Supplementary Material Saving Rainforests in the South Pacific
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Approved Conservation Advice for Actephila Foetida
This Conservation Advice was approved by the Minister / Delegate of the Minister on: 16/12/2008 Approved Conservation Advice (s266B of the Environment Protection and Biodiversity Conservation Act 1999) Approved Conservation Advice for Actephila foetida This Conservation Advice has been developed based on the best available information at the time this Conservation Advice was approved; this includes existing plans, records or management prescriptions for this species. Description Actephila foetida, Family Euphorbiaceae, is a subshrub up to 1 m tall. The young branchlets are densely covered with soft, short hairs. The leaf stalks are 1.8–7.8 cm long and dark olive- green when dry. The thin leaves are broadly elliptic to obovate, measuring 4.5–53 cm long by 3–21.3 cm wide and are alternately arranged along the branchlets. The upper leaf surface is dark olive-green and more or less hairless; the lower surface is pale olive-green, with a dense covering of spreading hairs on the lateral veins. The flowers are unisexual. Male and female flowers are mixed together in clusters borne in leaf axils. The flower clusters measure 7– 13 mm in diameter and the flowers are approximately 4–8 mm in diameter. Both male and female flowers have 5 sepals and a conspicuous fleshy disk. The fruits are depressed-globose in shape, 15–19 mm in diameter and split releasing up to 3 seeds. This species is distinguished by the (usually) large leaves and the hispid indumentum on the lower surface of the leaf and the flowers that lack petals (Forster, 2005). Conservation Status Actephila foetida is listed as vulnerable. -
Street Tree Master Plan Report © Sunshine Coast Regional Council 2009-Current
Sunshine Coast Street Tree Master Plan 2018 Part A: Street Tree Master Plan Report © Sunshine Coast Regional Council 2009-current. Sunshine Coast Council™ is a registered trademark of Sunshine Coast Regional Council. www.sunshinecoast.qld.gov.au [email protected] T 07 5475 7272 F 07 5475 7277 Locked Bag 72 Sunshine Coast Mail Centre Qld 4560 Acknowledgements Council wishes to thank all contributors and stakeholders involved in the development of this document. Disclaimer Information contained in this document is based on available information at the time of writing. All figures and diagrams are indicative only and should be referred to as such. While the Sunshine Coast Regional Council has exercised reasonable care in preparing this document it does not warrant or represent that it is accurate or complete. Council or its officers accept no responsibility for any loss occasioned to any person acting or refraining from acting in reliance upon any material contained in this document. Foreword Here on our healthy, smart, creative Sunshine Coast we are blessed with a wonderful environment. It is central to our way of life and a major reason why our 320,000 residents choose to live here – and why we are joined by millions of visitors each year. Although our region is experiencing significant population growth, we are dedicated to not only keeping but enhancing the outstanding characteristics that make this such a special place in the world. Our trees are the lungs of the Sunshine Coast and I am delighted that council has endorsed this master plan to increase the number of street trees across our region to balance our built environment. -
Renata Gabriela Vila Nova De Lima Filogenia E Distribuição
RENATA GABRIELA VILA NOVA DE LIMA FILOGENIA E DISTRIBUIÇÃO GEOGRÁFICA DE CHRYSOPHYLLUM L. COM ÊNFASE NA SEÇÃO VILLOCUSPIS A. DC. (SAPOTACEAE) RECIFE 2019 RENATA GABRIELA VILA NOVA DE LIMA FILOGENIA E DISTRIBUIÇÃO GEOGRÁFICA DE CHRYSOPHYLLUM L. COM ÊNFASE NA SEÇÃO VILLOCUSPIS A. DC. (SAPOTACEAE) Dissertação apresentada ao Programa de Pós-graduação em Botânica da Universidade Federal Rural de Pernambuco (UFRPE), como requisito para a obtenção do título de Mestre em Botânica. Orientadora: Carmen Silvia Zickel Coorientador: André Olmos Simões Coorientadora: Liliane Ferreira Lima RECIFE 2019 Dados Internacionais de Catalogação na Publicação (CIP) Sistema Integrado de Bibliotecas da UFRPE Biblioteca Central, Recife-PE, Brasil L732f Lima, Renata Gabriela Vila Nova de Filogenia e distribuição geográfica de Chrysophyllum L. com ênfase na seção Villocuspis A. DC. (Sapotaceae) / Renata Gabriela Vila Nova de Lima. – 2019. 98 f. : il. Orientadora: Carmen Silvia Zickel. Coorientadores: André Olmos Simões e Liliane Ferreira Lima. Dissertação (Mestrado) – Universidade Federal Rural de Pernambuco, Programa de Pós-Graduação em Botânica, Recife, BR-PE, 2019. Inclui referências e anexo(s). 1. Mata Atlântica 2. Filogenia 3. Plantas florestais 4. Sapotaceae I. Zickel, Carmen Silvia, orient. II. Simões, André Olmos, coorient. III. Lima, Liliane Ferreira, coorient. IV. Título CDD 581 ii RENATA GABRIELA VILA NOVA DE LIMA Filogenia e distribuição geográfica de Chrysophyllum L. com ênfase na seção Villocuspis A. DC. (Sapotaceae Juss.) Dissertação apresentada e -
Edition 2 from Forest to Fjaeldmark the Vegetation Communities Highland Treeless Vegetation
Edition 2 From Forest to Fjaeldmark The Vegetation Communities Highland treeless vegetation Richea scoparia Edition 2 From Forest to Fjaeldmark 1 Highland treeless vegetation Community (Code) Page Alpine coniferous heathland (HCH) 4 Cushion moorland (HCM) 6 Eastern alpine heathland (HHE) 8 Eastern alpine sedgeland (HSE) 10 Eastern alpine vegetation (undifferentiated) (HUE) 12 Western alpine heathland (HHW) 13 Western alpine sedgeland/herbland (HSW) 15 General description Rainforest and related scrub, Dry eucalypt forest and woodland, Scrub, heathland and coastal complexes. Highland treeless vegetation communities occur Likewise, some non-forest communities with wide within the alpine zone where the growth of trees is environmental amplitudes, such as wetlands, may be impeded by climatic factors. The altitude above found in alpine areas. which trees cannot survive varies between approximately 700 m in the south-west to over The boundaries between alpine vegetation communities are usually well defined, but 1 400 m in the north-east highlands; its exact location depends on a number of factors. In many communities may occur in a tight mosaic. In these parts of Tasmania the boundary is not well defined. situations, mapping community boundaries at Sometimes tree lines are inverted due to exposure 1:25 000 may not be feasible. This is particularly the or frost hollows. problem in the eastern highlands; the class Eastern alpine vegetation (undifferentiated) (HUE) is used in There are seven specific highland heathland, those areas where remote sensing does not provide sedgeland and moorland mapping communities, sufficient resolution. including one undifferentiated class. Other highland treeless vegetation such as grasslands, herbfields, A minor revision in 2017 added information on the grassy sedgelands and wetlands are described in occurrence of peatland pool complexes, and other sections. -
Ultramafic Geocology of South and Southeast Asia
Galey et al. Bot Stud (2017) 58:18 DOI 10.1186/s40529-017-0167-9 REVIEW Open Access Ultramafc geoecology of South and Southeast Asia M. L. Galey1, A. van der Ent2,3, M. C. M. Iqbal4 and N. Rajakaruna5,6* Abstract Globally, ultramafc outcrops are renowned for hosting foras with high levels of endemism, including plants with specialised adaptations such as nickel or manganese hyperaccumulation. Soils derived from ultramafc regoliths are generally nutrient-defcient, have major cation imbalances, and have concomitant high concentrations of potentially phytotoxic trace elements, especially nickel. The South and Southeast Asian region has the largest surface occur- rences of ultramafc regoliths in the world, but the geoecology of these outcrops is still poorly studied despite severe conservation threats. Due to the paucity of systematic plant collections in many areas and the lack of georeferenced herbarium records and databased information, it is not possible to determine the distribution of species, levels of end- emism, and the species most threatened. However, site-specifc studies provide insights to the ultramafc geoecology of several locations in South and Southeast Asia. The geoecology of tropical ultramafc regions difers substantially from those in temperate regions in that the vegetation at lower elevations is generally tall forest with relatively low levels of endemism. On ultramafc mountaintops, where the combined forces of edaphic and climatic factors inter- sect, obligate ultramafc species and hyperendemics often occur. Forest clearing, agricultural development, mining, and climate change-related stressors have contributed to rapid and unprecedented loss of ultramafc-associated habitats in the region. The geoecology of the large ultramafc outcrops of Indonesia’s Sulawesi, Obi and Halmahera, and many other smaller outcrops in South and Southeast Asia, remains largely unexplored, and should be prioritised for study and conservation. -
Native Plants Sixth Edition Sixth Edition AUSTRALIAN Native Plants Cultivation, Use in Landscaping and Propagation
AUSTRALIAN NATIVE PLANTS SIXTH EDITION SIXTH EDITION AUSTRALIAN NATIVE PLANTS Cultivation, Use in Landscaping and Propagation John W. Wrigley Murray Fagg Sixth Edition published in Australia in 2013 by ACKNOWLEDGEMENTS Reed New Holland an imprint of New Holland Publishers (Australia) Pty Ltd Sydney • Auckland • London • Cape Town Many people have helped us since 1977 when we began writing the first edition of Garfield House 86–88 Edgware Road London W2 2EA United Kingdom Australian Native Plants. Some of these folk have regrettably passed on, others have moved 1/66 Gibbes Street Chatswood NSW 2067 Australia to different areas. We endeavour here to acknowledge their assistance, without which the 218 Lake Road Northcote Auckland New Zealand Wembley Square First Floor Solan Road Gardens Cape Town 8001 South Africa various editions of this book would not have been as useful to so many gardeners and lovers of Australian plants. www.newhollandpublishers.com To the following people, our sincere thanks: Steve Adams, Ralph Bailey, Natalie Barnett, www.newholland.com.au Tony Bean, Lloyd Bird, John Birks, Mr and Mrs Blacklock, Don Blaxell, Jim Bourner, John Copyright © 2013 in text: John Wrigley Briggs, Colin Broadfoot, Dot Brown, the late George Brown, Ray Brown, Leslie Conway, Copyright © 2013 in map: Ian Faulkner Copyright © 2013 in photographs and illustrations: Murray Fagg Russell and Sharon Costin, Kirsten Cowley, Lyn Craven (Petraeomyrtus punicea photograph) Copyright © 2013 New Holland Publishers (Australia) Pty Ltd Richard Cummings, Bert -
December 2012 Number 1
Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada. -
Revision of the Genus Cleidion (Euphorbiaceae) in Malesia
BLUMEA 50: 197–219 Published on 22 April 2005 http://dx.doi.org/10.3767/000651905X623373 REVISION OF THE GENUS CLEIDION (EUPHORBIACEAE) IN MALESIA KRISTO K.M. KULJU & PETER C. VAN WELZEN Nationaal Herbarium Nederland, Universiteit Leiden branch, P.O. Box 9514, 2300 RA Leiden, The Netherlands; e-mail: [email protected], [email protected] SUMMARY A revision of the Malesian species in the genus Cleidion is presented. Cleidion javanicum is shown to be the correct name for the widespread type species (instead of the name C. spiciflorum). A new species, C. luziae, resembling C. javanicum, is described from the Moluccas, New Guinea and the Solomon Islands. In addition, C. salomonis is synonymised with C. papuanum and C. lanceolatum is treated as a variety of C. ramosii. In total 7 Malesian Cleidion species are recognized. Cleidion megistophyllum from the Philippines cannot reliably be confirmed to belong to the genus due to lack of information and specimens and is treated as a doubtful species. Key words: Cleidion, Acalypheae, Cleidiinae, revision, taxonomy, Malesia. INTRODUCTION Cleidion is a pantropical genus belonging to the large angiosperm family Euphorbiaceae s.s. It was described by Blume (1825), who included a single species C. javanicum1. The first revision was made by Müller Argoviensis (1865, 1866). His work was fol- lowed by the comprehensive treatment of Pax & Hoffmann (1914), which included 17 species. Pax & Hoffmann excluded the section Discocleidion Müll.Arg. which differs from Cleidion by the presence of a staminate and pistillate disc (in Cleidion a disc is absent), stipellate and palmatinerved leaves (in Cleidion the leaves are non-stipellate and pinnatinerved), and differences in anther type. -
Novitates Neocaledonicae VI: Acropogon Mesophilus (Malvaceae, Sterculioideae), a Rare and Threatened New Species from the Mesic Forest of New Caledonia
Phytotaxa 307 (3): 183–190 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.307.3.2 Novitates neocaledonicae VI: Acropogon mesophilus (Malvaceae, Sterculioideae), a rare and threatened new species from the mesic forest of New Caledonia JÉRÔME MUNZINGER1 & GILDAS GÂTEBLÉ2 1AMAP, IRD, CNRS, INRA, Université Montpellier, F-34000 Montpellier (France). email: [email protected] 2Institut Agronomique néo-Calédonien (IAC), Station de Recherche Agronomique de Saint-Louis, BP 711, 98810 Mont-Dore (Nouvelle- Calédonie). E-mail: [email protected] Abstract A new species, Acropogon mesophilus Munzinger & Gâteblé (Malvaceae, Sterculioideae), is described from New Caledo- nia. This species is endemic to non-ultramafic areas, along the southwestern coast of Grande-Terre. The species has large leaves, widely ovate to ovate, and entire, and might be confused with only two other endemic species, namely A. bullatus (Pancher & Sebert) Morat and A. veillonii Morat. However, A. mesophilus differs from the other two species most evidently by its leaves 3-nerved, flat, and with truncate to rounded bases, versus leaves 5-nerved, bullate, and with cordate bases. A line drawing and color photos are provided for the new species, along with a discussion of its morphological affinities and a preliminary risk of extinction assessment of Endangered. Keywords: Acropogon, Malvaceae, mesic forest, New Caledonia, new species, Sterculioideae, taxonomy, threatened species Introduction Forests in New Caledonia are currently more or less arbitrarily divided into sclerophyll (or dry) and dense humid forests, the latter being further separated into two main types depending on edaphic conditions, i.e., on ultramafic versus non-ultramafic substrate (Jaffré et al. -
Grow Natives in Pots
ATG About the Garden ATGFACTAbout SHEET the Garden Fact Sheet No. 21 GROWING NATIVES IN POTS The key factors to successfully growing Australian plants in containers are exactly the same as for exotic plants - drainage and nutrition. The main points to remember are that good drainage is even more important for certain natives (mainly those originating in arid areas with very light, sandy soils) and that plants in the Proteaceae family require low phosphorus fertilisers. When growing plants in containers it is important *PLANTS IN THE to know their type and origin so ask yourself the following questions: FAMILY PROTEACEAE • Tree, shrub or climber/groundcover? • Does it originate in a high or low rainfall area? INCLUDE: • Is its natural habitat sun or shade? • Natural soil type - light (sandy) or heavy (clay)? Athertonia banksia The type of plant determines the ultimate pot size. buckinghamia Knowing its origins will tell you the type of growing cardwellia medium you need, how much water and whether it darlingia should be placed in sun or shade. If the label doesn’t dryandra give you enough information, ask nursery staff. hakea lomatia Any type of container can be used, providing it has macadamia plenty of adequate sized drainage holes. Too small and oreocallis they will drain too slowly and block up easily; too large persoonia and all your precious water will run away too fast. Most petrophile, good quality terracotta and plastic pots come with stenocarpus and good drainage holes; a medium-sized pot should have telopea no less than four, about the size of a five cent piece. -
Ackama Rosifolia
Ackama rosifolia COMMON NAME Makamaka SYNONYMS Caldcluvia rosifolia (A.Cunn.) Hoogland FAMILY Cunoniaceae AUTHORITY Ackama rosifolia A.Cunn. FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No ENDEMIC FAMILY No STRUCTURAL CLASS Trees & Shrubs - Dicotyledons NVS CODE ACKROS Fruit. In cultivation. Nov 2006. Photographer: Peter de Lange CHROMOSOME NUMBER 2n=32 CURRENT CONSERVATION STATUS 2012 | Not Threatened PREVIOUS CONSERVATION STATUSES 2009 | Not Threatened 2004 | Not Threatened BRIEF DESCRIPTION Small Northland tree. Leaves consisting of 4 to 10 or more opposite pairs of toothed leaflets and a terminal leaflet which have small hairy pits at the junction of the main leaflet veins. Flowers in dense sprays of cream coloured flowers developing into pinkish or red fruits. DISTRIBUTION Endemic. North Island only from near Kaitaia south to just north of Wellsford. Often rather local in its occurrences, particularly south of Whangarei. Fruit. In cultivation. Nov 2006. Photographer: SIMILAR TAXA Peter de Lange Very similar to juvenile foliage of Weinmannia silvicola but can be distinguished by the domatia on the underside of the leaves. These domatia are known as tuft pocket domatia and occur at the junction of the mid-rib and the side vein where there is a pocket of hairs. Makamaka also has huge prominent stipules that are large, green and heavily veined. FLOWER COLOURS Cream, White LIFE CYCLE Hairy carpels dispersed by wind (Thorsen et al., 2009). PROPAGATION TECHNIQUE Can be grown from semi-hardwood cuttings and fresh seed. A fast growing, and rather attractive small tree. However, very drought intolerant, and needs a damp soil and sunny aspect to thrive. -
MPI Queensland Fruit Fly Host Material List
Queensland fruit fly host material Please note: While the host status of some species is in dispute with some countries; for the purpose of export phytosanitary certification MPI will treat all species in this list as host material until further notice. Tissue culture and frozen commodities are not considered to be a host of Queensland fruit fly. This list may be updated. Plant name Common name Acca sellowiana (syn Feijoa sellowiana) feijoa Acmena graveolens Acmena smithii Acroychia acidula Actinidia arguta kiwiberry Actinidia chinensis green kiwifruit Actinidia deliciosa gold kiwifruit Aegle marmelos Golden apple Aglaia sapindina Alyxia ruscifolia Amorphospermum antilogum Anacardium occidentale cashew nut, cashew apple Annona cherimola cherimoya Annona glabra pond apple Annona muricata soursop Annona reticulata bullock's heart, custard apple Annona squamosa sugar apple, sweetsop Artocarpus altilis breadfruit Artocarpus heterophyllus jackfruit Averrhoa bilimbi blimbe Averrhoa carambola carambola, star fruit Beilschmiedia obtusifolia Beilschmiedia taraire Taraire Beilschmiedia tawa Tawa Blighia sapida Akee apple Calophyllum inophyllum Alexandrian laurel Cananga odorata perfume tree Canarium vulgare Java almond Capparis lucida Capparis mitchellii Capparis nobilis Capsicum annuum bell pepper Capsicum annuum var acuminatum chilli Capsicum annuum var cerasiforme cherry pepper Capsicum annuum var conoides tabasco Capsicum frutescens Carica papaya papaw, papaya Carica pentagona babaco Carissa ovata Casimiroa edulis white sapote Cassine australia Castanospora alphandii Chrysophyllum cainito caimito, star apple Cissus sp Citrullus lanatus Watermelon Citrus spp. Citrus aurantiifolia West indian lime Citrus aurantium Seville orange Citrus grandis (syn maxima) pummelo Citrus hystrix kaffir lime Citrus jambhiri rough lemon Citrus latifolia Tahatian lime Citrus limetta sweet lemon tree Citrus limon lemon Citrus maxima (syn grandis) pomelo, shaddock Citrus medica citron Citrus meyeri Meyer lemon Citrus reticulata mandarin Citrus reticulata var.