
DNA Barcoding Confirms Polyphagy in a Generalist Moth, Homona Mermerodes (Lepidoptera: Tortricidae)
Molecular Ecology Notes (2007) 7, 549–557 doi: 10.1111/j.1471-8286.2007.01786.x BARCODINGBlackwell Publishing Ltd DNA barcoding confirms polyphagy in a generalist moth, Homona mermerodes (Lepidoptera: Tortricidae) JIRI HULCR,* SCOTT E. MILLER,† GREGORY P. SETLIFF,‡ KAROLYN DARROW,† NATHANIEL D. MUELLER,§ PAUL D. N. HEBERT¶ and GEORGE D. WEIBLEN** *Department of Entomology, Michigan State University, 243 Natural Sciences Building, East Lansing, Michigan 48824, USA, †National Museum of Natural History, Smithsonian Institution, Box 37012, Washington, DC 20013-7012, USA, ‡Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, Minnesota 55108–1095 USA, §Saint Olaf College, 1500 Saint Olaf Avenue, Northfield, MN 55057, USA,¶Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1, **Bell Museum of Natural History and Department of Plant Biology, University of Minnesota, 220 Biological Sciences Center, 1445 Gortner Avenue, Saint Paul, Minnesota 55108–1095, USA Abstract Recent DNA barcoding of generalist insect herbivores has revealed complexes of cryptic species within named species. We evaluated the species concept for a common generalist moth occurring in New Guinea and Australia, Homona mermerodes, in light of host plant records and mitochondrial cytochrome c oxidase I haplotype diversity. Genetic divergence among H. mermerodes moths feeding on different host tree species was much lower than among several Homona species. Genetic divergence between haplotypes from New Guinea and Australia was also less than interspecific divergence. Whereas molecular species identification methods may reveal cryptic species in some generalist herbivores, these same methods may confirm polyphagy when identical haplotypes are reared from multiple host plant families. A lectotype for the species is designated, and a summarized bibliography and illustrations including male genitalia are provided for the first time. -
PERSEBARAN GEOGRAFIJENIS-JENIS Pimelodendron (EUPHORBIACEAE) DI MALESIA [Geographical Distribution of Pimelodendron Spp
Berita Biologi, Volume 6, Nomor 3, Desember 2002 PERSEBARAN GEOGRAFIJENIS-JENIS Pimelodendron (EUPHORBIACEAE) DI MALESIA [Geographical Distribution of Pimelodendron spp. (Euphorbiaceae) in Malesia] Tutie Djarwaningsih Puslit Biologi - LIPI Jl. IT. H. JuandaNo. 18 Bogor 16122 ABSTRACT The analysis of geographical distribution of Pimelodendron in Malesia based especially on data from the revision study of Pimelodendron (Euphorbiaceae) in Malesia. An analysis of distribution indicated that the highest number of species can be recognized, i.e. in Sumatera four species P. griffithianum, P. macrocarpum. P. zoanthogyne, and P. yatesianum; Peninsular Malaysia and Borneo have three species P. griffithianum, P. macrocarpum, and P. zoanthogyne; while Celebes, Moluccas, Lesser Sunda Islands, New Guinea, Solomon Islands and tropical Australia have one species (P. amboinicum). The geographical distribution indicated that the Malesian region can be considered as the centre of distribution of Pimelodendron. Kata kunci/ Key words: Pimelodendron, P. amboinicum, P. griffithianum, P. macrocarpum, P. zoanthogyne, P. yatesianum, persebaran geografi/ geographial distribution, aspek ekologi/ ecological aspects, Malesia. PENDAHULUAN sendiri dan kemampuan dari masing-masing jenis Fitogeografi atau geografi tumbuhan merupa- dalam berkompetisi. Dengan demikian informasi ini kan suatu bidang ilmu yang mencakup persebaran sangat penting dan diperlu-kan oleh lembaga-lembaga geografi, habitat, sejarah serta faktor-faktor biologi yang berkaitan dengan program penghijauan. -
Supplementary Material Saving Rainforests in the South Pacific
Australian Journal of Botany 65, 609–624 © CSIRO 2017 http://dx.doi.org/10.1071/BT17096_AC Supplementary material Saving rainforests in the South Pacific: challenges in ex situ conservation Karen D. SommervilleA,H, Bronwyn ClarkeB, Gunnar KeppelC,D, Craig McGillE, Zoe-Joy NewbyA, Sarah V. WyseF, Shelley A. JamesG and Catherine A. OffordA AThe Australian PlantBank, The Royal Botanic Gardens and Domain Trust, Mount Annan, NSW 2567, Australia. BThe Australian Tree Seed Centre, CSIRO, Canberra, ACT 2601, Australia. CSchool of Natural and Built Environments, University of South Australia, Adelaide, SA 5001, Australia DBiodiversity, Macroecology and Conservation Biogeography Group, Faculty of Forest Sciences, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany. EInstitute of Agriculture and Environment, Massey University, Private Bag 11 222 Palmerston North 4474, New Zealand. FRoyal Botanic Gardens, Kew, Wakehurst Place, RH17 6TN, United Kingdom. GNational Herbarium of New South Wales, The Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia. HCorresponding author. Email: [email protected] Table S1 (below) comprises a list of seed producing genera occurring in rainforest in Australia and various island groups in the South Pacific, along with any available information on the seed storage behaviour of species in those genera. Note that the list of genera is not exhaustive and the absence of a genus from a particular island group simply means that no reference was found to its occurrence in rainforest habitat in the references used (i.e. the genus may still be present in rainforest or may occur in that locality in other habitats). As the definition of rainforest can vary considerably among localities, for the purpose of this paper we considered rainforests to be terrestrial forest communities, composed largely of evergreen species, with a tree canopy that is closed for either the entire year or during the wet season. -
Downloaded from Brill.Com10/09/2021 12:24:23AM Via Free Access 2 IAWA Journal, Vol
IAWA Journal, Vol. 26 (1), 2005: 1-68 WOOD ANATOMY OF THE SUBFAMILY EUPHORBIOIDEAE A comparison with subfamilies Crotonoideae and Acalyphoideae and the implications for the circumscription of the Euphorbiaceae Alberta M. W. Mennega Nationaal Herbarium Nederland, Utrecht University branch, Heidelberglaan 2, 3584 es Utrecht, The Netherlands SUMMARY The wood anatomy was studied of 82 species from 34 out of 54 genera in the subfamily Euphorbioideae, covering all five tribes recognized in this subfamily. In general the woods show a great deal of similarity. They are charac terized by a relative paucity of vessels, often arranged in short to long, dumbbell-shaped or twin, radial multiples, and by medium-sized to large intervessel pits; fibres often have gelatinous walls; parenchyma apotracheal in short, wavy, narrow bands and diffuse-in-aggregates; mostly uni- or only locally biseriate rays, strongly heterocellular (except Hippomane, Hura and Pachystroma). Cell contents, either silica or crystals, or both together, are nearly always present and often useful in distinguishing between genera. Radiallaticifers were noticed in most genera, though they are scarce and difficult to trace. The laticifers are generally not surrounded by special cells, except in some genera of the subtribe Euphorbiinae where radiallaticifers are comparatively frequent and conspicuous. Three ofthe five tribes show a great deal of conformity in their anatomy. Stomatocalyceae, however, stand apart from the rest by the combination of the scarcity of vessels, and mostly biseriate, vertically fused and very tall rays. Within Euphorbieae the subtribe Euphorbiinae shows a greater vari ation than average, notably in vessel pitting, the frequent presence of two celled parenchyma strands, and in size and frequency of the laticifers. -
Terrestrial Biodiversity Field Assessment in the May River and Upper Sepik River Catchments SDP-6-G-00-01-T-003-018
Frieda River Limited Sepik Development Project Environmental Impact Statement Appendix 8b – Terrestrial Biodiversity Field Assessment in the May River and Upper Sepik River Catchments SDP-6-G-00-01-T-003-018 Terrestrial Biodiversity Field Assessment in the May River and Upper Sepik River Catchments Sepik Development Project (Infrastructure Corridor) August 2018 SDP-6-G-00-01-T-003-018 page i CONTRIBUTORS Wayne Takeuchi Wayne is a retired tropical forest research biologist from the Harvard University Herbaria and Arnold Arboretum. He is one of the leading floristicians in Papuasian botany and is widely known in professional circles for wide-ranging publications in vascular plant taxonomy and conservation. His 25-year career as a resident scientist in Papua New Guinea began in 1988 at the Wau Ecology Institute (subsequently transferring to the PNG National Herbarium in 1992) and included numerous affiliations as a research associate or consultant with academic institutions, non-governmental organisations (NGOs) and corporate entities. Despite taking early retirement at age 57, botanical work has continued to the present on a selective basis. He has served as the lead botanist on at least 38 multidisciplinary surveys and has 97 peer-reviewed publications on the Malesian flora. Kyle Armstrong, Specialised Zoological Pty. Ltd – Mammals Dr Kyle Armstrong is a consultant Zoologist, trading as ‘Specialised Zoological’, providing a variety of services related to bats, primarily on acoustic identification of bat species from echolocation call recordings, design and implementation of targeted surveys and long term monitoring programmes for bats of conservation significance, and the provision of management advice on bats. He is also currently Adjunct Lecturer at The University of Adelaide, an Honorary Research Associate of the South Australian Museum, and had four years as President of the Australasian Bat Society, Inc. -
Diversity and Biomass of Tree Species in Tambrauw, West Papua, Indonesia
BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 2, March 2018 E-ISSN: 2085-4722 Pages: 377-386 DOI: 10.13057/biodiv/d190204 Diversity and biomass of tree species in Tambrauw, West Papua, Indonesia IYAN ROBIANSYAH Center for Plant Conservation, Bogor Botanic Gardens, Indonesian Institute of Sciences. Jl. Ir. H.Juanda 13, Bogor 16003, West Java, Indonesia. Tel./fax.: +62-251-8322187, email: [email protected] Manuscript received: 6 October 2017. Revision accepted: 12 February 2018. Abstract. Robiansyah I. 2018. Diversity and biomass of tree species in Tambrauw, West Papua, Indonesia. Biodiversitas 19: 377-386. In spite of its high diversity and endemism, New Guinea is still one of the least explored regions on the globe. Flora information for the island as a whole is low compared to other areas in Malesia, and for Indonesian Province of Papua and West Papua it is much lower than for Papua New Guinea. To add more information and data on the flora of the West Papua Province, a vegetation analysis was conducted in Fef (442-509 m) and Bamusbama (757-914 m) Subdistricts, Tambrauw District, West Papua, Indonesia. Six and four plots of 30x30 m were placed in Fef and Bamusbama, respectively, to assess and compare the diversity and biomass of trees with diameter at breast height ≥ 10 cm. A total of 457 stems and ca. 86 tree species were identified. Fef accommodated higher species number (70) than Bamusbama (42). Meliaceae and Myrtaceae were the most important families in Fef and Bamusbama, respectively, while Castanopsis acuminatissima was the most important species in both subdistricts.The species diversity, richness, and evenness in Fef was higher than in Bamusbama. -
Download This PDF File
Berita Biologi, Volume 6, Nomor 3, Desember 2002 PERSEBARAN GEOGRAFIJENIS-JENIS Pimelodendron (EUPHORBIACEAE) DI MALESIA [Geographical Distribution of Pimelodendron spp. (Euphorbiaceae) in Malesia] Tutie Djarwaningsih Puslit Biologi - LIPI Jl. IT. H. JuandaNo. 18 Bogor 16122 ABSTRACT The analysis of geographical distribution of Pimelodendron in Malesia based especially on data from the revision study of Pimelodendron (Euphorbiaceae) in Malesia. An analysis of distribution indicated that the highest number of species can be recognized, i.e. in Sumatera four species P. griffithianum, P. macrocarpum. P. zoanthogyne, and P. yatesianum; Peninsular Malaysia and Borneo have three species P. griffithianum, P. macrocarpum, and P. zoanthogyne; while Celebes, Moluccas, Lesser Sunda Islands, New Guinea, Solomon Islands and tropical Australia have one species (P. amboinicum). The geographical distribution indicated that the Malesian region can be considered as the centre of distribution of Pimelodendron. Kata kunci/ Key words: Pimelodendron, P. amboinicum, P. griffithianum, P. macrocarpum, P. zoanthogyne, P. yatesianum, persebaran geografi/ geographial distribution, aspek ekologi/ ecological aspects, Malesia. PENDAHULUAN sendiri dan kemampuan dari masing-masing jenis Fitogeografi atau geografi tumbuhan merupa- dalam berkompetisi. Dengan demikian informasi ini kan suatu bidang ilmu yang mencakup persebaran sangat penting dan diperlu-kan oleh lembaga-lembaga geografi, habitat, sejarah serta faktor-faktor biologi yang berkaitan dengan program penghijauan. -
Resilience of a Forest Fragment Exposed to Long-Term Isolation in Singapore, Plant Ecology & Diversity, DOI: 10.1080/17550874.2016.1262924
Plant Ecology & Diversity ISSN: 1755-0874 (Print) 1755-1668 (Online) Journal homepage: http://www.tandfonline.com/loi/tped20 Resilience of a forest fragment exposed to long- term isolation in Singapore Kang Min Ngo, Stuart Davies, Nik Faizu Nik Hassan & Shawn Lum To cite this article: Kang Min Ngo, Stuart Davies, Nik Faizu Nik Hassan & Shawn Lum (2017): Resilience of a forest fragment exposed to long-term isolation in Singapore, Plant Ecology & Diversity, DOI: 10.1080/17550874.2016.1262924 To link to this article: http://dx.doi.org/10.1080/17550874.2016.1262924 Published online: 16 Jan 2017. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tped20 Download by: [Nanyang Technological University] Date: 17 January 2017, At: 04:24 Plant Ecology & Diversity, 2017 http://dx.doi.org/10.1080/17550874.2016.1262924 Resilience of a forest fragment exposed to long-term isolation in Singapore Kang Min Ngo a,b, Stuart Daviesc, Nik Faizu Nik Hassana and Shawn Lumd,e* aCentre for Tropical Forest Science, National Institute of Education, Singapore, Singapore; bDepartment of Tourism Science, Tokyo Metropolitan University, Hachioji, Japan; cCentre for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA; dNatural Science and Science Education, National Institute of Education, Singapore, Singapore; eAsian School of the Environment, Nanyang Technological University, Singapore, Singapore (Received 30 July 2016; accepted 16 November 2016) Background: Fragmentation can fundamentally alter the structure of tropical forests. However, the impacts of fragmentation may vary significantly among regions and lead to different outcomes. -
The Forests and Related Vegetation of Kwerba, on the Foja Foothills, Mamberamo, Papua (Indonesian New Guinea)
Blumea 55, 2010: 153–161 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE doi:10.3767/000651910X526889 The forests and related vegetation of Kwerba, on the Foja Foothills, Mamberamo, Papua (Indonesian New Guinea) M. van Heist1,2, D. Sheil1,2, I. Rachman3, P. Gusbager4, C.O. Raweyai4, H.S.M. Yoteni5 Key words Abstract We describe the vegetation of Kwerba, in the foothills of the Foja Mountains in the Mamberamo Basin of West Papua, Indonesia. Few surveys have been carried out in this remote area of Western New Guinea. Working in col- biogeography laboration with local people we made 15 plots, 10 in primary forest, 3 in secondary forest and 2 in gardens. A total of 487 botanical collection morpho-species were distinguished, of which 32 % (156) did not match any herbarium specimens or published reference. endemism Tree densities (598 ± 136/ha) are similar to lowland forests elsewhere, but mean stem sizes (22 ± 1 cm dbh and 21 ± undescribed taxa 2 m height for trees over 10 cm dbh) appear small. Numbers of tree species per plot (22 ± 4, of 40 stems recorded) are wilderness unremarkable, but levels of endemism are potentially high with many of the unidentified species being rare (seldom col- lected) or undescribed. This is the first quantitative description of vegetation in Kwerba, Foja and Mamberamo, and joins only a handful of such studies in Papua. Additional botanical and ecological survey effort is greatly needed in Mamberamo, and in New Guinea generally. Published on 17 August 2010 INTRODUCTION In 1999 a group of experts evaluating regional conservation priorities stated that the Mamberamo Basin is “Papua’s most New Guinea comprises the greater part of the floristic region important terrestrial biodiversity resource” (Supriatna et al. -
Antimicrobial and Antioxidant Medicinal Plants in Kwau Village
Advances in Biological Sciences Research, volume 11 Proceedings of the Joint Symposium on Tropical Studies (JSTS-19) Antimicrobial and Antioxidant Medicinal Plants in Kwau Village and Silau Villlage, Warmare District, Manokwari District, West Papua Susilo Budi Husodo1 Enos Tangke Arung2,* Edy Budiarso2 Irawan Wijaya Kusuma2 1 Forestry Faculty Papua University, Manokwari Indonesia 2 Faculty Forestry Mulawarman University, Samarinda Indonesia *Corresponding author. Email: [email protected] ABSTRACT The purpose of this study was to evaluate antimicrobial and antioxidant of medicinal plants in the villages of Kwau and Siau (Phytochemical, antioxidant, anti-bacterial, antifungal, and toxicity). The bark, roots, and leaves are extracted with methanol to get the extract. Antimicrobial activity against Propionibacterium acnes, Escherichia coli, Streptococcus sobrinus, and Candida albicans was determined by a good diffusion method. The DPPH radical scavenging activity mechanism assayed antioxidant activity. Antimicrobial activity against the bacteria and fungi was determined by the agar well diffusion method. Antioxidant activity was tested by DPPH radical rinsing activity mechanism. Toxicity was determined by the Brine Shrimp Lethality Test method. The results showed that methanol extract showed good activity against acne in only 8 of 13 species, ten species of 13 species for E.colii, three species of 13 species for S. sobrinus and, ten species of 13 species for C. albican at 25-500 ppm of extract tested. The toxicity test showed that 0% of the deaths from Artemia salina Leach shrimp indicated that the absence of harmful compounds was toxic in the sample, meaning that it was very safe to be consumed directly by humans, except for the roots of Spondias cytherea Senn and the bark of Inocarpus fragiferua Fosk.